首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The satellite 1966-51C was launched in June 1966 into a polar orbit with perigee height 180 km, apogee height 3600 km, and orbital period 125 min. The orbit contracted rapidly under the influence of air drag, and the satellite decayed in March 1967. The only available observations are from the NASA Minitrack system, and 825 of these have been used with PROP6 orbit refinement program, to determine orbital parameters at 20 epochs. For most of these orbits the standard deviations in inclination and right ascension of the node are less than 0.002° (corresponding to about 200 m cross-track) and the standard deviations in eccentricity are less than 0.00002 (150 m in height).The variation in inclination is analysed to determine upper-atmosphere zonal wind speeds, with excellent resolution in local time. The results, for heights near 210 km and a representative latitude near 30°, indicate west-to-east winds of 100 ± 40 m/s for local time 18–21 h, and east-to-west winds of 80 ± 25 m/s for 02–04 h and 09–12 h local time. The values of the right ascension of the node are also analysed, and provide independent confirmation of the wind speeds obtained from the inclination. Analysis of the decrease in perigree distance indicates values of density scale height within 5% of those predicted by the COSPAR International Reference Atmosphere 1972, for the conditions experienced by 1966-51C.  相似文献   

2.
The satellite 1965-11D was the final-stage rocket used to launch Cosmos 54, 55 and 56 into orbit on 21 February 1965. The orbit of 1965-11D was inclined at 56° to the Equator, with an initial perigee height of 280 km; the lifetime was nearly 5 yr, with decay on 23 December 1969. The orbit has been determined at 75 epochs during the life, using the RAE orbit determination program PROP with over 4000 observations, photographic, visual and radar. Observations from the Hewitt camera at Malvern were available for 34 of the 75 orbits and typical accuracies for these orbits are 0.0005° in inclination and 100 m in perigee height.The variations in perigee height have been analyzed to determine reliable values of density scale height, at heights between 240 and 360 km. The analysis also revealed a rapid decrease of 5 km in perigee distance early in 1966, attributed to the escape of residual propellants.The variations in orbital inclination have been analyzed to determine upper-atmosphere zonal winds and 15th-order harmonics in the geopotential. The region of the upper atmosphere traversed by 1965-11D near its perigee is found to have had an average rotation rate of 1.10 ± 0.05 rev/day in 1966–1967, and 1.00 ± 0.03 rev/day between March 1968 and May 1969. In late 1969 there were probably wide variations in zonal winds, with east-to-west winds of order 100 m/s followed by west-to-east winds of order 200 m/s. The changes in inclination at the 15th-order resonance in July 1969 have been analyzed to give the first accurate values of lumped 15th-order harmonics obtained from a high-drag satellite. This success points the way towards similar analyses of the many other high-drag satellites that pass through 15th-order resonance, to evaluate individual geopotential coefficients of order 15 and even degree.  相似文献   

3.
COSMOS 1009 rocket was launched on 19 May 1978 into an orbit with initial perigee height 150 km and apogee 1100 km: its lifetime was only 17 days. The orbit has been determined daily during the final 14 days of its life, using the RAE orbit refinement program PROP6,with about 1100 observations supplied by NORAD. An average accuracy of about 60 m, radial and cross-track, was achieved.The orbits were analysed to reveal three features of the upper atmosphere at heights between 125 and 175 km. From the decrease in perigee height, five values of density scale height, accurate to ±4%, were obtained. The first three were within 10% of those from CIRA 1972; the fourth, after a magnetic storm, was higher than expected; the fifth gave evidence of the decrease in drag coefficient at heights below 130 km.Atmospheric oblateness produced a change of 4° in perigee position during the last four days of the life. Analysis showed that the ellipticity of the upper atmosphere was approximately equal to that of the Earth, f, for the first two of the four days, and about 12f in the last two.The orbital inclination decreased during the 14 days by about 50 times its standard deviation, and the observed variation was analysed to determine zonal winds at heights of 150–160 km at latitudes near 47° north. The zonal wind was very weak (0±30 m/s) for 23–28 May at local times near 03h; and 90±30 m/s east-to-west for 29 May to 4 June at local times near 01 h.  相似文献   

4.
The satellite 1968-90A (Cosmos 248), was launched in October 1968 into an orbit inclined at 62.25° to the equator, with an initial perigee height of 475 km, apogee height 543 km, and orbital period 94.8 min. The orbit has been determined at 57 epochs over nearly one and a quarter cycles of the argument of perigee from January 1972 until December 1975 with the aid of the RAE orbit refinement program PROP, using nearly 3000 observations. For most of these orbits the standard deviations in inclination are less than 0.0009° (corresponding to about 100m in cross-track distance). The values of eccentricity give perigee heights accurate to between 30 and 120m.The main purpose of the orbit determination was to provide accurate values of the eccentricity for use in determining the odd zonal harmonics in the Earth's gravitational potential. These values have been analysed to determine the amplitude of the oscillation in eccentricity, which is found to be 0.00433 ± 0.00001.  相似文献   

5.
Cosmos 72 (1965-53B) was launched on 16 April 1965 into a near-circular orbit with an average height of 570 km and inclination 56°. Over the years, the orbit has contracted slowly under the influence of air drag, and On 27 June 1972 passed through exact 15th-order resonance, when successive equator crossings are 24° apart in longitude and the ground track repeats after 15 rev. The orbit has been determined at seven epochs between April 1972 and February 1973, using the RAE orbit refinement program PROP, with 544 optical and radar observations: the average orbital accuracy is about 50 m in height and 0.0008° in inclination.For Cosmos 72 the change in inclination at 15th-order resonance, due to perturbations by 15th-order harmonics in the geopotential, is greater than for any satellite previously analysed— nearly 0.07°—and analysis of the change, using the seven PROP orbits and 45 U.S. Navy orbits, yields equations accurate to 4 per cent for the geopotential coefficients of order 15 and odd degree (15, 17, 19 …). A similar analysis of the variation in eccentricity gives less accurate equations for coefficients of order 15 and even degree (16, 18 …). The variations in right ascension of the node and argument of perigee have also been analysed.  相似文献   

6.
Cosmos 387 (1970-111A) was launched on 16 December 1970 into a near-circular orbit with an average height of 540 km and an inclination of 74.0°. On 5 November 1971 the orbit, in its slow contraction under the influence of air drag, passed through 15th-order resonance, when the ground track repeats after 15 revolutions. The orbit has been determined with the aid of the RAE orbit refinement program PROP at 19 epochs between May 1971 and June 1972, using 1500 optical and radar observations. The average accuracy is about 70 m in perigee height and 0.001° in inclination.The variation of orbital inclination while the satellite was experiencing 15th-order resonance, as given by these 19 orbits and 55 U.S. Navy orbits, has been analysed to obtain equations accurate to 4 per cent for the geopotential coefficients of order 15 and odd degree (15, 17, 19 …). These equations have subsequently been used (with others) in determining individual coefficients of order 15 and odd degree.The variation of eccentricity with argument of perigee showed unexpected complexity, including a tight loop near resonance (Fig. 4). Analysis of the variation in eccentricity has yielded, for the first time, accurate equations for the geopotential coefficients of order 15 and even degree (16, 18 …), thus opening the way to the evaluation of individual coefficients of this type. The variations in the argument of perigee and right ascension of the node have also been analysed.  相似文献   

7.
Cosmos 378 rocket, 1970-97B, entered orbit on 17 November 1970, with orbital inclination 74.0°, period 105 min and perigee height 230 km, and decayed on 30 September 1972 after 683 days in orbit. The RAE computer program PROP was used, with more than 1900 observations from 64 stations, to determine the orbit at 39 epochs between February 1971 and September 1972.The main aim of the analysis was to determine the atmospheric rotation rate from the decrease in orbital inclination, which was determined with a mean standard deviation of 0.0010° and a best standard deviation of 0.0003°. After removal of relevant perturbations, analysis of the variation in inclination between July 1971 and April 1972 yields the surprisingly low average atmospheric rotation rate of 0.75 ± 0.05 rev/day, at a mean height of 250 km. The local time at perigee is however strongly biassed towards daytime values (07–16 hr), so the results lend support to the picture of east-to-west winds by day and west-to-east winds by night.Values of scale height are obtained by analysis of the change in perigee height.  相似文献   

8.
The orbit of Cosmos 268 rocket (1969-20B) has been determined at 28 epochs during its 342-day life, with the aid of the PROP5 orbit refinement program. All available observations were used, including 16 from the Hewitt camera at Malvern, 28 from the 200-mm camera at Meudon, 56 from the kinetheodolite at the Cape Observatory, 700 visual observations from volunteer observers, 500 US Navy observations and 200 British radar observations. The orbits are of very good accuracy for such a high-drag satellite, most of the values of inclination having standard deviations less than 0.002°. The most accurate orbits are those utilizing photographic observations, and the best of these has standard deviations of 0.00001 in eccentricity and 0.0001° in inclination.

The values of inclination obtained, after correction to allow for the effects of other perturbing forces, have been analysed to determine zonal wind speeds in the upper atmosphere at heights a little above perigee (230–250 km) averaged over latitudes up to about 25°. The results show a clear distinction between the wind at night (21 to 03 hr local time), which is west-to-east with an average speed of 140 ± 50 m/sec, and the wind by day (08 to 17 hr), which is east-to-west with an average speed of 110 ± 50 m/sec.  相似文献   


9.
Cosmos 359 rocket 1970-65D, was launched on 22 August 1970 into an orbit inclined at 51·2° to the Equator, with an initial perigee height of 209 km: it decayed on 6 October 1971 after a lifetime of 410 days. The orbit has been determined at 42 epochs during the lifetime, using the RAE orbit refinement program, PROP, with over 2600 observations. Observations from the Hewitt cameras at Malvern and Edinburgh were available for 10 of the 42 orbits.Ten values of density scale height, at heights between 185 and 261 km, have been determined from analysis of the variations in perigee height.Upper-atmosphere zonal winds and 15th-order harmonics in the geopotential have been evaluated from the changes in orbital inclination. The average atmospheric rotation rate, for heights near 220 km, is found to be 1·04 rev/day; but there are striking departures from the average, with well-established values of 1·30, 0·75, 1·35 and 0·95 over four successive 75-day intervals. The changes in inclination at the 15th-order resonance in November 1970 give values of lumped 15th-order harmonics, which will provide equations for evaluating coefficients of order 15 and even degree (16,18,…) and also show that useful results on the geopotential can be obtained from satellites with perigee as low as 200 km.  相似文献   

10.
The orbit of Cosmos 482 has been determined at 55 epochs during the period August 1975–October 1977. Inclined at 52° to the Equator, of eccentricity exceeding 0.3 and perigee height near 210 km, this high drag and high eccentricity orbit is the most eccentric as yet analysed by PROP. The combination of the orbital characteristics, restricted global coverage of observational data, and the many observations of angular measurement at extreme range proved to be troublesome. Cleared of other perturbations, the inclination is analysed to determine the atmospheric rotation rate, λ rev day?1, of the zonal winds at a height near 235 km. Results reveal a diurnal and seasonal dependence, including a summer value, averaged over local time, of λ = 0.9 and an evening value of λ = 1.4 in the winter months. The resultant wind velocities vary between 48 m s?1 East to West and 193 m s?1 West to East, with an average of 48 m s?1 West to East.  相似文献   

11.
Samos 2, 1961 α 1, launched on 31 January 1961, was the first satellite to enter a sun-synchronous orbit at an inclination of 97.4°. The initial perigee and apogee heights were 474 km and 557 km respectively, the initial period was 94.97 min and the satellite decayed on 21 October 1973 after more than 12 years in orbit.Samos 2 passed through the condition of 31 : 2 resonance in June 1971 and orbital parameters have been determined at 22 epochs from 1674 observations using the RAE orbit refinement program, PROP, between mid-April and Mid-September 1971. The variations of inclination and eccentricity during this time have been analysed and values for six lumped 31st-order harmonic coefficients in the geopotential have been obtained. These have been compared with those derived from the individual coefficients, of order 31 and appropriate degrees, from the most recent Goddard Earth Model, GEM 10C.The decrease in inclination between launch and 1971 has been examined: it is found to be caused mainly by a near-resonant solar gravitational perturbation.  相似文献   

12.
The long period dynamics of Sun-synchronous orbits near the critical inclination 116.6° are investigated. It is known that, at the critical inclination, the average perigee location is unchanged by Earth oblateness. For certain values of semimajor axis and eccentricity, orbit plane precession caused by Earth oblateness is synchronous with the mean orbital motion of the apparent Sun (a Sun-synchronism). Sun-synchronous orbits have been used extensively in meteorological and remote sensing satellite missions. Gravitational perturbations arising from an aspherical Earth, the Moon, and the Sun cause long period fluctuations in the mean argument of perigee, eccentricity, inclination, and ascending node. Double resonance occurs because slow oscillations in the perigee and Sun-referenced ascending node are coupled through the solar gravity gradient. It is shown that the total number and infinitesimal stability of equilibrium solutions can change abruptly over the Sun-synchronous range of semimajor axis values (1.54 to 1.70 Earth radii). The effect of direct solar radiation pressure upon certain stable equilibria is investigated.  相似文献   

13.
The satellite NOAA-B (1980-43A) was launched in May 1980 into an orbit with perigee height near 260 km and apogee height 1440 km, at an inclination of 92.2°.The lifetime was 11 months. The orbit has been determined at 40 epochs between October 1980 and May 1981 from about 3000 radar and optical observations. The average orbital accuracy, radial and cross-track, was about 100 m, with rather better accuracy in the final 14 days.The variation of orbital inclination has been analysed to determine two good values of atmospheric rotation rate, namely 1.10 ± 0.10 rev day?1 at 300 km (average local time) and 1.15 ± 0.06 rev day?1 at 225 km (evening).The effect of atmospheric rotation on the precession of the orbital plane of an actual satellite has never previously been detected; it is clearly apparent for 1980-43A in its last days and conforms to the expected theoretical change.The variation of perigee height has been analysed to determine ten values of atmospheric density scale height, for heights of 280–370 km. These values, accurate to about 3%, exceed by 15% the values indicated by the COSPAR International Reference Atmosphere. Solar activity was higher in the years 1980–1981 than at any time since early 1958 and it appears that the CIRA model underestimates the density and density scale height at high levels of solar activity.  相似文献   

14.
Cosmos 373, 1970-87A, was launched on 20 October 1970 into an orbit inclined at 62.9° to the Equator, with an initial perigee height of 472 km. The orbit has been determined at 25 epochs covering a period of just over 4 yr using the RAE orbit refinement program PROP, with over 1500 observations. Observations from the Hewitt camera at Malvern were available for all 25 orbits.The main purpose of the orbit determination was to provide accurate values of the eccentricity for use in determining the odd zonal harmonics in the Earth's gravitational potential. The analysis has resulted in extremely accurate values of e with S.D.'s down to 0.000005 and has indicated an amplitude of the oscillation in eccentricity of 0.0085, equivalent to almost 60 km in perigee height—the largest yet recorded for any near-Earth orbit of high accuracy.  相似文献   

15.
Ariel 1, the first international satellite, was launched on 26 April 1962, into an orbit inclined at 53.85° to the equator, with an initial perigee height near 390 km. On 8 May 1973 the orbit passed through 15th-order resonance and has been determined, with the RAE orbit refinement program PROP, at eight epochs between February and August 1973 using 500 observations.The orbital inclinations during the time of 15th-order resonance, as given by these eight orbits and 31 U.S. Navy orbits, were fitted with a theoretical curve using the THROE computer program, the best fit giving 109C?15 = ?370 ± 14 and 109S15 = ?114 ± 31.The values of eccentricity were also successfully fitted using THROE, and the results are discussed.  相似文献   

16.
The orbit of China 2 rocket, 1971-18B, has been determined at 114 epochs throughout its 5-yr life, using the RAE orbit refinement program PROP 6, with more than 7000 radar and optical observations from 83 stations.The rocket passed slowly enough through the resonances 14:1, 29:2, 15:1 and 31:2 to allow lumped geopotential harmonic coefficients to be calculated for each resonance, by least-squares fittings of theoretical curves to the perturbation-free values of inclination and eccentricity. These lumped coefficients can be combined with values from satellites at other inclinations, to obtain individual harmonic coefficients.The rotation rate of the upper atmosphere, at heights near 300 km, was estimated from the decrease in orbital inclination, and values of 1.15, 1.05, 1.10 and 1.05 rev/day were obtained between April 1971 and January 1976. From the variation in perigee height, 25 values of density scale height were calculated, from April 1971 to decay. Comparison with values from the COSPAR International Reference Atmosphere 1972 shows good agreement between April 1971 and October 1975, but the observational values are 10% lower, on average, than CIRA thereafter.A further 1400 observations, made during the final 15 days before decay, were used to determine 15 daily orbits. Analysis of these orbits reveals a very strong West-to-East wind, of 240 ± 40 ms?1, at a mean height of 195 km under winter evening conditions, and gives daily values of density scale height in the last 7 days before decay.  相似文献   

17.
The polar orbit of HEOS 2 second-stage rocket, 1972-05B, has been determined on each of the final 16 days before its decay in September 1978, using the RAE orbit refinement program, PROP 6, with about 1360 observations. An accuracy of 30–70 m, both radial and across track, was achieved.Eleven values of density scale height have been determined from the decrease in perigee height, with a 2% error; seven of these values are within 6% of the CIRA 1972 reference-atmosphere values, the rms value being 4% higher than CIRA.The rotation rate of the upper atmosphere, A, was determined from the decrease in orbital inclination as Λ = 1.40 ± 0.05 rev day?1; i.e. a strong west-to-east zonal wind of 160 ± 20m s?1, at a mean height of about 240 km. The local time was 01–02 h; solar activity was high; and the latitude of perigee moved steadily from 10°N to 67°S.  相似文献   

18.
The orbit of the satellite Cosmos 482 (1972-23A) has been determined at 77 epochs between 8 November 1977 and 18 April 1981 from 5650 optical and radar observations. The computations were made with the RAE orbit determination program PROP 6, and an average accuracy of 150 m radial and cross-track was achieved.Cosmos 482 was a high-drag satellite in an eccentric orbit and, between the first epoch and the last, the orbital period decreased from 157 to 94 min, the eccentricity decreased from 0.32 to 0.04, and the orbital inclination decreased from 52.14° to 51.95° due to the transverse forces caused by atmospheric rotation. The orbit was therefore ideal for determining the atmospheric rotation rate from the decrease in inclination, and seven accurate values of rotation rate have been obtained. The new values strengthen the existing overall picture of upper-atmosphere winds, and are generally in good accord with the previous results.An improved equation has been derived for calculating density scale height H from the decrease in perigee distance, and has been applied to determine seven values of H. The corresponding values of H from the COSPAR International Reference Atmosphere are on average 5% lower than the observational values, for 1980–1981.  相似文献   

19.
The orbit of Cosmos 347 rocket (1970-43B) has been determined in the form of 23 sets of orbital elements at intervals during its 8-month life, with the aid of the RAE orbit improvement program PROP, using about 850 observations from 47 observing stations. The values of orbital inclination obtained, which had standard deviations between 0.7 and 10 sec of arc, were analysed to give a mean atmospheric rotation rate of 1.40 ± 0.05 rev/day at a mean height near 240 km, for dates between July and December 1970, and local times ranging from 1800 hr to midnight to 0900 hr. This value is higher than those obtained from other satellites at similar heights.  相似文献   

20.
The orbit of Proton 4, 1968-103A, has been redetermined, in greater detail and with better accuracy, in order to clarify previously puzzling features in the variation of orbital inclination. Orbital parameters have been determined at 25 epochs between December 1968 and July 1969, using about 1600 optical and radar observations with the RAE orbit refinement program PROP 6.During January 1969 the orbit passed through 31:2 resonance—when the ground track over the Earth repeats every two days after 31 revolutions of the satellite. A simultaneous least-squares fitting of theoretical curves to the values of inclination and eccentricity between 14 December 1968 and 6 March 1969 has yielded values for two pairs of lumped 31st-order geopotential coefficients, appropriate to an inclination of 51.5°. This is the first specific evaluation of 31st-order coefficients.The 15 values of inclination after the resonance, from March to near decay in July 1969, have been used to determine mean, morning and afternoon-evening values for the rotation rate of the atmosphere at a height near 260 km; the values of rotation rate, namely 1.1, 0.9 and 1.3 rev/day respectively, confirm the trends already established from analysis of other satellite orbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号