首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Fine‐grained, spinel‐rich inclusions in the reduced CV chondrites Efremovka and Leoville consist of spinel, melilite, anorthite, Al‐diopside, and minor hibonite and perovskite; forsterite is very rare. Several CAIs are surrounded by forsterite‐rich accretionary rims. In contrast to heavily altered fine‐grained CAIs in the oxidized CV chondrite Allende, those in the reduced CVs experienced very little alteration (secondary nepheline and sodalite are rare). The Efremovka and Leoville fine‐grained CAIs are 16O‐enriched and, like their Allende counterparts, generally have volatility fractionated group II rare earth element patterns. Three out of 13 fine‐grained CAIs we studied are structurally uniform and consist of small concentrically zoned nodules having spinel ± hibonite ± perovskite cores surrounded by layers of melilite and Al‐diopside. Other fine‐grained CAIs show an overall structural zonation defined by modal mineralogy differences between the inclusion cores and mantles. The cores are melilite‐free and consist of tiny spinel ± hibonite ± perovskite grains surrounded by layers of anorthite and Al‐diopside. The mantles are calcium‐enriched, magnesium‐depleted and coarsergrained relative to the cores; they generally contain abundant melilite but have less spinel and anorthite than the cores. The bulk compositions of fine‐grained CAIs generally show significant fractionation of Al from Ca and Ti, with Ca and Ti being depleted relative to Al; they are similar to those of coarsegrained, type C igneous CAIs, and thus are reasonable candidate precursors for the latter. The finegrained CAIs originally formed as aggregates of spinel‐perovskite‐melilite ± hibonite gas‐solid condensates from a reservoir that was 16O‐enriched but depleted in the most refractory REEs. These aggregates later experienced low‐temperature gas‐solid nebular reactions with gaseous SiO and Mg to form Al‐diopside and ±anorthite. The zoned structures of many of the fine‐grained inclusions may be the result of subsequent reheating that resulted in the evaporative loss of SiO and Mg and the formation of melilite. The inferred multi‐stage formation history of fine‐grained inclusions in Efremovka and Leoville is consistent with a complex formation history of coarse‐grained CAIs in CV chondrites.  相似文献   

2.
Abstract— Minor element variations in MgAl2O4 spinel from the type B1 calcium‐aluminum‐rich inclusion (CAI) Allende TS‐34 confirm earlier studies in showing correlations between the minor element chemistry of spinels with their location within the inclusion and with the chemistry of host silicate phases. These correlations result from a combination of crystallization of a liquid produced by re‐melting event(s) and local re‐equilibration during subsolidus reheating. The correlation of the Ti and V in spinel inclusions with the Ti and V in the adjacent host clinopyroxene can be qualitatively explained by spinel and clinopyroxene crystallization prior to melilite, following a partial melting event. There are, however, difficulties in quantitative modeling of the observed trends, and it is easier to explain the Ti correlation in terms of complete re‐equilibration. The correlation of V in spinel inclusions with that in the adjacent host clinopyroxene also cannot be quantitatively modeled by fractional crystallization of the liquid produced by re‐melting, but it can be explained by partial re‐equilibration. The distinct V and Ti concentrations in spinel inclusions in melilite from the edge regions of the CAI are best explained as being affected by only a minor degree of re‐equilibration. The center melilites and included spinels formed during crystallization of the liquid produced by re‐melting, while the edge melilites and included spinels are primary. The oxygen isotope compositions of TS‐34 spinels are uniformly 16O‐rich, regardless of the host silicate phase or its location within the inclusion. Similar to other type B1 CAIs, clinopyroxene is 16O‐rich, but melilite is relatively 16O‐poor. These data require that the oxygen isotope exchange in TS‐34 melilite occurred subsequent to the last re‐melting event.  相似文献   

3.
Ti valence measurements in MgAl2O4 spinel from calcium‐aluminum‐rich inclusions (CAIs) by X‐ray absorption near‐edge structure (XANES) spectroscopy show that many spinels have predominantly tetravalent Ti, regardless of host phases. The average spinel in Allende type B1 inclusion TS34 has 87% Ti+4. Most spinels in fluffy type A (FTA) inclusions also have high Ti valence. In contrast, the rims of some spinels in TS34 and spinel grain cores in two Vigarano type B inclusions have larger amounts of trivalent titanium. Spinels from TS34 have approximately equal amounts of divalent and trivalent vanadium. Based on experiments conducted on CAI‐like compositions over a range of redox conditions, both clinopyroxene and spinel should be Ti+3‐rich if they equilibrated with CAI liquids under near‐solar oxygen fugacities. In igneous inclusions, the seeming paradox of high‐valence spinels coexisting with low‐valence clinopyroxene can be explained either by transient oxidizing conditions accompanying low‐pressure evaporation or by equilibration of spinel with relict Ti+4‐rich phases (e.g., perovskite) prior to or during melting. Ion probe analyses of large spinel grains in TS34 show that they are enriched in heavy Mg, with an average Δ25Mg of 4.25 ± 0.028‰, consistent with formation of the spinel from an evaporating liquid. Δ25Mg shows small, but significant, variation, both within individual spinels and between spinel and adjacent melilite hosts. The Δ25Mg data are most simply explained by the low‐pressure evaporation model, but this model has difficulty explaining the high Ti+4 concentrations in spinel.  相似文献   

4.
Abstract— We have conducted an electron microprobe study of minor element distributions among spinels from two type B1 calcium-aluminum-rich inclusions (CAIs): Allende TS-23 and Leoville 3537–2. We show that by maintaining the petrologic context (edge, middle, and center of the inclusion plus their host silicate phase), four populations of spinels are resolvable based on their minor element contents. One population resides within the edge area (mainly mantle melilite) and is characterized by the highest V contents. Unlike Leoville 3537–2, many edge grains from Allende TS-23 also have high-Fe contents (up to 4.0 wt%) and low-Cr values. Based on their V and Ti concentrations (which is positively correlated), middle and center grains define a trend that is divided into three populations: spinels enclosed by melilite, fassaite, and anorthite. The overall range in Ti concentration based on fractional crystallization should be much less than a factor of 2; however, the observed range is considerably larger. The minor element contents of these grains are interpreted as recording alteration, primary fractional crystallization, and a complex igneous history that may involve remelting and recrystallization. From our data, Allende TS-23 has experienced more alteration than Leoville 3537–2, which is consistent with previous petrologic studies of silicates within these objects; yet both objects have likely been remelted (at least one additional melting event, possibly two, postdating the initial formation of these CAIs). By invoking a remelting history, the large range ir Ti concentrations and the different populations of spinels can be explained. Although our data suggest that more than one generation of spinels exist within these objects, we are unable to establish any population of relic spinel grains that predate the initial melting event.  相似文献   

5.
We report an occurrence of hexagonal CaAl2Si2O8 (dmisteinbergite) in a compact type A calcium‐aluminum‐rich inclusion (CAI) from the CV3 (Vigarano‐like) carbonaceous chondrite Northwest Africa 2086. Dmisteinbergite occurs as approximately 10 μm long and few micrometer‐thick lath‐shaped crystal aggregates in altered parts of the CAI, and is associated with secondary nepheline, sodalite, Ti‐poor Al‐diopside, grossular, and Fe‐rich spinel. Spinel is the only primary CAI mineral that retained its original O‐isotope composition (Δ17O ~ ?24‰); Δ17O values of melilite, perovskite, and Al,Ti‐diopside range from ?3 to ?11‰, suggesting postcrystallization isotope exchange. Dmisteinbergite, anorthite, Ti‐poor Al‐diopside, and ferroan olivine have 16O‐poor compositions (Δ17O ~ ?3‰). We infer that dmisteinbergite, together with the other secondary minerals, formed by replacement of melilite as a result of fluid‐assisted thermal metamorphism experienced by the CV chondrite parent asteroid. Based on the textural appearance of dmisteinbergite in NWA 2086 and petrographic observations of altered CAIs from the Allende meteorite, we suggest that dmisteinbergite is a common secondary mineral in CAIs from the oxidized Allende‐like CV3 chondrites that has been previously misidentified as a secondary anorthite.  相似文献   

6.
Abstract– Acfer 094 is an unshocked, nearly unaltered carbonaceous chondrite with an unusual suite of refractory inclusions. The refractory inclusions in a newly prepared thin section and a small aliquot of disaggregated material were studied to compare the population with previous work, and to report new or unusual inclusion types. A total of 289 Ca‐, Al‐rich inclusions in the thin section and 67 among the disaggregated material, having a total of 31 different mineral assemblages, were found. Inclusions are largely free of secondary alteration products, and are typically ≤200 μm across. The most common are gehlenitic melilite+spinel±perovskite, spinel+perovskite, and spinel with a thin, silicate rim, typically melilite±diopside. Such rims and (thicker) mantles are very common among Acfer 094 inclusions, and they exhibit a variety of zoning patterns with respect to åkermanite and FeO contents. In the thin section, about 13% of the inclusions contain hibonite and approximately 5% are grossite‐bearing; in the disaggregated material, the percentages are 14 and 9, respectively, comparable to previous work. Among the unusual inclusions are a fine‐grained, porous, Ti‐rich hibonite+spinel+perovskite+melilite inclusion with a compact, coarse, Ti‐poor hibonite+spinel+melilite clast; two inclusions in which hibonite has reacted to form grossite; two inclusions with FeO‐rich spinel; and a small object consisting of fassaite enclosing euhedral spinel, the first fragment of a Type B inclusion reported from Acfer 094. Inclusions similar to those found in CM or CV chondrites are rare; Acfer 094 contains a distinctive population of inclusions. The population, dominated by small, melilite‐bearing inclusions, is most similar to that of CO chondrites. A distinguishing feature is that in Acfer 094, almost every phase in almost every refractory inclusion contains 0.5–1.5 wt% FeO. A lack of diffusion gradients and the pristinity of the matrix imply that the inclusions experienced prolonged exposure to FeO‐bearing fluid prior to accretion into the Acfer 094 parent body. There are no known nebular conditions under which the refractory phases found in the present samples could acquire FeO enrichments to the observed levels. The most likely setting is therefore in an earlier, FeO‐rich parent body. The inclusions were ejected from this parent body, mixed with typical CAIs, chondrules, amoeboid olivine aggregates, and amorphous material, and incorporated into the Acfer 094 parent body.  相似文献   

7.
Abstract— Terminal particles and mineral fragments from comet 81P/Wild 2 were studied in 16 aerogel tracks by transmission and secondary electron microscopy. In eight tracks clinopyroxenes with correlated Na2O and Cr2O3 contents as high as 6.0 wt% and 13.0 wt%, respectively, were found. Kosmochloric (Ko) clinopyroxenes were also observed in 4 chondritic interplanetary dust particles (IDPs). The Ko‐clinopyroxenes were often associated with FeO‐rich olivine ± Cr‐rich spinel ± aluminosilicate glass or albitic feldspar, assemblages referred to as Kool grains (Ko = kosmochloric Ca‐rich pyroxene, ol = olivine). Fine‐grained (submicron) Kool fragments have textures suggestive of crystallization from melts while coarse‐grained (>1 μm) Kool fragments are often glass‐free and may have formed by thermal metamorphism in the nebula. Average major and minor element distributions between clinopyroxenes and coexisting FeO‐rich olivines are consistent with these phases forming at or near equilibrium. In glass‐bearing fine‐grained Kool fragments, high concentrations of Na in the clinopyroxenes are inconsistent with existing experimentally determined partition coefficients at equilibrium. We speculate that the availability of Cr in the melt increased the clinopyroxene Na partition coefficient via a coupled substitution thereby enhancing this phase with the kosmochlor component. The high temperature minerals, fine‐grain sizes, bulk compositions and common occurrence in the SD tracks and IDPs support the idea that Kool grains could have been precursors to type II chondrules in ordinary chondrites. These grains, however, have not been observed in these meteorites suggesting that they were destroyed during chondrule formation and recycling or were not present in the nebula at the time and location where meteoritic chondrules formed.  相似文献   

8.
Abstract— Fassaite is a major component of Ca‐Al‐rich inclusions (CAIs) of Types B and C that crystallized from liquids. In contrast, this mineral is rarely reported in Type A inclusions and has been much less studied. In this paper, we report highly Ti‐, Al‐enriched fassaite that occurs as rims on perovskite in two compact Type A inclusions from the Ningqiang meteorite. In addition, one of the inclusions contains an euhedral grain of Sc‐fassaite (16.4 wt% Sc2O3) isolated in melilite. The occurrence and mineral chemistry of the fassaite rims can be explained by a reaction of pre‐existing perovskite with CAI melts. Hence, such rims may serve as an indicator for partial melting of Type A inclusions. The Sc‐fassaite is probably a relict grain. A third spherical CAI contains several euhedral grains of V‐fassaite (4.8–5.4 wt% V2O3) enclosed in a melilite fragment. The high V content of fassaite cannot be related to any Fremdlinge, magnetite, or metallic Fe‐Ni, because these phases are absent in the inclusion. In the same CAI, other fassaites intergrow with spinel and minor perovskite, filling voids inside of the melilite and space adjacent to the Wark‐Lovering rim. The fassaite intergrown with spinel is almost V‐free. The coexistence of two types of fassaite suggests that this CAI has not been completely melted.  相似文献   

9.
Abstract— We studied three fluffy Type A refractory inclusions from Allende that contain orange hibonite. The melilite in the present samples is very Al‐rich, averaging Åk6, Åk14, and Åk12 in the three samples studied. Hibonite in two inclusions, unlike that in Murchison, has low rare earth element abundances of <10 × CI; in the other inclusion, the hibonite, melilite and perovskite have Group II‐like patterns. The hibonite and melilite in all three inclusions studied have excess 26Mg consistent with (26Al/27Al)I = 5 × 10?5. Much of the hibonite and some of the spinel in these inclusions is corroded. These phases are found enclosed in melilite, but based on bulk compositions and phase equilibria, hibonite should not be an early‐crystallizing phase in these inclusions. We conclude that the hibonite and probably some of the spinel is relic. Reversely zoned melilite, rounded spinel and isotopically heavy Mg in the inclusions probably reflect reheating events that involved melting and evaporation. Alteration of the gehlenitic melilite gave rise to some rare phases, including corundum and nearly pure CaTs pyroxene. Studies have shown that blue hibonite contains Ti3+ while orange hibonite does not (Ihinger and Stolper, 1986; Beckett et al., 1988). Orange hibonite formed either under oxidizing conditions (such as at oxygen fugacities at least seven orders of magnitude greater than that of a solar gas at 1700 K), or under conditions reducing enough (e.g., solar) that it contained Ti3+, which was later oxidized in situ. Although V and Ce oxides are volatile at the temperature and range of oxygen fugacities at which orange hibonite is known to be stable, we find that (a) the hibonite is V‐rich (~1 wt% V2O3) and (b) there are no negative Ce anomalies in Allende hibonite. This indicates that the hibonite did not form by condensation under oxidizing conditions. In addition, there are slight excesses of Ti + Si cations relative to Mg + Fe cations (up to 0.1 of 0.8 cations per 19 oxygen anions), probably reflecting the original presence of Ti3+. The results of this study strongly support the suggestion (Ihinger and Stolper, 1986) that Allende hibonite originally formed under reducing conditions and was later oxidized. Oxygen fugacities within ~2–3 orders of magnitude of that of a solar gas are implied; otherwise, strong Ce and V depletions would be observed.  相似文献   

10.
Abstract— Among the samples returned from comet 81P/Wild 2 by the Stardust spacecraft is a suite of particles from one impact track (Track 25) that are Ca‐, Al‐rich and FeO‐free. We studied three particles from this track that range in size from 5.3 × 3.2 μ to 15 × 10 μ. Scanning and transmission electron microscopy show that they consist of very fine‐grained (typically from ?0.5 to ?2 μ) Al‐rich, Ti‐bearing and Ti‐free clinopyroxene, Mg‐Al spinel and anorthite, with trace amounts of fine perovskite, FeNi metal and osbornite (TiN) grains. In addition to these phases, the terminal particle, named “Inti”, also contains melilite. All of these phases, with the exception of osbornite, are common in refractory inclusions and are predicted to condense at high temperature from a gas of solar composition. Osbornite, though very rare, has also been found in meteoritic refractory inclusions, and could have formed in a region of the nebula where carbon became enriched relative to oxygen compared to solar composition. Compositions of Ti‐pyroxene in Inti are similar, but not identical, to those of fassaite from Allende inclusions. Electron energy loss spectroscopy shows that Ti‐rich pyroxene in Inti has Ti3+/Ti4+within the range of typical meteoritic fassaite, consistent with formation under reducing conditions comparable to those of a system of solar composition. Inti is 16O‐rich, with δ18O?δ17O?‐40%0, like unaltered phases in refractory inclusions and refractory IDPs. With grain sizes, mineralogy, mineral chemistry, and an oxygen isotopic composition like those of refractory inclusions, we conclude that Inti is a refractory inclusion that formed in the inner solar nebula. Identification of a particle that formed in the inner solar system among the comet samples demonstrates that there was transport of materials from the inner to the outer nebula, probably either in a bipolar outflow or by turbulence.  相似文献   

11.
Abstract— Phase fields in which hibonite and silicate melt coexist with spinel, CaAl4O7, gehlenitic melilite, anorthite or corundum at 1 bar in the system CaO-MgO-Al2O3-SiO2-TiO2 were determined. The hibonites contain up to 1.7 wt% SiO2. For TiO2, the experimentally determined partition coefficients between hibonite and coexisting melt, DHib/Li, vary from 0.8 to 2.1 and generally decrease with increasing TiO2 in the liquid. Based on Ti partitioning between hibonite and melt, bulk inclusion compositions and hibonite-saturated liquidus phase diagrams, the hibonite in hibonite-poor fluffy Type A inclusions from Allende and at least some hibonite from hibonite-rich inclusions is relict, although much of the hibonite from hibonite-glass spherules probably crystallized metastably from a melt Bulk compositions for all of these CAIs are consistent with an origin as melilite + hibonite + spinel + perovskite phase assemblages that were partially altered and in some cases partially or completely melted The duration of the melting event was sufficient to remove any Na introduced by the alteration process but frequently insufficient to dissolve all of the original hibonite. Simple thermochemical models developed for meteoritic melilite and hibonite solid solutions were used to obtain equilibration temperatures of hibonite-bearing phase assemblages with vapor. Referenced to 10?3 atm, hibonite + corundum + vapor equilibrated at ~1260 °C and hibonite + spinel ± melilite + vapor at 1215 ± 10 °C. If these temperatures reflect condensation in a cooling gas of solar composition, then hibonite ± corundum condensed first, followed by spinel and then melilite. The position of perovskite within this sequence is uncertain, but it probably began to condense before spinel. This sequence of phase appearances and relative temperatures is generally consistent with observed textures but differs from expectations based on classical condensation calculations in that equilibration temperatures are generally lower than predicted and melilite initially condenses with or even after spinel. Simple thermochemical models for the substitution of trace elements into the Ca site of meteoritic hibonites suggest that virtually all Eu is divalent in early condensate hibonites but that Eu2+/Eu3+ decreases by a factor of 20 or more during the course of condensation primarily because the ratio is proportional to the partial pressure of Al, which decreases dramatically as aluminous phases condense. The relative sizes of Eu and Yb anomalies in meteoritic hibonites and inclusions may be partly due to this effect  相似文献   

12.
Abstract— Like calcium‐aluminum‐rich inclusions (CAIs) from carbonaceous and ordinary chondrites, enstatite chondrite CAIs are composed of refractory minerals such as spinel, perovskite, Al, Ti‐diopside, melilite, hibonite, and anorthitic plagioclase, which may be partially to completely surrounded by halos of Na‐(±Cl)‐rich minerals. Porous, aggregate, and compact textures of the refractory cores in enstatite chondrite CAIs and rare Wark—Lovering rims are also similar to CAIs from other chondrite groups. However, the small size (<100μm), low abundance (<1% by mode in thin section), occurrence of only spinel or hibonite‐rich types, and presence of primary Ti‐(±V)‐oxides, and secondary geikelite and Ti, Fe‐sulfides distinguish the assemblage of enstatite chondrite CAIs from other groups. The primary mineral assemblage in enstatite chondrite CAIs is devoid of indicators (e.g., oldhamite, osbornite) of low O fugacities. Thus, high‐temperature processing of the CAIs did not occur under the reducing conditions characteristic of enstatite chondrites, implying that either (1) the CAIs are foreign to enstatite‐chondrite‐forming regions or (2) O fugacities fluctuated within the enstatite‐chondrite‐forming region. In contrast, secondary geikelite and Ti‐Fe‐sulfide, which replace perovskite, indicate that alteration of perovskite occurred under reducing conditions distinct from CAIs in the other chondrite groups. We have not ascertained whether the reduced alteration of enstatite chondrite CAIs occurred in a nebular or parent‐body setting. We conclude that each chondrite group is correlated with a unique assemblage of CAIs, indicating spatial or temporal variations in physical conditions during production or dispersal of CAIs.  相似文献   

13.
Two hibonite‐spinel inclusions (CAIs 03 and 08) in the ALHA77307 CO3.0 chondrite have been characterized in detail using the focused ion beam sample preparation technique combined with transmission electron microscopy. These hibonite‐spinel inclusions are irregularly shaped and porous objects and consist of randomly oriented hibonite laths enclosed by aggregates of spinel with fine‐grained perovskite inclusions finally surrounded by a partial rim of diopside. Melilite is an extremely rare phase in this type of CAI and occurs only in one inclusion (CAI 03) as interstitial grains between hibonite laths and on the exterior of the inclusion. The overall petrologic and mineralogical observations suggest that the hibonite‐spinel inclusions represent high‐temperature condensates from a cooling nebular gas. The textural relationships indicate that hibonite is the first phase to condense, followed by perovskite, spinel, and diopside. Texturally, melilite condensation appears to have occurred after spinel, suggesting that the condensation conditions were far from equilibrium. The crystallographic orientation relationships between hibonite and spinel provide evidence of epitaxial nucleation and growth of spinel on hibonite surfaces, which may have lowered the activation energy for spinel nucleation compared with that of melilite and consequently inhibited melilite condensation. Hibonite contains abundant stacking defects along the (001) plane consisting of different ratios of the spinel and Ca‐containing blocks within the ideal hexagonal hibonite structure. This modification of the stacking sequence is likely the result of accommodation of excess Al in the gas into hibonite due to incomplete condensation of corundum from a cooling gas under disequilibrium conditions. We therefore conclude that these two hibonite‐spinel inclusions in ALHA77307 formed by high‐temperature condensation under disequilibrium conditions.  相似文献   

14.
Abstract— The metal‐rich chondrites Hammadah al Hamra (HH) 237 and Queen Alexandra Range (QUE) 94411, paired with QUE 94627, contain relatively rare (<1 vol%) calcium‐aluminum‐rich inclusions (CAIs) and Al‐diopside‐rich chondrules. Forty CAIs and CAI fragments and seven Al‐diopside‐rich chondrules were identified in HH 237 and QUE 94411/94627. The CAIs, ~50–400 μm in apparent diameter, include (a) 22 (56%) pyroxene‐spinel ± melilite (+forsterite rim), (b) 11 (28%) forsterite‐bearing, pyroxene‐spinel ± melilite ± anorthite (+forsterite rim) (c) 2 (5%) grossite‐rich (+spinel‐melilite‐pyroxene rim), (d) 2 (5%) hibonite‐melilite (+spinel‐pyroxene ± forsterite rim), (e) 1 (2%) hibonite‐bearing, spinel‐perovskite (+melilite‐pyroxene rim), (f) 1 (2%) spinel‐melilite‐pyroxene‐anorthite, and (g) 1 (2%) amoeboid olivine aggregate. Each type of CAI is known to exist in other chondrite groups, but the high abundance of pyroxene‐spinel ± melilite CAIs with igneous textures and surrounded by a forsterite rim are unique features of HH 237 and QUE 94411/94627. Additionally, oxygen isotopes consistently show relatively heavy compositions with Δ17O ranging from ?6%0 to ?10%0 (1σ = 1.3%0) for all analyzed CAI minerals (grossite, hibonite, melilite, pyroxene, spinel). This suggests that the CAIs formed in a reservoir isotopically distinct from the reservoir(s) where “normal”, 16O‐rich (Δ17O < ?20%0) CAIs in most other chondritic meteorites formed. The Al‐diopside‐rich chondrules, which have previously been observed in CH chondrites and the unique carbonaceous chondrite Adelaide, contain Al‐diopside grains enclosing oriented inclusions of forsterite, and interstitial anorthitic mesostasis and Al‐rich, Ca‐poor pyroxene, occasionally enclosing spinel and forsterite. These chondrules are mineralogically similar to the Al‐rich barred‐olivine chondrules in HH 237 and QUE 94411/94627, but have lower Cr concentrations than the latter, indicating that they may have formed during the same chondrule‐forming event, but at slightly different ambient nebular temperatures. Aluminum‐diopside grains from two Al‐diopside‐rich chondrules have O‐isotopic compositions (Δ17O ? ?7 ± 1.1 %0) similar to CAI minerals, suggesting that they formed from an isotopically similar reservoir. The oxygen‐isotopic composition of one Ca, Al‐poor cryptocrystalline chondrule in QUE 94411/94627 was analyzed and found to have Δ17O ? ?3 ± 1.4%0. The characteristics of the CAIs in HH 237 and QUE 94411/94627 are inconsistent with an impact origin of these metal‐rich meteorites. Instead they suggest that the components in CB chondrites are pristine products of large‐scale, high‐temperature processes in the solar nebula and should be considered bona fide chondrites.  相似文献   

15.
Abstract— It was suggested that multilayered accretionary rims composed of ferrous olivine, andradite, wollastonite, salite‐hedenbergitic pyroxenes, nepheline, and Ni‐rich sulfides around Allende calcium‐aluminum‐rich inclusions (CAIs) are aggregates of gas‐solid condensates which reflect significant fluctuations in physico‐chemical conditions in the slowly cooling solar nebula and grain/gas separation processes. In order to test this model, we studied the mineralogy of accretionary rims around one type A CAI (E104) and one type B CAI (E48) from the reduced CV3 chondrite Efremovka, which is less altered than Allende. In contrast to the Allende accretionary rims, those in Efremovka consist of coarse‐grained (20–40 μm), anhedral forsterite (Fa1–8), Fe, Ni‐metal nodules, amoeboid olivine aggregates (AOAs) and fine‐grained CAIs composed of Al‐diopside, anorthite, and spinel, ± forsterite. Although the fine‐grained CAIs, AOAs and host CAIs are virtually unaltered, a hibonite‐spinel‐perovskite CAI in the E48 accretionary rim experienced extensive alteration, which resulted in the formation of Fe‐rich, Zn‐bearing spinel, and a Ca, Al, Si‐hydrous mineral. Forsterites in the accretionary rims typically show an aggregational nature and consist of small olivine grains with numerous pores and tiny inclusions of Al‐rich minerals. No evidence for the replacement of forsterite by enstatite was found; no chondrule fragments were identified in the accretionary rims. We infer that accretionary rims in Efremovka are more primitive than those in Allende and formed by aggregation of high‐temperature condensates around host CAIs in the CAI‐forming regions. The rimmed CAIs were removed from these regions prior to condensation of enstatite and alkalies. The absence of andradite, wollastonite, and hedenbergite from the Efremovka rims may indicate that these rims sampled different nebular regions than the Allende rims. Alternatively, the Ca, Fe‐rich silicates rimming Allende CAIs may have resulted from late‐stage metasomatic alteration, under oxidizing conditions, of original Efremovka‐like accretionary rims. The observed differences in O‐isotope composition between forsterite and Ca, Fe‐rich minerals in the Allende accretionary rims (Hiyagon, 1998) suggest that the oxidizing fluid had an 16O‐poor oxygen isotopic composition.  相似文献   

16.
Abstract— Twenty‐four refractory inclusions (40–230 μm, with average of 86 ± 40 μm) were found by X‐ray mapping of 18 ordinary chondrites. All inclusions are heavily altered, consisting of finegrained feldspathoids, spinel, and Ca‐pyroxene with minor ilmenite. The presence of feldspathoids and lack of melilite are due to alteration that took place under oxidizing conditions as indicated by FeO‐ZnO‐rich spinel and ilmenite. The pre‐altered mineral assemblages are dominated by two types: one rich in melilite, referred to as type A‐like, and the other rich in spinel, referred to as spinelpyroxene inclusions. This study and previous data show similar type and size distributions of refractory inclusions in ordinary and enstatite chondrites. A survey of refractory inclusions was also conducted on Allende and Murchison in order to make unbiased comparison with their counterparts in other chondrites. The predominant inclusions are type A and spinel‐pyroxene, with average sizes of 170 ± 130 μm (except for two mm‐sized inclusions) in Allende and 150 ± 100 μm in Murchison. The relatively larger sizes are partially due to common conglomerating of smaller nodules in both chondrites. The survey reveals closely similar type and size distributions of refractory inclusions in various chondrites, consistent with our previous data of other carbonaceous chondrites. The petrographic observations suggest that refractory inclusions in various groups of chondrites had primarily formed under similar processes and conditions, and were transported to different chondrite‐accreting regions. Heterogeneous abundance and distinct alteration assemblages of refractory inclusions from various chondrites could be contributed to transporting processes and secondary reactions under different conditions.  相似文献   

17.
The microstructures and compositions of olivine and refractory components in six amoeboid olivine aggregates (AOAs) in the Allan Hills A77307 CO3.0 chondrite have been characterized in detail using the focused ion beam sample preparation technique with transmission electron microscopy. In the AOAs, refractory components (perovskite, melilite, spinel, anorthite, and Al‐Ti‐bearing diopside) provide evidence of a high degree of textural and compositional heterogeneity, suggesting that these phases have formed by disequilibrium gas–solid condensation at high temperatures under highly dynamic conditions. We infer different possible reactions of early‐condensed solid minerals (perovskite and spinel) with a nebular gas, forming diopside with wide ranges of Al and Ti contents and/or anorthite. The progressive, incomplete consumption of spinel in these reactions may have resulted in the Cr enrichment in the remaining, unreacted spinel in the AOAs. In contrast to the refractory components, olivines in the AOAs have equilibrated textures with 120° triple junctions, indicating that the AOAs were subjected to high‐temperature annealing after agglomeration of olivine and refractory components. Because the AOAs consist of fine‐grained olivine grains with numerous pores, the annealing is constrained by experimental data to have occurred for a short duration of the order of a few hours to tens of hours depending on the annealing temperature. In comparison, the effects of annealing on the refractory components are minimal, probably due to pinning of grain boundaries in the multiphase assemblages that inhibited grain growth.  相似文献   

18.
Abstract— We report the results of a study of TS2, an unusual compact Type A inclusion from Allende. A distinctive, major feature of this inclusion is that many of its melilite crystals have no dominant core-rim zoning but instead consist of 50–200 μm patches of Mg-rich melilite (Åk32–62, median Åk51) set in or partially enclosed by, and optically continuous with, relatively Al-rich melilite (Åk25–53, median Åk38). The Al-rich regions have jagged, dendritic shapes but occur within crystals having straight grain boundaries. Another unusual feature of this inclusion is the size and spatial distribution of spinel. In many places, especially in the interior of the inclusion, the aluminous melilite encloses numerous, fine (0.5–5 μm) inclusions of spinel and minor perovskite and fassaite. The latter phases also occur as isolated grains throughout the inclusion. Coarse-grained spinel, ~50–150 μm across, occurs in clumps and chains enclosed in relatively Mg-rich melilite, whereas none of the fine spinel grains are clumped together. The sample also contains a spinel-free palisade body, 1.7 × 0.85 mm, that consists almost entirely of Åk-rich (45–65 mol%) melilite. Within the palisade body are two grains of perovskite with extremely Nb-rich (~4–8 wt% Nb2O5) cores and rims of typical composition. All phases in this inclusion have chondrite-normalized REE patterns that are consistent with crystal/melt partitioning superimposed upon a bulk modified Group II pattern. We suggest that TS2 had an anomalous cooling history and favor the following model for the formation of TS2. Precursors having a bulk modified Group II pattern melted. Rapid growth of large, dendritic, nonstoichiometric melilite crystals occurred. The melilite trapped pockets of melt and incorporated excess spinel components and TiO2. Bubbles formed in the residual melt. As crystallization slowed, coarse spinel grew. Some spinel grains collected against bubbles, forming spherical shells, and others formed clumps and chains. Relatively Åk-rich melilite crystallized from the residual melt between dendritic melilite crystals and from melt trapped in pockets and between arms of dendrites, and incorporated the clumps and chains of coarse spinel. Bubbles broke and filled with late-stage melt, their shapes preserved by their spinel shells. Slow cooling, or perhaps an episode of reheating, allowed the early melilite to become stoichiometric by exsolving fine grains of spinel, perovskite and fassaite, and allowed the melilite to form smooth grain boundaries. Dendritic crystals are indicative of rapid growth and the melilite crystals in TS2 appear to be dendritic. Coarse, dendritic melilite crystals have been grown from Type B inclusion melts cooled at ~50–100 °C/h. If those results are applicable to Type A inclusions, we can make the first estimate of the cooling rate of a Type A inclusion, and it is outside the range (2–50 °C/h) generally inferred for Type B inclusions. The rapid cooling inferred here may be part of an anomalous thermal history for TS2, or it may be representative of part of a normal thermal history common to Types A and B that involved rapid cooling early (at high temperatures) as inferred for TS2, and slower cooling later (at lower temperatures), as inferred for Type B inclusions. We prefer the former explanation; otherwise, the unusual features of TS2 that are reported here would be common in Type A inclusions (which they are not).  相似文献   

19.
Abstract— Queen Alexandra Range (QUE) 97990 (CM2.6) is among the least‐altered CM chondrites known. It contains 1.8 vol% refractory inclusions; 40 were studied from a single thin section. Inclusion varieties include simple, banded and nodular structures as well as simple and complex distended objects. The inclusions range in mean size from 30 to 530 μm and average 130 ± 90 μm. Many inclusions contain 25 ± 15 vol% phyllosilicate (predominantly Mg‐Fe serpentine); several contain small grains of perovskite. In addition to phyllosilicate, the most abundant inclusions in QUE 97990 consist mainly of spinel‐pyroxene (35%), followed by spinel (20%), spinel‐pyroxene‐olivine (18%), pyroxene (12%), pyroxene‐olivine (8%) and hibonite ± spinel (8%). Four pyroxene phases occur: diopside, Al‐rich diopside (with ≥ 8.0 wt% Al2O3), Al‐Ti diopside (i.e., fassaite), and (in two inclusions) enstatite. No inclusions contain melilite. Aqueous alteration of refractory inclusions transforms some phases (particularly melilite) into phyllosilicate; some inclusions broke apart during alteration. Melilite‐free, phyllosilicate‐bearing, spinel inclusions probably formed from pristine, phyllosilicate‐free inclusions containing both melilite and spinel. Sixty‐five percent of the refractory inclusions in QUE 97990 appear to be largely intact; the major exception is the group of spinel inclusions, all of which are fragments. Whereas QUE 97990 contains about 50 largely intact refractory inclusions/cm2, estimates from literature data imply that more‐altered CM chondrites have lower modal abundances (and lower number densities) of refractory inclusions: Mighei (CM ? 2.3) contains roughly 0.3–0.6 vol% inclusions (?10 largely intact inclusions/cm2); Cold Bokkeveld (CM2.2) contains ?0.01 vol% inclusions (on the order of 6 largely intact inclusions/cm2).  相似文献   

20.
Abstract— A transmission electron microscope (TEM) study of three coarse-grained Type A Ca, Al-rich inclusions (CAIs) from Allende, Acfer 082 and Acfer 086 (all CV3 chondrites) was performed in order to decipher their origin and effects of possible metamorphism. The constituent minerals of the CAIs are found to exhibit very similar microstructural characteristics in each of the inclusions studied. In general, the minerals show a well-developed equilibrium texture with typical 120° triple junctions. Melilites are clearly considerably strained and characterized by high dislocation densities up to 3 × 1011 cm?2. The dislocations have Burgers vectors of [001], [110] or [011] and often form subgrain boundaries subparallel {100}. Melilite in the Allende CAI additionally contains thin amorphous lamellae mostly oriented parallel to {001}. Fassaite (Al-Ti-diopside) is almost featureless even on the TEM scale. Only a few subplanar dislocation walls composed of dislocations with Burgers vectors [001] and 1/2 [110] were detected. Although enclosed within the highly strained melilites, the euhedral spinels contain only low dislocation densities (<2 × 104 cm?2). In the Allende CAI, spinels were found twinned on {111}. Perovskite is also characterized by a low number of linear lattice defects. All grains possess orthorhombic symmetry and are commonly twinned according to a 90° rotation around [101]. Many crystals exhibit typical domain structures as well as curved twin walls where two orthogonal sets intersect. In addition to the mineral phases described above, tiny inclusions of the simple oxides CaO and TiO2 were found within melilite (CaO), spinel (CaO, TiO2) and perovskite (CaO, TiO2). Based on these observations, it is assumed that at the beginning of the formation of the CAIs a condensed solid precursor was present. Euhedral spinels poikilitically enclosed within melilites suggest that this solid aggregate was then molten. If the pure oxides represent relict condensates, their presence proves that this melting was incomplete. While still plastic, the CAIs were shocked by microimpacts causing the high dislocation densities in melilite as well as diaplectic melilite glass and twinned spinels in the Allende CAI. In Acfer 082 and 086, the deformation took place at elevated temperatures, preventing the solid phase transition and mechanical twinning. The absence of linear lattice defects in spinel, fassaite and perovskite most probably reflects inhomogeneous pressure distribution in the polycrystalline CAI as well as the different strengths of the minerals. According to cooling-rate experiments on perovskite by Keller and Buseck (1994), the dominating (101) twins in the CAI perovskites point to cooling rates ≤50 °C/min. Finally, after crystallization of the CAI was complete, mild thermal metamorphism caused the formation of subgrain boundaries, 120° triple junctions and chemical homogenization of the melilites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号