首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
We present the first calculation of the kinetic Sunyaev–Zel’dovich (kSZ) effect due to the inhomogeneus reionization of the universe based on detailed large-scale radiative transfer simulations of reionization. The resulting sky power spectra peak at ℓ = 2000–8000 with maximum values of [ℓ(ℓ + 1)C/(2π)]max  4–7 × 10 −13. The scale roughly corresponds to the typical ionized bubble sizes observed in our simulations, of 5–20 Mpc. The kSZ anisotropy signal from reionization dominates the primary CMB signal above ℓ = 3000. At large-scales the patchy kSZ signal depends only on the source efficiencies. It is higher when sources are more efficient at producing ionizing photons, since such sources produce larger ionized regions, on average, than less efficient sources. The introduction of sub-grid gas clumping in the radiative transfer simulations produce significantly more power at small-scales, but has little effect at large-scales. The patchy reionization kSZ signal is dominated by the post-reionization signal from fully-ionized gas, but the two contributions are of similar order at scales ℓ  3000 − 104, indicating that the kSZ anisotropies from reionization are an important component of the total kSZ signal at these scales.  相似文献   

3.
We describe a measurement of the angular power spectrum of anisotropies in the cosmic microwave background (CMB) at scales of 0&fdg;3 to 5 degrees from the North American test flight of the Boomerang experiment. Boomerang is a balloon-borne telescope with a bolometric receiver designed to map CMB anisotropies on a long-duration balloon flight. During a 6 hr test flight of a prototype system in 1997, we mapped more than 200 deg(2) at high Galactic latitudes in two bands centered at 90 and 150 GHz with a resolution of 26&arcmin; and 16&farcm;5 FWHM, respectively. Analysis of the maps gives a power spectrum with a peak at angular scales of 1 degrees with an amplitude 70 μK(CMB).  相似文献   

4.
We review the first science results from the Arcminute Cosmology Bolometer Array Receiver (ACBAR); a multi-frequency millimeter-wave receiver optimized for observations of the Cosmic Microwave Background (CMB) and the Sunyaev–Zel’dovich (SZ) effect in clusters of galaxies. ACBAR was installed on the 2 m Viper telescope at the South Pole in January 2001 and the results presented here incorporate data through July 2002. We present the power spectrum of the CMB at 150 GHz over the range ℓ=150–3000 measured by ACBAR as well as estimates for the values of the cosmological parameters within the context of ΛCDM models. We find that the inclusion of ΩΛ greatly improves the fit to the power spectrum. We also observe a slight excess of small-scale anisotropy at 150 GHz; if interpreted as power from the SZ effect of unresolved clusters, the measured signal is consistent with CBI and BIMA within the context of the SZ power spectrum models tested.  相似文献   

5.
The COsmic Foreground Explorer (COFE) is a balloon-borne microwave polarimeter designed to measure the low-frequency and low-ℓ characteristics of dominant diffuse polarized foregrounds. Short duration balloon flights from the Northern and Southern Hemispheres will allow the telescope to cover up to 80% of the sky with an expected sensitivity per pixel better than 100 μK/deg2 from 10 GHz to 20 GHz. This is an important effort toward characterizing the polarized foregrounds for future CMB experiments, in particular the ones that aim to detect primordial gravity wave signatures in the CMB polarization angular power spectrum.  相似文献   

6.
Wilkinson microwave anisotropy probe (WMAP) has provided us with the highest resolution all-sky maps of the cosmic microwave background (CMB). As a result of thermal Sunyaev–Zel’dovich effect, clusters of galaxies are imprinted as tiny, poorly resolved dips on top of primary CMB anisotropies in these maps. Here, I describe different efforts to extract the physics of intracluster medium (ICM) from the sea of primary CMB, through combining WMAP with low-redshift galaxy or X-ray cluster surveys. This finally culminates at a mean (universal) ICM pressure profile, which is for the first time directly constrained from WMAP 3 year maps, and leads to interesting constraints on the ICM baryonic budget.  相似文献   

7.
QUEST on DASI is a ground-based, high-sensitivity, high-resolution (ℓmax2500) experiment designed to map CMB polarization at 100 and 150 GHz and to measure the power spectra from E-modes, B-modes from lensing of the CMB, and B-modes from primordial gravitational waves. The experiment comprises a 2.6 m Cassegrain optical system, equipped with an array of 62 polarization-sensitive bolometers (PSBs), located at the South Pole. The instrument is designed to minimize systematic effects; features include differencing of pairs of orthogonal PSBs within a single feed, a rotatable achromatic waveplate, and axisymmetric rotatable optics. In addition the South Pole location allows both repeatable and highly controlled observations. QUEST on DASI will commence operation in early 2005.  相似文献   

8.
Fast heuristically weighted, or pseudo-C, estimators are a frequently used method for estimating power spectra in CMB surveys with large numbers of pixels. Recently, Challinor and Chon showed that the E–B mixing in these estimators can become a dominant contaminant at low noise levels, ultimately limiting the gravity wave signal which can be detected on a finite patch of sky. We define a modified version of the estimators which eliminates E–B mixing and is near-optimal at all noise levels.  相似文献   

9.
Although individual observational groups vigorously test their datasets for systematic errors, the pre-WMAP CMB observational dataset has not yet been collectively tested. Under the assumption that the concordance model is the correct model, we have explored residuals of the observational data with respect to this model to see if any patterns emerge that can be identified with systematic errors. We found no significant trends associated with frequency, frequency channels, calibration source, pointing uncertainty, instrument type, platform and altitude. We did find some evidence at the 1 to 2σ level for trends associated with angular scale (ℓ range) and absolute galactic latitude. The slope of the trend in galactic latitude is consistent with low level galactic contamination. The residuals with respect to ℓ may indicate that the concordance model used here needs slight modification. See Griffiths and Lineweaver (astro-ph/0301490) for more detail.  相似文献   

10.
Planck will be the first mission to map the entire cosmic microwave background (CMB) sky with mJy sensitivity and resolution better than 10′. The science enabled by such a mission spans many areas of astrophysics and cosmology. In particular it will lead to a revolution in our understanding of primary and secondary CMB anisotropies, the constraints on many key cosmological parameters will be improved by almost an order of magnitude (to sub-percent levels) and the shape and amplitude of the mass power spectrum at high redshift will be tightly constrained.  相似文献   

11.
《New Astronomy Reviews》1999,43(2-4):83-109
This is a course on cosmic microwave background (CMB) anisotropies in the standard cosmological model, designed for beginning graduate students and advanced undergraduates. “Standard cosmological model” in this context means a Universe dominated by some form of cold dark matter (CDM) with adiabatic perturbations generated at some initial epoch, e.g., Inflation, and left to evolve under gravity alone (which distinguishes it from defect models). The course is primarily theoretical and concerned with the physics of CMB anisotropies in this context and their relation to structure formation. Brief presentations of the uniform Big Bang model and of the observed large-scale structure of the Universe are given. The bulk of the course then focuses on the evolution of small perturbations to the uniform model and on the generation of temperature anisotropies in the CMB. The theoretical development is performed in the (pseudo-)Newtonian gauge because it aids intuitive understanding by providing a quick reference to classical (Newtonian) concepts. The fundamental goal of the course is not to arrive at a highly exact nor exhaustive calculation of the anisotropies, but rather to a good understanding of the basic physics that goes into such calculations.  相似文献   

12.
Several recent papers have studied lensing of the CMB by large-scale structures, which probes the projected matter distribution from z=103 to z0. This interest is motivated in part by upcoming high resolution, high sensitivity CMB experiments, such as APEX/SZ, ACT, SPT or Planck, which should be sensitive to lensing. In this paper, we examine the reconstruction of the large-scale dark matter distribution from lensed CMB temperature anisotropies. We go beyond previous work in using numerical simulations to include higher order, non-Gaussian effects and find that the convergence and its power spectrum are biased, with the bias increasing with the angular resolution. We also study the contamination by the kinetic Sunyaev–Zel'dovich signal, which is spectrally indistinguishable from lensed CMB anisotropies, and find that it leads to an overestimate of the convergence. We finish by estimating the sensitivity of the previously cited experiments and find that all of them could detect the lensing effect, but would be biased at around the 10% level.  相似文献   

13.
We implement the theory of resonant scattering in the context of cosmic microwave background (CMB) polarization anisotropies. We compute the changes in the E-mode polarization (EE) and temperature E-mode (TE) CMB power spectra introduced by the scattering on a resonant transition with a given optical depth τX and polarization coefficient E 1. The latter parameter, accounting for how anisotropic the scattering is, depends on the exchange of angular momentum in the transition, enabling observational discrimination between different resonances. We use this formalism in two different scenarios: cosmological recombination and cosmological re-ionization. In the context of cosmological recombination, we compute predictions in frequency and multipole space for the change in the TE and EE power spectra introduced by scattering on the Hα and Pα lines of hydrogen. This constitutes a fundamental test of the standard model of recombination, and the sensitivity it requires is comparable to that needed in measuring the primordial CMB B-mode polarization component. In the context of re-ionization, we study the scattering off metals and ions produced by the first stars, and find that polarization anisotropies, apart from providing a consistency test for intensity measurements, give some insight on how re-ionization evolved. Since polarization anisotropies have memory of how anisotropic the line scattering is, they should be able to discern the O  i 63.2-μm transition from other possible transitions associated to O  iii , N  ii , N  iii , etc. The amplitude of these signals are, however, between 10 and 100 times below the (already challenging) level of CMB B-mode polarization anisotropies.  相似文献   

14.
I present results of new statistical techniques for the interpretation of the temperature and polarization maps and power spectra of the cosmic microwave background. We show that the power deficit at low ℓ in the WMAP1 data is consistent with a statistical fluctuation at the 10% level; that future high S/N maps of the temperature and polarization anisotropies can be combined into a reconstruction of the metric perturbations imprinted during inflation; and that machine learning techniques can accelerate cosmological parameter estimation by orders of magnitude while being highly accurate and robust.  相似文献   

15.
Here is discussed various ways by which the cosmic microwave background (CMB) radiation can be use to measure the velocities of matter in the universe. We include some new statistical techniques for using the kinetic Sunyaev–Zel’dovich (kSZ) effect and integrated Sachs–Wolfe (ISW) effect to determine velocities by correlating wide area CMB maps with overlapping large-scale structure (LSS) surveys.  相似文献   

16.
《New Astronomy》2002,7(3):125-134
Observation of the fine structures (anisotropies, polarization, spectral distortions) of the Cosmic Microwave Background (CMB) is hampered by instabilities, 1/f noise and asymmetries of the radiometers used to carry on the measurements. Addition of modulation and synchronous detection allows to increase the overall stability and the noise rejection of the radiometers used for CMB studies. In this paper we discuss the advantages this technique has when we try to detect CMB polarization. The behaviour of a two channel correlation receiver to which phase modulation and synchronous detection have been added is examined. Practical formulae for evaluating the improvements are presented.  相似文献   

17.
We report on the first observation of the Sunyaev–Zel'dovich (SZ) effect, a distortion of the Cosmic Microwave Background radiation (CMB) by hot electrons in clusters of galaxies, with the Diabolo experiment at the IRAM 30 m telescope. Diabolo is a dual-channel 0.1 K bolometer photometer dedicated to the observation of CMB anisotropies at 2.1 and 1.2 mm. A significant brightness decrement in the 2.1 mm channel is detected in the direction of three clusters (Abell 665, Abell 2163 and CL0016+16). With a 30 arcsec beam and 3 arcmin beamthrow, this is the highest angular resolution observation to date of the SZ effect. Interleaving integrations on targets and on nearby blank fields have been performed in order to check and correct for systematic effects. Gas masses can be directly inferred from these observations.  相似文献   

18.
We have produced a prototype broadband, low-sidelobe conical corrugated feed horn suitable for measurements of the Cosmic Microwave Blackground (CMB) radiation in the frequency band 120–150 GHz. The antenna is a first prototype for the Low Frequency Instrument array in ESA's PLANCK mission, a space project dedicated to CMB anisotropy mesurements in the 30–900 GHz range. We describe the fabrication method, based on silver electro-formation, and present the two-dimensional antenna beam pattern measured at 140 GHz with a milimeter-wave automated scalar test range. The beam has good symmetry in the E and H planes with a far sidelobe level approaching –60 dB at angles 80°. An upper limit to the return loss was measured to be –21 dB.  相似文献   

19.
Recent WMAP results indicate quite early reionization of the universe. Here we discuss possible implications on CMB anisotropies and CMB polarization of the early reionization.  相似文献   

20.
The measured anisotropies in the temperature of the cosmic microwave background radiation (CMB) by the Cosmic Background Explorer (COBE) are consistent with models of gravitational collapse for the formation of large scale structure in the universe. The amplitude of cosmological fluctuations on the largest scales is fixed by COBE. From COBE's data it is also possible to test for the shape of the primordial spectrum. Statistical tests using COBE's two year data and based on the geometric characteristics of anisotropy spots taking into account cosmic variance and the relevant experimental details indicate that the primordial spectrum has a slope in the rangen = 0.8 – 1.3. Possible identification of hot and cold spots of cosmological origin is also given.Presented at the Fourth United Nations/European Space Agency Workshop on Basic Space Science. Cairo, Egypt, 27 June - 1 July 1994.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号