首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Accumulation rates of marine and terrigenous organic carbon in the continental margin sediments off southwestern Taiwan were estimated from the measured concentrations and isotopic compositions of total organic carbon (TOC) and previously reported sedimentation rates. Surficial sediments were collected from the study area spanning from the narrow shelf near the Kaoping River mouth to the deep slope with depths reaching almost 3000 m. The average sediment loading of Kaoping River is 17 Mt/yr, which yields high sediment accumulation rates ranging from 0.08 to 1.44 g cm−2 yr−1 in the continental margin. About half of the discharged sediments were deposited on the margin within 120 km of the river mouth. Carbon isotopic compositions of terrestrial and marine end-members of organic matter were determined, respectively, based on suspended particulate matter (SPM) collected from three major rivers in the southwestern Taiwan and from an offshore station. All samples were analyzed for the TOC content and its isotopic composition (δ13Corg). The SPM samples were also analyzed for the total nitrogen (TN) content. TOC content in marine sediments ranges from 0.45% to 1.35% with the highest values on the upper slope near the Kaoping River mouth. The TOC/TN ratio of the SPM samples from the offshore station is 6.8±0.6, almost identical to the Redfield ratio, indicating their predominantly marine origin; their δ13Corg values are also typically marine with a mean of −21.5±0.3‰. The riverine SPM samples exhibit typical terrestrial δ13Corg values around −25‰. The δ13Corg values of surficial sediments range from −24.8‰ to −21.2‰, showing a distribution pattern influenced by inputs from the Kaoping River. The relative contributions from marine and terrestrial sources to sedimentary organic carbon were determined by the isotope mixing model with end-member compositions derived from the riverine and marine SPM. High fluvial sediment inputs lead to efficient trapping of organic carbon over a wide range of water depth in this continental margin. The marine organic accumulation rate ranges from 1.6 to 70 g C m−2 yr−1 with an area weighted mean of 4.2 g C m−2 yr−1, which is on a par with the mean terrestrial contribution and accounts for 2.3% of mean primary production. The depth-dependent accumulation rate of marine organic carbon can be simulated with a function involving primary productivity and mineral accumulation rate, which may be applicable to other continental margins with high sedimentation rates. Away from the nearshore area, the content of terrigenous organic carbon in surficial sediments decreases with distance from the river mouth, indicating its degradation in marine environments.  相似文献   

2.
After the severest mass extinction event in the Phanerozoic, biotic recovery from the extinction at the Permian–Triassic boundary required approximately 5 my, which covers the entire Early Triassic. It is important to obtain information on the superocean Panthalassa, which occupied most of the world ocean, to explore paleoenvironmental changes during the Early Triassic at the global scale. In order to establish the continuous lithostratigraphy of pelagic sediments in Panthalassa during the Early Triassic, high‐resolution reconstruction of the Lower Triassic pelagic sequence in Japan was conducted for the first time based on detailed field mapping and lithostratigraphic correlation in the Inuyama area, central Japan. The reconstructed Early Triassic sequence is approximately 9.5 m thick, consists of five rock types, and is divided into eight lithological units. For the reconstructed continuous sequence, measurement of carbon isotopic composition of sedimentary organic matter (δ13Corg) was carried out. Stratigraphic variation of the δ13Corg value shows large‐amplitude fluctuations between ?34.4 and ?21.0‰ throughout the sequence. In order to establish a higher resolution age model for the reconstructed Lower Triassic pelagic sequence, we correlated δ13Corg records in the Inuyama area with high‐resolution isotopic profiles of carbonate carbon (δ13Ccarb) from shallow‐marine carbonate sequences in southern China based on the similarity in general variation patterns with age constraints by radiolarian and conodont biostratigraphy. The result provides a high‐resolution time scale for the pelagic sequence of Panthalassa during the Smithian and Spathian. The age model suggests a drastic increase in sedimentation rate during the late Smithian, which should have been caused by the increase in terrigenous input to this site.  相似文献   

3.
Organic carbon isotope(δ13Corg) data from two well-preserved sections across a shallow-to-deep water transect of the late Ediacaran-Early Cambrian Yangtze Platform in South China show significant temporal and spatial variations. In the shallow-water Jiulongwan-Jijiapo section, δ13Corg values of the late Ediacaran Dengying Formation range from -29‰ to -24‰. In the deep-water Longbizui section, δ13Corg values from time-equivalent strata of the Dengying Formation are mostly between –35‰ and -32‰. These new data, in combination with δ13Corg data reported from other sections in South China, reveal a 6‰–8‰ shallow-to-deep water δ13Corg gradient. High δ13Corg values(-30‰) occur mostly in shallow-water carbonate rocks, whereas low δ13Corg values(-32‰) dominate the deep-water black shale and chert. The large temporal and spatial δ13Corg variations imply limited buffering effect from a large dissolved organic carbon(DOC) reservoir that was inferred to have existed in Ediacaran-Early Cambrian oceans. Instead, δ13Corg variations between platform and basin sections are more likely caused by differential microbial biomass contribution to total organic matter. High δ13Corg values(-30‰) documented from shallow-water carbonates are within the range of typical Phanerozoic δ13Corg data and may record the isotope signature of organic matter from primary(photosynthetic) production. In contrast, low δ13Corg values(-32‰) from deep-water sections may have resulted from higher chemoautotrophic or methanotrophic biomass contribution to bulk organic matter in anoxic environments. The δ13Corg data provide indirect evidence for ocean stratification and episodic chemocline fluctuations in the Ediacaran-Early Cambrian Yangtze Platform.  相似文献   

4.
Immediately before the extinction of the end‐Guadalupian (Middle Permian; ca 260 Ma), a significant change to the global carbon cycle occurred in the superocean Panthalassa, as indicated by a prominent positive δ13C excursion called the Kamura event. However, the causes of this event and its connection to the major extinction of marine invertebrates remain unclear. To understand the mutual relationships between these changes, we analyzed the sulfur isotope ratio of the carbonate‐associated sulfate (CAS) and HCl‐insoluble residue, as well as the carbon isotope ratio of bulk organic matter, for the Middle‐Upper Permian carbonates of an accreted mid‐oceanic paleo‐atoll complex from Japan, where the Kamura event was first documented. We detected the following unique aspects of the stable carbon and sulfur isotope records. First, the extremely high δ13C values of carbonate (δ13Ccarb) over +5 ‰ during the Capitanian (late Guadalupian) were associated with large isotopic differences between carbonate and organic matter (Δ13C = δ13Ccarb ? δ13Corg). We infer that the Capitanian Kamura event reflected an unusually large amount of dissolved organic matter in the expanded oxygen minimum zone at mid‐depth. Second, the δ34S values of CAS (δ34SCAS) were inversely correlated with the δ13Ccarb values during the Capitanian to early Wuchiapingian (early Late Permian) interval. The Capitanian trend may have appeared under increased oceanic sulfate conditions, which were accelerated by intense volcanic outgassing. Bacterial sulfate reduction with increased sulfate concentrations in seawater may have stimulated the production of pyrite that may have incorporated iron in pre‐existing iron hydroxide/oxide. This stimulated phosphorus release, which enhanced organic matter production and resulted in high δ13Ccarb. Low δ34SCAS values under high sulfate concentrations were maintained and the continuous supply of sulfate cannot by explained only by the volcanic eruption of the Emeishan Trap, which has been proposed as a cause of the extinction. The Wuchiapingian δ34SCAS–δ13Ccarb correlation, likely related to low sulfate concentration, may have been caused by the removal of oceanic sulfate through the massive evaporite deposition.  相似文献   

5.
Organic carbon in estuarine sediments can have many different sources. Terrestrial, riverine, estuarine and marine C pools may all contribute to and influence the organic C (Corg) inventory of the estuarine sediments and the differing stable isotope signatures of the sources are reflected in the sediment's overall 13C content. Ecological interpretations of sedimentary isotope data may, however, be limited by the fact the total Corg inventory of a sediment may not be an accurate representation of the fraction that is labile and being actively turned over by the sedimentary community. To gain a better understanding of sedimentary Corg dynamics in estuaries and the relationship between the sedimentary C pool and the Corg undergoing mineralisation, we studied three components of an estuarine system: (1) the sedimentary Corg inventory on a transect from the mouth to the upper end of the estuary, (2) temporal changes of sedimentary Corg at one station throughout a year, and (3) the δ13C of respired CO2 compared to the δ13C of available source material and sedimentary Corg in a novel application of methods developed for soil science. Our experiments demonstrated that material of marine origin dominated the studied estuary. At the time-series station, material of marine origin dominated the sedimentary Corg throughout the 1-yr study period. δ13C values of CO2 released from the sediment differed significantly from the sedimentary Corg inventory at all study sites, but also clearly reflected differences between the main sections of the estuary. These results suggest that δ13C measurements of respired CO2 are promising as a tool to advance our understanding of C cycling in estuaries, and highlight that the sedimentary Corg pool alone may not be a satisfactory indicator of OM utilisation in estuarine sediments.  相似文献   

6.
Closely spaced samples (285 in number) of varved sediments from the Upper Permian in Delaware Basin, Texas, have been analyzed for δ13Ccarb, δ13Corg, δ18Ocarb, Corg, Ccarb, and calcite/dolomite. δ13C records a dramatic rise from ?2.8 to +5.7‰ in only 4400 years, detected in three sections across the basin, extrapolating smoothly through a 600-year interruption by a local (west side of the basin) fresh-water inflow evidenced by low δ18O. This continuity and low Corg within the basin, both indicate that the excess net deposition of Corg, necessary to generate the rise in δ13C, took place in the ocean external to the Delaware Basin. Correlation with similar records from the Zechstein Basin suggest that the event was world-wide, although this poses obvious difficulties for the carbon cycle. The rate of rise of δ13C, and its sustained high level, must imply conversions of oxidized carbon to reduced carbon that are very large depending on which reservoirs were involved.  相似文献   

7.
Secular variations in 13C/12C ratios and chemical compositions of gas samples from October 1986 to July 1992 are reported from a 92–95 °C steam well located about 3 km north of Mt. Mihara, an active volcano on Izu-Oshima Island, Japan. The δ13C value steeply increased from −2.97‰ (relative to PDB carbonate) in December 1986 to −1.15‰ in March 1988 and then gradually decreased to −1.75‰ in July 1992. Over the same period, the CO2 content changed similarly with time, even though the experimental error is relatively large. These variations are consistent with helium isotope changes. Initially rapid and then slow enhancements of 3He/4He ratio, δ13C value and CO2 content are invoked by violent eruptions of Izu-Oshima volcano from 15 November to 18 December 1986. After the eruptive activity, depletion of magmatic gas emission and subsequent mixing with crustal fluids in the hydrothermal system may produce the gradual decreases of 3He/4He ratio, δ13C value and CO2 content. Taking into account the rates of these decreases, we suggest that helium and carbon isotope ratios will return to the situation of before the magmatic eruption within 15 years.  相似文献   

8.
《Continental Shelf Research》2006,26(17-18):2241-2259
The Amazon River spawns a vast mobile mudbelt extending ∼1600 km from the equator to the Orinoco delta. Deposits along the Amazon–Guianas coastline are characterized by some of the highest Corg remineralization rates reported for estuarine, deltaic, or shelf deposits, however, paradoxically, except where stabilized by mangroves or intertidal algal mats, they are usually suboxic and nonsulfidic. A combination of tides, wind-driven waves, and coastal currents forms massive fluid muds and mobile surface sediment layers ∼0.5–2 m thick which are dynamically refluxed and frequently reoxidized. Overall, the seabed functions as a periodically mixed batch reactor, efficiently remineralizing organic matter in a gigantic sedimentary incinerator of global importance. Amazon River material entering the head of this dynamic dispersal system carries an initial terrestrial sedimentary Corg loading of ∼ 0.7 mg C m−2 particle surface area. Total Corg loading is lowered to ∼ 0.2 mg C m−2 in the proximal delta topset, ∼60–70% of which remains of terrestrial origin. Loading decreases further to 0.12–0.14 mg C m−2 (∼60% terrestrial) in mudbanks ∼600 km downdrift along French Guiana, values comparable to those found in the oligotrophic deepsea. DOC/ΣCO2 ratios in pore waters of French Guiana mudbanks indicate that >90% of metabolized organic substrates are completely oxidized. Within the Amazon delta topset at the head of the dispersal system, both terrestrial and marine organic matter contribute substantially to early diagenetic remineralization, although reactive marine substrate dominates (∼60–70%). The conditional rate constant for terrestrial Corg in the delta topset is ∼0.2 a−1. As sedimentary Corg is depleted during transit, marine sources become virtually the exclusive substrate for remineralization except very near the mangrove shoreline. The δ13C and Δ14C values of pore water ΣCO2 in mudbanks demonstrate that the primary source of remineralized organic matter within ∼1 km of shore is a small quantity of bomb signature marine plankton (+80‰). Thus, fresh marine organic material is constantly entrained into mobile deposits and increasingly drives early diagenetic reactions along the transit path. Relatively refractory terrestrial Corg is lost more slowly but steadily during sedimentary refluxing and suboxic diagenesis. Amazon Fan deposits formed during low sea level stand largely bypassed this suboxic sedimentary incinerator and stored material with up to ∼3X the modern high stand inner shelf Corg load (Keil et al., 1997b. Proceedings of the Ocean Drilling Program, Scientific Results. Vol. 155. pp. 531–537). Sedimentary dynamics, including frequency and magnitude of remobilization, and the nature of dispersal systems are clearly key controls on diagenetic processes, biogeochemical cycling, and global C storage along the continental margins.  相似文献   

9.
China’s widespread marine carbonate rock series are mostly characterized by intensive thermal evolu- tion and low abundance of organic matter, especially the Lower Paleozoic carbonate rocks have experienced multi-episodes of tectonics and prolonged history of thermal evolution, thus making it more complicatedethe development and distribution of hydrocar- bon-source rocks reflected in the sedimentary, bio- logical and geochemical facies. Consequently, it seems much less powerful to assess the …  相似文献   

10.
The carbon isotopic composition of diagenetic dolomite and calcite in some sediments of the Gulf of Mexico varies between “normal-marine” (δ13C ca. 0‰) and −14.6‰ which suggests that biogenic CO2 contributed to the carbonate formation. The δ13O values of dolomite and coexisting calcite are very similar but variable down-core.Dolomite and calcite precipitated early from pore water where SO42− was not reduced. However, during (and after?) SO42− reduction dolomite and calcite still formed and there are at least two generations of carbonate minerals present.  相似文献   

11.
Geothermal gases from submarine and subaerial hot springs in Ensenada, Baja California Norte, Mexico, were sampled for determination of gas chemistry and helium, nitrogen and stable carbon isotope composition. The submarine hot spring gas is primarily nitrogen (56.1% by volume) and methane (43.5% by volume), whereas nearby subaerial hot spring gases are predominantly nitrogen (95–99% by volume). The N2/Ar ratios and σ 15N values of the subaerial hot spring gas indicate that it is atmospheric air, depleted in oxygen and enriched in helium. The submarine hot spring gas is most probably derived from marine sediments of Cretaceous age rich in organic matter. CH4 is a major component of the gas mixture (σ 13C = −44.05%0), with only minor amounts of CO2 (σ13C= −10.46%0). The σ15N of N2 is + 0.2%0 with a very high N2/Ar ratio of 160. The calculated isotopic equilibra tion temperature for CH4---CO2 carbon exchange at depth in the Punta Banda submarine geothermal field is approximately 200°C in agreement with other geothermometry estimates. The 3He/4He ratios of the hot spring gases range from 0.3 to 0.6 times the atmospheric ratio, indicating that helium is predominantly derived from the radioactive decay of U and Th within the continental crust. Thus, not all submarine hydrothermal systems are effective vehicles for mantle degassing of primordial helium.  相似文献   

12.
Tropical mobile mud belts represent a major class of biogeochemical and diagenetic systems characterized by extensive and frequent physical reworking of fine-grained, organic-rich deposits underlying oxygenated waters. Large regions of the Gulf of Papua, Papua New Guinea deltaic complex are dominated by such conditions. A reworked mud belt lies within the inner shelf between 10 and 20 m depth on a sedimentary clinoform derived from coalescing deltas. Deposits across the topset are typically suboxic, nonsulfidic over the upper 0.5–1 m, and have low to moderate maximum pore water concentrations of dissolved Fe(II) and Mn(II) (100–200, but up to 800 μM). Sediments are reactive, with surficial ΣCO2 production 0.1–0.3 mM d−1 and benthic O2 fluxes 23±15 mmol m−2 d−1 (upper 20 cm). The highest rates occur within inner topset deposits (10–20 m) and near the high accumulation rollover region of the topset–foreset beds (40–50 m). Lower rates are found inshore along intertidal channels—mangrove fringe and within scoured or exposed consolidated deposits of the middle topset region. Remineralization rate patterns are independent of relative dominance by terrestrial or marine carbon in sediments. Dissolved O2 usually penetrates 2–5 mm into surface sediments when macrofaunal burrows are absent. More than 75% of the highly reactive sedimentary Fe(III) pool (350–400 μmol g−1) is typically diagenetically reduced in the upper 0.5 m. Pore water can be measureably depleted at depths >0.5 m, but dissolved H2S generally remains below detection over the upper 1–2 m. As in other deltaic topset regions, concentration gradients often indicate that compared to many marine deposits of similar sediment accumulation rates, relatively refractory Corg is supplied to the SO4 reducing zone. Sedimentary C/S ratios are 4–6 within the suboxic topset regions but decrease to <3 in offshore foreset beds where sulfidic diagenesis dominates. Only 15–20% of the diagenetically reduced Fe(II) is pyritic and a maximum of 10–25% is carbonate, implying that most Fe(II) is associated with authigenic or lithogenic silicates or oxides. The dominance of suboxic, nonsulfidic diagenetic processes reflect coupling between delivery of oxide-rich terrestrial debris, remobilization and reoxidation of deposits, and repetitive entrainment/remineralization of both labile and refractory organics. Distinct sedimentary indicators of reactive, suboxic mobile mud belts within tropical climatic zones are: abundant total highly reactive Fe (ΣFeR )>300 μmol g−1; most reactive Fe is diagenetically reduced (ΣFe(II)/ΣFeR0.7–0.8); the proportion of diagenetically reduced Fe present as pyrite is low (Py–Fe(II)<0.2); C/S 4–8; and Corg/particle surface area <0.4 (mg C m−2). These depositional environments must be most common in tropical climates during high sea stand.  相似文献   

13.
Sediment traps were deployed in the Gulf of Papua in June–July 1997, to determine fluxes of organic matter and inorganic elements from the photic zone to deeper waters at the base of the continental slope and in the northern Coral Sea. Three stations, ranging from 900 to 1500 m depth, had “shallow” traps at 300 m below the water surface and “deep” traps set 100 m above the bottom. Infiltrex II water samplers collected particulate and dissolved organic matter from the Fly, Purari and Kikori rivers, and near-surface water from the shelf of the Gulf of Papua. Samples were analysed for molecular organic biomarkers to estimate the sources of organic carbon and its cycling processes.Dry weight fluxes from the shallow traps ranged from 115 to 181 mg m−2 day−1 and particulate organic carbon (POC) fluxes ranged from 1.2 to 1.9 mM OC m−2 d−1 with molar organic carbon to particulate nitrogen ratios (C/N) ranging from 6.0 to 6.5. Fluxes in deep traps were likely influenced by both early diagenesis and entrapment of resuspended shelf sediments. Dry weight fluxes in deep traps ranged from 106 to 574 mg m−2 day−1 and POC fluxes ranged from 0.6 to 1.5 mM OC m−2 d−1, with C/N ratios ranging from 8.5 to 10.8. 13C/12C ratios were −20.2‰ to −21.7‰ in all trap samples, indicating that most of the settling POC was “marine-derived”. Shallow traps had δ15N values of 6.3‰ to 7.2‰ while the values in deep traps were 4.9–5.0‰, indicating the N-rich near-surface OC was less degraded than that in the deep traps. The biogenic lipids consisted of hydrocarbon, sterol and fatty acid biomarkers indicative of marine zooplankton, phytoplankton and bacteria. Sterol markers for diatoms and dinoflagellates were abundant in the water samples. Highly branched isoprenoid alkenes, usually attributable to diatoms, were also detected in both water and shallow traps. Traces of C26–C34 n-alcohols indicative of land–plant biomarkers, were found in river water samples and in the shallow sediment traps. A large unresolved complex mixture (UCM) of hydrocarbons, and a uniform distribution of n-alkanes, indicative of petroleum hydrocarbons, were also detected in the traps. Hopane and sterane biomarkers detected in the trap oil were characteristic of a marine carbonate source, and the aromatic hydrocarbon composition distinguished at least two different oil signatures.We concluded that mass and POC fluxes were similar to those reported for other continental shelves and marginal oceans in tropical and subtropical regions. There was a dramatic decrease in POC as particles sank, due to zooplankton repackaging and photochemical and bacterial decomposition. Carbon isotopic and biomarker patterns showed most of the POC in the sediment traps was marine-sourced with only traces of terrestrial input. There was a significant flux of petroleum, which may signal the existence of natural petroleum seeps in this region.  相似文献   

14.
Multi-proxies of lacustrine sediments, such as total carbon (TC), total organic carbon (TOC), total inorganic carbon (TIC), total nitrogen (TN), total sulfur (TS), hydrogen index (HI), oxygen index (OI) and stable carbon isotopic composition of organic matter (δ 13Corg), were analyzed using a 7.3 m core from Zigê Tangco. The source of the organic matter in the sediment was mainly from autochthonous phytoplankton, therefore the significances of proxies can be interpreted as that high TOC, TOC/TS, HI and δ13Corg values, low TC, TIC values corresponded to warm and wet climatic condition, and vice versa. The process of climatic development in the Zigê Tangco region was hence recovered. During the early and Mid-Holocene, the climate was warm and wet and intensive cold events occurred during the periods of 8600 to 8400 cal a BP and 7400 to 7000 cal a BP. In the second half of Holocene, the climate became cold and dry gradually. The palaeoclimatic process during Holocene in Zigê Tangco region matched well with that in Co Ngoin region which is ca 40 km to the south-east. Therefore this palaeoclimatic process represents the Holocene climatic feature in the Central Tibetan Plateau which has the same pattern in the Northern Tibetan Plateau, but the time and duration of some climatic events might be different. We can conclude that in Holocene solar insolation controlled the climatic pattern on the central Tibetan Plateau.  相似文献   

15.
We evaluated changes in siliceous export production and the source of organic matter preserved in sediment core MD07-3109H recovered from the Gulf of Ancud, Chiloé Inner Sea (42°S, 72°W, water column depth: 328 m), southern Chile. We analyzed the abundance of siliceous microfossils (diatoms, silicoflagellates, sponge spicules, Chrysophyte cysts, phytoliths), geochemical proxies (weight percent silicon %SiOPAL, organic carbon, total nitrogen, C/N molar), and sediment stable isotopes (δ13Corg, δ15N). Chronology based on 210Pb and 14C provided an accumulated age of 144 years at the base of the core.Sediments of core MD07-3109H are predominantly marine in origin, averaging δ13Corg=–20.75‰±0.82, δ15N=8.7±0.35‰, and C/N=8.76±0.36. Marine diatoms compose 94% of the total assemblage of siliceous microfossils. Our record of productivity based on the mass accumulation rates of organic carbon, total nitrogen, SiOPAL, and total diatoms showed high values between 1863 and 1869 AD followed by a declining trend until 1921 AD, a transition period from 1921 to 1959 AD with fluctuating values, and a clear decreasing pattern from 1960 AD to the present. This marked reduction in productivity was associated with decreased precipitation and Puelo River streamflow (41°S), as well as a warmer and more stratified water column, especially since the 1980s.  相似文献   

16.
Stable isotopic data are presented for 112 samples of francolite from 18 separate phosphate deposits. Values ofδ13C andδ34S in most offshore deposits suggest formation within oxic or suboxic environments either by carbonate replacement or direct precipitation of francolite from water of normal marine compositions. The exceptions are concretionary francolite from Namibia, which has an isotopic composition in keeping with its formation within organic-rich sediments, and that from offshore Morocco, which has an isotopic signature of the anoxic/suboxic interface. Onshore deposits from Jordan, Mexico, South Africa and, possibly, the Permian Phosphoria Formation in the western U.S.A., are substantially depleted in18O: they appear to be too altered for deductions to be made about their environments of formation. In other onshore deposits which are unaltered, or minimally altered, the isotopic composition suggests that some formed within sulphate-reducing sediments (Sedhura, Morocco) whilst francolite from the Georgina Basin of Australia formed at the oxic/anoxic boundary, where oxidation of biogenic H2S decreases theδ34S of pore water. In general, pelletal samples show non-oxic isotopic signatures, whilst non-pelletal samples show oxic isotopic signatures, but samples from Namibia, Peru (Ica Plateau) and the Californian and Moroccan margins are exceptions to this rule. Morphology may therefore be a misleading indicator of francolite genesis as no definitive relation exists between phosphorite type and isotopic signature.  相似文献   

17.
The Ediacaran Yangtze platform in South China, which represents depositional settings ranging from coastal to basinal, provides valuable information for understanding climate changes and animal evolution during the Ediacaran Period. Although the shallower settings have been investigated, research on the basinal sections has been limited. This has hampered efforts to establish stratigraphic correlations and understand the oceanographic setting of the Yangtze platform. In this paper, the chemostratigraphy of a basinal section at Fengtan, Hunan Province, is reported based on analyses of stable carbon isotope profiles in carbonates (δ13Ccarb), organic matter (δ13Corg), total organic carbon, 87Sr/86Sr ratios, and Mn, Rb, and Sr concentrations. The basinal section of the Doushantuo Formation, which is represented at Fengtan, provides data supporting regional correlations and oceanography. Three intervals in the Doushantuo Formation are correlated with the Three Gorges: (i) a negative δ13Ccarb anomaly with stable δ13Corg values and altered 87Sr/86Sr ratios in the lower section can be correlated to the boundary between Doushantuo Members 2 and 3 (Interval A); (ii) a relatively high δ13Ccarb anomaly with unaltered 87Sr/86Sr ratios (up to 0.7086) in the middle section corresponding to the lower part of Doushantuo Member 3 (Interval B); and (iii) a negative δ13Ccarb anomaly with lowered δ values in the upper section can be correlated to the long interval of negative δ13Ccarb (Interval C). The Gaskiers glaciation is likely represented in Interval A, and Interval C corresponds to the Shuram excursion reported for other Ediacaran localities. Our correlations confirm the depth gradient of δ13Ccarb in the Yangtze platform and imply that reductive conditions prevailed in the basinal section from the Early to Middle Ediacaran. Under such conditions, anaerobic degradation of organic carbon or methane perturbed the inorganic carbon isotopic compositions and was at least partly responsible for the depth gradient of δ13Ccarb.  相似文献   

18.

Natural gases discovered up to now in Lishui Sag, the East China Sea Basin, differ greatly in gaseous compositions, of which hydrocarbon gases amount to 2%–94% while non-hydrocarbon gases are dominated by CO2. Their hydrocarbon gases, without exception, contain less than 90% of methane and over 10% of C2 + heavier hydrocarbons, indicating a wet gas. Carbon isotopic analyses on these hydrocarbon gases showed that δ 13C1, δ 13C2 and δ 13C3 are basically lighter than −44‰, −29‰ and −26‰, respectively. The difference in carbon isotopic values between methane and ethane is great, suggesting a biogenic oil-type gas produced by the mixed organic matter at peak generation. δ 13 \( C_{CO_2 } \) values of nonhydrocarbon gases are all heavier than −10‰, indicating a typical abiogenic gas. The simulation experiment on hydrocarbon generation of organic matter in a closed gold-tube system showed that the proportion of methane in natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit is obviously higher than that in natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit, consequently the proportion of heavier hydrocarbons of the former is remarkably lower than that of the latter. Moreover, δ 13C1 values of natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit are about 5‰ heavier than those of natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit while δ 13C2 and δ 13C3 values of the former are over 9‰ heavier than those of the latter. Currently the LS36-1 oil-gas pool is the only commercial oil-gas reservoir in Lishui Sag, where carbon isotopic compositions of various hydrocarbon components differ greatly from those of natural gases produced by the Lingfeng Formation organic matter but are very similar to those of natural gases derived from the Yueguifeng Formation organic matter, therefore, natural gases in the LS36-1 oil-gas pool are mainly derived from the Yueguifeng Formation lacustrine source rock rather than the Lingfeng Formation marine or Mingyuefeng Formation coal-measures source rocks.

  相似文献   

19.
Polyfluorinated compounds (PFCs) were investigated in waste water treatment plant (WWTP) effluents and surface waters of the River Elbe from samples collected in 2007. Concentrations of various PFCs, including C4–C8 perfluorinated sulfonates (PFSAs), C6 and C8 perfluorinated sulfinates, 6:2 fluorotelomer sulfonate, C5–C13 perfluorinated carboxylic acids (PFCAs), C4 and C8 perfluoroalkyl sulfonamides and 6:2, 8:2 and 10:2 unsaturated fluorotelomercarboxylic acids were quantified. ∑PFC concentrations of the river water ranged from 7.6 to 26.4 ng L−1, whereas ∑PFC concentrations of WWTP effluents were approximately 5–10 times higher (30.5–266.3 ng L−1), indicating that WWTPs are potential sources of PFCs in the marine environment. PFC patterns of different WWTP effluents varied depending on the origin of the waste water, whereas the profile of PFC composition in the river water was relatively constant. In both kinds of water samples, perfluorooctanoic acid (PFOA) was the major PFC, whereas perfluorobutane sulfonate (PFBS) was the predominant PFSA.  相似文献   

20.
Gas concentrations and isotopic compositions of water have been measured in hydrothermal waters from 13°N on the East Pacific Rise. In the most Mg-depleted samples ( 5 × 10−3 moles/kg) the gas concentrations are: 3–4.5 × 10−5 cm3 STP/kg helium, 0.62–1.24 cm3 STP/kg CH4, 10.80–16.71 × 10−3 moles/kg CO2. The samples contain large quantities (95–126 cm3/kg) of H2 and some carbon monoxide (0.26–0.36 cm3/kg) which result from reaction with the titanium sampling bottles. δ13C in methane and CO2 (−16.6 to −19.5 and −4.1 to −5.5 respectively) indicate temperatures between 475 and 550°C, whereas δ13CCO is compatible with formation by reduction of CO2 on Ti at 350°C close to the sampling temperature.3He/4He are very homogeneous at (7.5 ± 0.1)RA(3He/4He = 1.0 × 10−5) and very similar to already published data as well as CH4/3He ratios between 1.4 and 2.1 × 106.18O and D in water show enrichments from 0.39 to 0.69‰ and from 0.62 to 1.49‰ respectively. These values correspond to W/R ratios of 0.4–7. The distinct18O enrichments indicate that the isotopic composition of the oceans is not completely buffered by the hydrothermal circulations. The3He-enthalpy relationship is discussed in terms of both hydrothermal heat flux and3He mantle flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号