首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equilibria calculations of high-temperature volcanic gases from lava lakes are carried out on the basis of best volcanic gas samples. The equilibrium gas composition at temperatures from 800° to 1400°K and pressures up to 25 kilobars (in ideal gas system) was calculated using the free energy minimization model as well as the Newton-Raphson methods. It is shown that the juvenile «magmatic gas » of basaltic magma consists of three components: H2O, SO2, CO2; the water vapor being about 60%. The increase of temperature under constant pressure results in the increase of the SO2 concentration and in the simultaneous decrease of H2S. Under the same conditions the ratios CO/CO2 and H2/H2O are found to increase. Methane cannot be a component of «magmatic gas» corresponding to the elemental composition of basaltic lava gases. The calculated values of \(P_{O_2 } \) are in good agreement with the experimental data obtained from direct measurements of \(P_{O_2 } \) in lava lakes and experiments with basaltic melts.  相似文献   

2.
Methods used previously to remove compositional modifications from volcanic gas analyses for Mount Etna and Erta'Ale lava lake have bean employed to estimate the gas phase composition at Nyiragongo lava lake, based on samples obtained in 1959. H2O data were not reported in 11 of the 13 original analyses. The restoration methods have been used to estimate the H2O contents of the samples and to correct the analyses for atmospheric contamination, loss of sulfur and for pre- and pest-collection oxidation of H2S, S2, and H2. The estimated gas compositions are relatively CO2-rich, low in total sulfur and reduced. They contain approximately 35–50% CO2 45–55% H2O, 1–2% SO2, 1–2% H2., 2–3% CO, 1.5–2.5% H2S, 0.5% S2 and 0.1% COS over,he collection temperature range 102° to 960° C. The oxygen fugacities of the gases are consistently about half an order of magnitude below quartz-magnetite-fayalite. The low total sulfur content and resulting low atomic S/C of the Nyiragongo gases appear to be related to the relatively low fO2 of the crystallizing lava. At temperatures above 800°C and pressures of 1–1.5 k bar, the Nyiragongo gas compositions resemble those observed in primary fluid inclusions believed to have formed at similar temperatures and pressures in nephelines of intrusive alkaline rocks. Cooling to 300°C, with fO2 buffered by the rock, results in gas compositions very rich in CH4 (50–70%) and resembling secondary fluid inclusions formed at 200–500°C in alkaline rocks. Below 600°C the gases become supersaturated in carbon as graphite. These inferences are corroborated by several reports of hydrocarbons in plutonic alkaline rocks, and by the presence of CH4-rich waters in Lake Kivu — a lake on the flanks of Nyiragongo volcano.  相似文献   

3.
Here we report measurements of the chemical composition and flux of gas emitted from the central lava lake at Erta 'Ale volcano (Ethiopia) made on 15 October 2005. We determined an average SO2 flux of ∼ 0.69 ± 0.17 kg s− 1 using zenith sky ultraviolet spectroscopy of the plume, and molar proportions of magmatic H2O, CO2, SO2, CO, HCl and HF gases to be 93.58, 3.66, 2.47, 0.06, 0.19 and 0.04%, respectively, by open-path Fourier transform infrared (FTIR) spectrometry. Together, these data imply fluxes of 7.3, 0.7, 0.008, 0.03 and 0.004 kg s− 1 for H2O, CO2, CO, HCl and HF, respectively. These are the first FTIR spectroscopic observations at Erta 'Ale, and are also some of the very few gas measurements made at the volcano since the early 1970s (Gerlach, T.M., 1980b. Investigation of volcanic gas analyses and magma outgassing from Erta 'Ale lava lake, Afar, Ethiopia. Journal of Volcanology and Geothermal Research, 7(3–4): 415–441). We identify significant increases in the proportion of H2O in the plume with respect to both CO2 and SO2 across this 30-year interval, which we attribute to the depletion of volatiles in magma that sourced effusive eruptions during the early 1970s and/or to fractional magma degassing between the two active pit craters located in the summit caldera.  相似文献   

4.
After the March–April 1986 explosive eruption a comprehensive gas study at Augustine was undertaken in the summers of 1986 and 1987. Airborne COSPEC measurements indicate that passive SO2 emission rates declined exponentially during this period from 380±45 metric tons/day (T/D) on 7/24/86 to 27±6 T/D on 8/24/87. These data are consistent with the hypothesis that the Augustine magma reservoir has become more degassed as volcanic activity decreased after the spring 1986 eruption. Gas samples collected in 1987 from an 870°C fumarole on the andesitic lava dome show various degrees of disequilibrium due to oxidation of reduced gas species and condensation (and loss) of H2O in the intake tube of the sampling apparatus. Thermochemical restoration of the data permits removal of these effects to infer an equilibrium composition of the gases. Although not conclusive, this restoration is consistent with the idea that the gases were in equilibrium at 870°C with an oxygen fugacity near the Ni–NiO buffer. These restored gas compositions show that, relative to other convergent plate volcanoes, the Augustine gases are very HCl rich (5.3–6.0 mol% HCl), S rich (7.1 mol% total S), and H2O poor (83.9–84.8 mol% H2O). Values of D and 18O suggest that the H2O in the dome gases is a mixture of primary magmatic water (PMW) and local seawater. Part of the Cl in the Augustine volcanic gases probably comes from this shallow seawater source. Additional Cl may come from subducted oceanic crust because data by Johnston (1978) show that Cl-rich glass inclusions in olivine crystals contain hornblende, which is evidence for a deep source (>25km) for part of the Cl. Gas samples collected in 1986 from 390°–642°C fumaroles on a ramp surrounding the inner summit crater have been oxidized so severely that restoration to an equilibrium composition is not possible. H and O isotope data suggest that these gases are variable mixtures of seawater, FMW, and meteoric steam. These samples are much more H2O-rich (92%–97% H2O) than the dome gases, possibly due to a larger meteoric steam component. The 1986 samples also have higher Cl/S, S/C, and F/Cl ratios, which imply that the magmatic component in these gases is from the more degassed 1976 magma. Thus, the 1987 samples from the lava dome are better indicators than the 1986 samples of degassing within the Augustine magma reservoir, even though they were collected a year later and contain a significant seawater component. Future gas studies at Augustine should emphasize fumaroles on active lava domes. Condensates collected from the same lava-dome fumarole have enrichments ot 107–102 in Cl, Br, F, B, Cd, As, S, Bi, Pb, Sb, Mo, Zn, Cu, K, Li, Na, Si, and Ni. Lower-temperature (200°–650°C) fumaroles around the volcano are generally less enriched in highly volatile elements. However, these lower-termperature fumaroles have higher concentration of rock-forming elements, probably derived from the wall rock.  相似文献   

5.
The 1970 Mount Etna volcanic gas analyses (Huntingdon, 1973) are among the most reduced volcanic gas samples ever reported. They contain 20–40% H2, 2–3.5% CO, and 2–5% H2S. Calculated oxygen fugacities for most of the analyses are well below quartz-fayalite-magnetite, several are more reduced than magnetite-wustite and all are many orders of magnitude less than those measured by Sato and Moore (1973) in the gas-streams of the collection sites at the time the samples were taken. The analyses show no similarity to calculated equilibrium compositions at any temperature. Deviations between analytical and equilibrium compositions indicate the gases have undergone extensive reduction involving mainly loss of oxygen. There also is limited evidence of sulfur loss. The reduced analyses are not the products of unusually reduced lavas, but originated from reactions of the erupted gases with the metal sampling device used in the collection procedure. The oxygen deficiencies of the analyses have been restored using the atomic hydrogen, carbon and sulfur data of Huntingdon and the oxygen fugacity data of Sato and Moore. The restored analyses are much more representative of the erupted gases which were remarkably rich in CO2 (15–35%) and SO2 (15–35%), and they show relatively steady compositions at each collection site over periods of observation ranging from hours to days.  相似文献   

6.
Investigations into the chemistry of volcanic gases depend on the availability of complete and accurate analyses of volcanic exhalations. The wide variety of sampling and analysis methods hitherto used, often supplying only partial analyses of low precision, made intercomparison, and thus a systematic study of volcanic gases, difficult. With the method proposed here, complete volcanic gas samples are obtained permitting the accurate determination of all major species by standard analytical methods without the need for highly specialised ancillary equipment. The samples are collected in evacuated 300 ml pyrex flasks through titanium tubes deeply inserted into the gas vent. Two types of flask are used, a single compartment flask allowing the easy determination of the major constituents and containing 50 ml 4 N NaOH, and a double compartment flask for the separate analysis of the sulfur species and containing 25 ml 0.1 N As2O3 in 1 N HClO4 in the first, and 50 ml 4 N NaOH in the second compartment. Non-absorbed gases are determined by gas chromatography, the rest by standard analytical procedures. The determination of H2O, CO2, SO2, SO2, S2, H2S, HCl, HF, H2, N2, O2, CH4, CO and NH2 is described.  相似文献   

7.
The continuous measurement of molecular hydrogen (H2) emissions from passively degassing volcanoes has recently been made possible using a new generation of low-cost electrochemical sensors. We have used such sensors to measure H2, along with SO2, H2O and CO2, in the gas and aerosol plume emitted from the phonolite lava lake at Erebus volcano, Antarctica. The measurements were made at the crater rim between December 2010 and January 2011. Combined with measurements of the long-term SO2 emission rate for Erebus, they indicate a characteristic H2 flux of 0.03?kg s–1 (2.8?Mg? day–1). The observed H2 content in the plume is consistent with previous estimates of redox conditions in the lava lake inferred from mineral compositions and the observed CO2/CO ratio in the gas plume (~0.9 log units below the quartz–fayalite–magnetite buffer). These measurements suggest that H2 does not combust at the surface of the lake, and that H2 is kinetically inert in the gas/aerosol plume, retaining the signature of the high-temperature chemical equilibrium reached in the lava lake. We also observe a cyclical variation in the H2/SO2 ratio with a period of ~10?min. These cycles correspond to oscillatory patterns of surface motion of the lava lake that have been interpreted as signs of a pulsatory magma supply at the top of the magmatic conduit.  相似文献   

8.
The marine sector surrounding Panarea Island (Aeolian Islands, South Italy) is affected by widespread submarine emissions of CO2 -rich gases and thermal water discharges which have been known since the Roman Age. On November 3rd, 2002 an anomalous degassing event affected the area, probably in response to a submarine explosion. The concentrations of minor reactive gases (CO, CH4 and H2) of samples collected in November and December, 2002 show drastic compositional changes when compared to previous samples collected from the same area in the 1980s. In particular the samples collected after the November 3rd phenomenon display relative increases in H2 and CO and a strong decrease in the CH4 contents, while other gas species show no significant change. The interaction of the original gas with seawater explains the variable contents of CO2, H2S, N2, Ar and He which characterize the different samples, but cannot explain the large variations of CO, CH4 and H2 which are instead compatible with changes in the redox, temperature and pressure conditions of the system. Two models, both implying an increasing input of magmatic fluids are compatible with the observed variations of minor reactive species. In the first one, the input of magmatic fluids drives the hydrothermal system towards atypical (more oxidizing) redox conditions, slowly pressurizing the system up to a critical state. In the second one, the hydrothermal system is flashed by the rising high-T volcanic fluid, suddenly released by a magmatic body at depth. The two models have different implications for volcanic surveillance and risk assessment: In the first case, the November 3rd event may represent both the culmination of a relatively slow process which caused the overpressurization of the hydrothermal system and the beginning of a new phase of quiescence. The possible evolution of the second model is unforeseeable because it is mainly related to the thermal, baric and compositional state of the deep magmatic system that is poorly known.  相似文献   

9.
A portable multi-sensor system was developed to measure volcanic plumes in order to estimate the chemical composition and temperature of volcanic gases. The multi-sensor system consists of a humidity–temperature sensor, SO2 electrochemical sensor, CO2 IR analyzer, pump and flow control units, pressure sensor, data logger, and batteries; the whole system is light (∼5 kg) and small enough to carry in a medium-size backpack. Volcanic plume is a mixture of atmosphere and volcanic gas; therefore volcanic gas composition and temperature can be estimated by subtracting the atmospheric gas background from the plume data. In order to obtain the contrasting data of the plume and the atmosphere, measurements were repeated in and out of the plume. The multi-sensor technique was applied to measure the plume of Tarumae, Tokachi, and Meakan volcanoes, Hokkaido, Japan. Repeated measurements at each volcano gave a consistent composition with ±10–30% errors, depending on the stability of the background atmospheric conditions. Fumarolic gas samples were also collected at the Tokachi volcano by a conventional method, and we found a good agreement (the difference <10%) between the composition estimated by the multi-sensor technique and conventional method. Those results demonstrated that concentration ratios of major volcanic gas species (i.e., H2O, CO2, and SO2) and temperature can be estimated by the new technique without any complicated chemical analyses even for gases emitted from an inaccessible open vent. Estimation of a more detailed gas composition can be also achieved by the combination of alkaline filter techniques to measure Cl/F/S ratios in the plume and other sensors for H2S and H2.  相似文献   

10.
Gas samples were collected by aircraft entering volcanic eruption clouds of three Guatemalan volcanoes. Gas chromatographic analyses show higher H2 and S gas contents in ash eruption clouds and lower H2 and S gases in vaporous gas plumes. H isotopic data demonstrate lighter isotopic distribution of water vapor in ash eruption clouds than in vaporous gas plumes. Most of the H2O in the vaporous plumes is probably meteoric. The data are the first direct gas analyses of explosive eruptive clouds, and demonstrate that, in spite of atmospheric admixture, useful compositional information on eruptive gases can be obtained using aircraft.  相似文献   

11.
The analyses of approximately 100 high temperature gas samples from erupting lavas of Surtsey, Erta Ale, Ardoukoba, Kilauea, Mount Etna and Nyiragongo exhibit erratic compositions resulting from analytical errors, condensation effects, reactions with sampling devices, and contamination by atmospheric gases, meteoric water and organic material. Computational techniques have been devised to restore reported analyses to compositions representative of the erupted gases. The restored analyses show little evidence of short-term variations. The principal species are H2O, CO2, SO2, H2, CO, H2S, S2, and HCl. The O2 fugacities range from nickel-nickel oxide to a half order of magnitude below quartz-magnetite-fayalite. There is no evidence for a unique magmatic gas composition; instead, the erupted gases show regular compositional trends characterized by decreasing CO2 with progressive outgassing. The gases from more alkaline lavas (Etna, Nyiragongo) are distinctly richer in CO2, while those from less alkaline (Surtsey) or tholeiitic lavas (Erta Ale, Ardoukoba) tend to be richer in H2O. Kilauean gases range from CO2-rich to H2O-rich. The total sulfur contents of the erupted gases show an excellent positive correlation with lava O2 fugacity. All restored analyses are significantly lower in H2O and enriched in sulfur and CO2 compared to the «excess volatiles».  相似文献   

12.
We report the first detailed study of spatial variations on the diffuse emission of carbon dioxide (CO2) and hydrogen sulfide (H2S) from Hengill volcanic system, Iceland. Soil CO2 and H2S efflux measurements were performed at 752 sampling sites and ranged from nondetectable to 17,666 and 722?g?m?2?day?1, respectively. The soil temperature was measured at each sampling site and used to evaluate the heat flow. The chemical composition of soil gases sampled at selected sampling sites during this study shows they result from a mixing process between deep volcanic/hydrothermal component and air. Most of the diffuse CO2 degassing is observed close to areas where active thermal manifestations occur, northeast flank of the Hengill central volcano close to the Nesjavellir power plant, suggesting a diffuse degassing structure with a SSW?CNNE trend, overlapping main fissure zone and indicating a structural control of the degassing process. On the other hand, H2S efflux values are in general very low or negligible along the study area, except those observed at the northeast flank of the Hengill central volcano, where anomalously high CO2 efflux and soil temperatures were also measured. The total diffuse CO2 emission estimated for this volcanic system was about 1,526?±?160?t?day?1 of which 453?t?day?1 (29.7?%) are of volcanic/hydrothermal origin. To calculate the steam discharge associated with the volcanic/hydrothermal CO2 output, we used the average H2O/CO2 mass ratio from 12 fumarole samples equal to 88.6 (range, 9.4?C240.2) as a representative value of the H2O/CO2 mass ratios for Hengill fumarole steam. The resulting estimate of the steam flow associated with the gas flux is equal to 40,154?t?day?1. The condensation of this steam results in thermal energy release for Helgill volcanic system of 1.07?×?1014?J?day?1 or to a total heat flow of 1,237?MWt.  相似文献   

13.
The restored compositions for approximately 70 new analyses reported recently for Erta'Alelava lake (LeGuern et al., 1979) are in good agreement with restored compositions (Gerlach, 1980a) based on previously published data. The results confirm earlier indications that gas collections taken at different times from the lava lake are related principally by variations in CO2 content. Restored compositions for gas samples collected in the final stages of a November 1978 Ardoukoba eruption along the Asal Rift spreading axis resemble the Erta'Ale gases except for a much lower CO2 content. The Ardoukoba gases fall close to a CO2-decreasing control line for gases with initial compositions similar to the 1971–1973 Erta'Ale gases. These results suggest that gases released from basaltic lava along zones of crustal spreading follow compositional trends dominated by changes in CO2 content.  相似文献   

14.
We apply a measurement technique that utilizes thermal video of vapor-dominated volcanic plumes to estimate the H2O gas flux at three degassing volcanoes. Results are compared with H2O flux measurements obtained using other methods to verify the thermal camera-derived values. Our estimation of the H2O emission rate is based on the mass and energy conservation equations. H2O flux is quantified by extracting the temperature and width of the gas plume from the thermal images, calculating the transit velocity of the gas plume from the thermal video, and combining these results with atmospheric parameters measured on-site. These data are then input into the equations for conservation of mass and energy. Selected volcanoes for this study were Villarrica in Chile, Stromboli in Italy, and Santa Ana in El Salvador. H2O fluxes estimated from the thermal imagery were 38–250?kg?s?1 at Villarrica, 4.5–14?kg?s?1 for Stromboli’s Central Crater, and 168–219?kg?s?1 at Santa Ana. These compare with H2O flux values estimated by other methods of 73–220, 3–70 and 266?kg?s?1, at the three volcanoes, respectively. The good agreement between thermal image-derived results and those estimated by other methods seem to validate this method.  相似文献   

15.
Stromboli volcano has been in continuous eruption for several thousand years without major changes in the geometry and feeding system. The thermal structure of its upper part is therefore expected to be close to steady state. In order to mantaim explosive activity, magma must release both gas and heat. It is shown that the thermal and gas budgets of the volcano lead to consistent conclusions. The thermal budget of the volcano is studied by means of a finite-element numerical model under the assumption of conduction heat transfer. It is found that the heat loss through the walls of an eruption conduit is weakly sensitive to the dimensions of underlying magma reservoirs and depends mostly on the radius and length of the conduit. In steady state, this heat loss must be balanced by the cooling of magma which flows through the system. For the magma flux of about 1 kg s-1 corresponding to normal Strombolian activity, this requires that the conduits are a few meters wide and not deeper than a few hundred meters. This implies the existence of a magma chamber at shallow depth within the volcanic edifice. This conclusion is shown to be consistent with considerations on the thermal effects of degassing. In a Strombolian explosion, the mass ratio of gas to lava is very large, commonly exceeding two, which implies that the thermal evolution of the erupting mixture is dominated by that of the gas phase. The large energy loss due to decompression of the gas phase leads to decreased eruption temperatures. The fact that lava is molten upon eruption implies that the mixture does not rise from more than about 200 m depth. To sustain the magmatic and volcanic activity of Stromboli, a mass flux of magma of a few hundred kilograms per second must be supplied to the upper parts of the edifice. This represents either the rate of magma production from the mantle source feeding the volcano or the rate of magma overturn in the interior of a large chamber.  相似文献   

16.
A geochemical model explaining the presence of fumaroles having different gas composition and temperature at the top of the crater and along the northeastern coast of Vulcano island is proposed. A pressurized biphase (liquid-vapor) reservoir at the depth of about 2 km is hypothesized. Energy and mass balance sheets controlP-T conditions in the system.P-T must vary along a boiling curve of brine as liquid is present. The CO2 content in the steam is governed by the thermodynamic properties of the fluids in the H2-NaCl-CO2 system. On the assumption that oxygen fugacity in the system is between the HM-FMQ oxygen buffers, observed SO2/H2S, CO2/CO, CO/CH4 ratios in the fumarolic gases at the Fossa crater appear in equilibrium with a temperature higher than that observed, such as may exist at depth. The more reduced gas phases present on the sea-side may result from re-equilibrium processes in shallower aquifers. The suggested model would help in monitoring changes in volcanic activity by analyzing fumarolic gases.  相似文献   

17.
Gas samples were collected from high-temperature, rooted summit vents at Mount St. Augustine in 1979, 1982, and 1984. All of the gas samples exhibit various degrees of disequilibrium. Thermodynamic restoration of the analyzed gases permits partial or complete removal of these disequilibrium effects and allows inference of equilibrium gas compositions. Long-term (1979–1984) degassing trends within resampled or adjacent vents are characterized by increases (from 97.4 to 99.8 mole%) in the H2O fraction and major decreases in the residual gases. Over this same period total gas HCl contents decreased by a factor of 3 to 10 while dry gas (H2O-free recalculated) HCl contents increased by a factor of 1.6 to 3. Dry gas mole proportions at these sites changed from being CO2-dominated (46% CO2, 24% H2 in 1979) to H2-dominated (49% H2, 22% CO2 in 1984). The overall trends in gas chemistry and the stable isotope patterns in gases and condensates from the summit fumaroles can be explained by progressive magmatic outgassing coupled with increasing proportions of seawater in the fumarole emissions.Studies of the gaseous emissions following the 1976 and 1986 Mount St. Augustine eruptions confirmed the Cl- and S-rich nature of the Mount St. Augustine emanations. Seawater, possibly derived from magmatic assimilation or dehydration of near-surface seawater-bearing sediments, could supply a portion of the outgassed Cl and S. Continued seawater influx through subvolcanic fractures or permeable sediments would recharge the seawater-depleted zone and provide a near-surface Cl and S source for the next eruptive cycle,Various lines of evidence support a phreatomagmatic component in the 1976 and 1986 Mount St. Augustine eruptions. We suggest that seawater may interact with magma or volcanic gases during the early explosive phase of Mount St. Augustine eruptions and that it continues to influence high-temperature fumarole emissions as the volcanic system cools.  相似文献   

18.
Isotopic and elemental compositions of rare gases in various types of gas samples collected in the Japanese Islands were investigated. Excess3He was found in most samples. Many samples showed a regionally uniform high3He/4He ratio of about 7 times the atmospheric ratio. The He concentrations varied from 0.6 to 1800 ppm, and they were low in CO2-rich gases and high in N2-rich gases. Ne isotopic deviations from the atmospheric Ne were detected in most volcanic gases. The deviations and the elemental abundance patterns in volcanic gases can be explained by a mixing between two components, one is mass fractionated rare gases and the other is isotopically atmospheric and is enriched in heavy rare gas elements. Ar was a mixture of mass fractionated Ar, atmospheric Ar and radiogenic Ar, and the contribution of radiogenic40Ar was small in all samples. Except for He, elemental abundance patterns were progressively enriched in the heavier rare gases relative to the atmosphere. Several samples were highly enriched in Kr and Xe relative to the abundance pattern of dissolution equilibrium of atmospheric rare gases in water. The component which is highly enriched in heavy rare gases may be released from sedimentary materials in the crust.  相似文献   

19.
The gaseous products of new Tolbachik volcanoes were studied during 1975 to 1977 throughout all eruptive stages and during the post eruptive activity. In investigations the northern break-out gases emitted during the eruption from the moving and consolidated lava flows there have been detected H2O (the main component), H2, HF, HCl, SO2 and H2S, CO2, CO, NH3, CH4 and other hydrocarbons, NH4Cl predominated in compositions of condensates and subtimates on lava flows and the most characteristic microcomponents were Zn, Cu, Pb, Sn, Ag and others. Sampling of gases and condensates at the southern break-out was conducted immediately from the flowing melt. In gases there have been detected H2O (98 mol. %). HCl and H2 (0.9 mol. % each) as well as HF, SO2, H2S, CO2 and in small quantities O2 and N2, Gases reached the equilibrium state atT andP sampling and were characteristic of gas composition of the southern break-out magma. HCl, HF and H2SO4 were predominant during condensate and sublimate mineralization. The major raicrocomponents were represented by Pt, Sb, As, Zn, Cu, Pb, Ni, Co and others. Comparison of compositions of gases and of products of their reactions at the northern and at the southern break-outs allows us to assume the presence of the deeper magma source at the northern break-out and of shallow magma source at the southern break-out.  相似文献   

20.
Heat and mass transfer rates were studied at the Niragongo lava lake during two expeditions directed by H. Tazieff in 1959 and 1972. The results of this study are as follows:Heat is transferred to the surface of the lake by the movement of lava; gas discharge is a result and not the cause of convection. The chemical composition of the gases and magma has changed very little between 1959 and 1972, whereas the mass and energy outputs differ by an order of magnitude. In 1977 a catastrophic explosion seems to have been caused by tectonic factors, stopping the slow convection of magma under the volcano and hence reducing surface manifestations in the form of the lava lake and escaping fumarolic and magmatic gases. The gas discharge was, in tons day−1, 5000 for H2O, 11,000 for CO2, 1000 for SO2 in 1959, and in 1972 7700 for H2O, 180,000 for CO2 and 23,000 for SO2. These values correspond to an energy transfer of 0.9 × 109 W in 1959 and 16 × 109 W in 1972.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号