首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interannual variability associated with the El Ni?o/Southern Oscillation (ENSO) cycle is investigated using a relatively high-resolution (T42) coupled general circulation model (CGCM) of the atmosphere and ocean. Although the flux correction is restricted to annual means of heat and freshwater, the annual as well as the seasonal climate of the CGCM is in good agreement with that of the atmospheric model component forced with observed sea surface temperatures (SSTs). During a 100-year simulation of the present-day climate, the model is able to capture many features of the observed interannual SST variability in the tropical Pacific. This includes amplitude, lifetime and frequency of occurrence of El Ni?o events and also the phase locking of the SST anomalies to the annual cycle. Although the SST warming during the evolution of El Ni?os is too confined spatially, and the warming along the Peruvian coast is much too weak, the patterns and magnitudes of key atmospheric anomalies such as westerly wind stress and precipitation, and also their eastward migration from the western to the central equatorial Pacific is in accord with observations. There is also a qualitative agreement with the results obtained from the atmospheric model forced with observed SSTs from 1979 through 1994. The large-scale dynamic response during the mature phase of ENSO (December through February) is characterized by an eastward displacement and weakening of the Walker cell in the Pacific while the Hadley cell intensifies and moves equatorward. Similar to the observations, there is a positive correlation between tropical Pacific SST and the winter circulation in the North Pacific. The deepening of the Aleutian low during the ENSO winters is well captured by the model as well as the cooling in the central North Pacific and the warming over Canada and Alaska. However, there are indications that the anomalies of both SST and atmospheric circulation are overemphasized in the North Pacific. Finally, there is evidence of a coherent downstream effect over the North Atlantic as indicated by negative correlations between the PNA index and the NAO index, for example. The weakening of the westerlies across the North Atlantic in ENSO winters which is related to a weakening and southwestward displacement of the Icelandic low, is in broad agreement with the observations, as well as the weak tendency for colder than normal winters in Europe. Received: 31 October 1995 / Accepted: 29 May 1996  相似文献   

2.
Interannual and interdecadal variabilities in the Pacific are investigated with a coupled atmosphere-ocean GCM developed at MRI, Japan. The model is run for 70 years with flux adjustments. The model shows interannual variability in the tropical Pacific which has several typical characteristics shared with the observed ENSO. A basin-scale feature of the principal SST variation for the ENSO time scale shows negative correlation in the central North Pacific with the tropical SST, similar to that of the observed one. Associated variation of the model atmosphere indicates an intensification of the Aleutian Low and a PNA-like teleconnection pattern as a response to the tropical warm SST anomaly. The ENSO time scale variability in the midlatitude ocean consists of the westward propagation of the subsurface temperature signal and the temperature variation within the shallow mixed layer forced by the anomalous atmospheric heat fluxes. For the interdecadal time scale, variation of the SST is simulated realistically with a geographical pattern similar to that for the ENSO time scale, but it has a larger relative amplitude in the northern Pacific. For the atmosphere, spatial structure of the variation in the interdecadal time scale is also similar to that in the ENSO time scale, but has smaller amplitude in the northern Pacific. Long oceanic spin-up time (>∼10 y) in the mid-high latitude, however, makes oceanic response in the interdecadal time scale larger than that in the ENSO time scale. The lagged-regression analysis for the ocean temperature variation relative to the wind stress variation indicates that interdecadal variation of the ocean subsurface at the mid-high latitudes is considered as enhanced ocean gyre spin-up process in response to the atmospheric circulation change at the mid-high latitudes, remotely forced by the interdecadal variation of the tropical SST. Received: 6 November 1995 / Accepted: 19 April 1996  相似文献   

3.
In a recent study it was illustrated that the El Nino Southern Oscillation (ENSO) mode can exist in the absence of any ocean dynamics. This oscillating mode exists just due to the interaction between atmospheric heat fluxes and ocean heat capacity. The primary purpose of this study is to further explore these atmospheric Slab Ocean ENSO dynamics and therefore the role of positive atmospheric feedbacks in model simulations and observations. The positive solar radiation feedback to sea surface temperature (SST), due to reduced cloud cover for anomalous warm SSTs, is the main positive feedback in the Slab Ocean El Nino dynamics. The strength of this positive cloud feedback is strongly related to the strength of the equatorial cold tongue. The combination of positive latent and sensible heat fluxes to the west and negative ones to the east of positive anomalies leads to the westward propagation of the SST anomalies, which allows for oscillating behavior with a preferred period of 6–7 years. Several indications are found that parts of these dynamics are indeed observed and simulated in other atmospheric or coupled general circulation models (AGCMs or CGCMs). The CMIP3 AGCM-slab ensemble of 13 different AGCM simulations shows unstable ocean–atmosphere interactions along the equatorial Pacific related to stronger cold tongues. In observations and in the CMIP3 and CMIP5 CGCM model ensemble the strength and sign of the cloud feedback is a function of the strength of the cold tongue. In summary, this indicates that the Slab Ocean El Nino dynamics are indeed a characteristic of the equatorial Pacific climate that is only dominant or significantly contributing to the ENSO dynamics if the SST cold tongue is sufficiently strong. In the observations this is only the case during strong La Nina conditions. The presence of the Slab Ocean ENSO atmospheric feedbacks in observations and CGCM model simulations implies that the family of physical ENSO modes does have another member, which is entirely driven by atmospheric processes and does not need to have the same spatial pattern nor the same time scales as the main ENSO dynamics.  相似文献   

4.
Role of stochastic forcing in ENSO in observations and a coupled GCM   总被引:2,自引:0,他引:2  
A procedure is presented to estimate the role of atmospheric stochastic forcing (SF) in El Ni?o–Southern Oscillation (ENSO) simulated by a coupled ocean–atmosphere general circulation model (CGCM), in direct comparison to observations represented by a global reanalysis product. SF is extracted from the CGCM and reanalysis as surface wind anomalies linearly independent of the sea-surface temperature anomalies. Madden–Julian Oscillation (MJO) is isolated from SF to quantify its role in ENSO. A coupled ocean–atmosphere model of intermediate complexity is forced with SF, as well as its MJO and non-MJO components, from the reanalysis and CGCM. The role of SF is estimated by comparing the original ENSO in observations and the CGCM with that reproduced by the intermediate model. ENSO statistics in both reanalysis and CGCM are better reproduced when the intermediate model is tuned to be weakly stable than unstable. The intermediate model driven by SF from the reanalysis reproduces most characteristics of observed ENSO, such as its spectrum, seasonal phase-locking, fast decorrelation of ENSO SST during boreal spring, and its lag-correlation with SF. In contrast, not all characteristics of ENSO in the CGCM are reproduced by the intermediate model when SF from the CGCM is used. The seasonal phase-locking of ENSO in the CGCM is not reproduced at all. ENSO, therefore, appears to be driven by SF to a lesser degree in the CGCM than in observations. Characteristics of observed ENSO reproduced by the intermediate model (driven by SF) can be largely attributed to the MJO; which, for instance, is responsible for the fast decorrelation of ENSO SST during boreal spring in both reanalysis and CGCM. The non-MJO component seems to be more responsible than the MJO for erroneous features of ENSO in the CGCM.  相似文献   

5.
Many climate models strongly underestimate the two most important atmospheric feedbacks operating in El Niño/Southern Oscillation (ENSO), the positive (amplifying) zonal surface wind feedback and negative (damping) surface-heat flux feedback (hereafter ENSO atmospheric feedbacks, EAF). This hampers a realistic representation of ENSO dynamics in these models. Here we show that the atmospheric components of climate models participating in the 5th phase of the Coupled Model Intercomparison Project (CMIP5) when forced by observed sea surface temperatures (SST), already underestimate EAF on average by 23%, but less than their coupled counterparts (on average by 54%). There is a pronounced tendency of atmosphere models to simulate stronger EAF, when they exhibit a stronger mean deep convection and enhanced cloud cover over the western equatorial Pacific (WEP), indicative of a stronger rising branch of the Pacific Walker Circulation (PWC). Further, differences in the mean deep convection over the WEP between the coupled and uncoupled models explain a large part of the differences in EAF, with the deep convection in the coupled models strongly depending on the equatorial Pacific SST bias. Experiments with a single atmosphere model support the relation between the equatorial Pacific atmospheric mean state, the SST bias and the EAF. An implemented cold SST bias in the observed SST forcing weakens deep convection and reduces cloud cover in the rising branch of the PWC, causing weaker EAF. A warm SST bias has the opposite effect. Our results elucidate how biases in the mean state of the PWC and equatorial SST hamper a realistic simulation of the EAF.  相似文献   

6.
观测事实显示,在E1 Ni(?)o发生期间,伴随着赤道中东太平洋的增暖,中纬度北大平洋中部表层海温(SST)常出现冷距平,而北美大陆西海岸SST则出现暖距平。借助观测资料分析和海气耦合模式模拟两种手段,检验了北太平洋对ENSO事件的上述响应。观测证据和数值模拟都支持有关学者提出的“大气桥”概念,即大气对赤道中东太平洋SST异常增暖的响应,随后强迫中纬度北太平洋,并导致那里SST的变冷,从而起到了连接热带和热带外特别是中纬度北太平洋的“桥梁”的作用。关于其机制,本文认为主要是海洋对大气强迫的动力响应导致那里的SST变冷,尽管潜热通量的贡献也很显著。至少模式结果证明短波辐射、长波辐射和感热通量的贡献都是次要的。进一步的分析揭示,北太平洋存在着线性独立于ENSO事件的所谓“北太平洋模态”,在空间型上,它和线性地依赖于ENSO事件的模态非常相近,即它们的纬向结构都呈现出扁平的“双极”型,只是彼此间SST距平极大值的中心位置不同。模拟结果表明,北太平洋模态与大气的耦合作用,主要是通过海气热通量交换实现的,其中短波辐射和长波辐射的作用居主导地位,而潜热通量的贡献则基本可以忽略。  相似文献   

7.
F. Codron 《Climate Dynamics》2001,17(2-3):187-203
 The changes of the variability of the tropical Pacific ocean forced by a shift of six months in the date of the perihelion are studied using a coupled tropical Pacific ocean/global atmosphere GCM. The sensitivity experiments are conducted with two versions of the atmospheric model, varied by two parametrization changes. The first one concerns the interpolation scheme between the atmosphere and ocean models grids near the coasts, the second one the advection of water vapor in the presence of downstream negative temperature gradients, as encountered in the vicinity of mountains. In the tropical Pacific region, the parametrization differences only have a significant direct effect near the coasts; but coupled feedbacks lead to a 1 °C warming of the equatorial cold tongue in the modified (version 2) model, and a widening of the western Pacific large-scale convergence area. The sensitivity of the seasonal cycle of equatorial SST is very different between the two experiments. In both cases, the response to the solar flux forcing is strongly modified by coupled interactions between the SST, wind stress response and ocean dynamics. In the first version, the main feedback is due to anomalous upwelling and leads to westward propagation of SST anomalies; whereas the version 2 model is dominated by an eastward-propagating thermocline mode. The main reason diagnosed for these different behaviors is the atmospheric response to SST anomalies. In the warmer climate simulated by the second version, the wind stress response in the western Pacific is enhanced, and the off-equatorial curl is reduced, both effects favoring eastward propagation through thermocline depth anomalies. The modifications of the simulated seasonal cycle in version 2 lead to a change in ENSO behavior. In the control climate, the interannual variability in the eastern Pacific is dominated by warm events, whereas cold events tend to be the more extreme ones with a shifted perihelion. Received: 14 December 1999 / Accepted: 24 May 2000  相似文献   

8.
This paper explores the impact of intra-daily Sea Surface Temperature (SST) variability on the tropical large-scale climate variability and differentiates it from the response of the system to the forcing of the solar diurnal cycle. Our methodology is based on a set of numerical experiments based on a fully global coupled ocean–atmosphere general circulation in which we alter (1) the frequency at which the atmosphere sees the SST variations and (2) the amplitude of the SST diurnal cycle. Our results highlight the complexity of the scale interactions existing between the intra-daily and inter-annual variability of the tropical climate system. Neglecting the SST intra-daily variability results, in our CGCM, to a systematic decrease of 15% of El Ni?o—Southern Oscillation (ENSO) amplitude. Furthermore, ENSO frequency and skewness are also significantly modified and are in better agreement with observations when SST intra-daily variability is directly taken into account in the coupling interface of our CGCM. These significant modifications of the SST interannual variability are not associated with any remarkable changes in the mean state or the seasonal variability. They can therefore not be explained by a rectification of the mean state as usually advocated in recent studies focusing on the diurnal cycle and its impact. Furthermore, we demonstrate that SST high frequency coupling is systematically associated with a strengthening of the air-sea feedbacks involved in ENSO physics: SST/sea level pressure (or Bjerknes) feedback, zonal wind/heat content (or Wyrtki) feedback, but also negative surface heat flux feedbacks. In our model, nearly all these results (excepted for SST skewness) are independent of the amplitude of the SST diurnal cycle suggesting that the systematic deterioration of the air-sea coupling by a daily exchange of SST information is cascading toward the major mode of tropical variability, i.e. ENSO.  相似文献   

9.
The evolution of El Ni?o-Southern Oscillation (ENSO) variability can be characterized by various ocean–atmosphere feedbacks, for example, the influence of ENSO related sea surface temperature (SST) variability on the low-level wind and surface heat fluxes in the equatorial tropical Pacific, which in turn affects the evolution of the SST. An analysis of these feedbacks requires physically consistent observational data sets. Availability of various reanalysis data sets produced during the last 15?years provides such an opportunity. A consolidated estimate of ocean surface fluxes based on multiple reanalyses also helps understand biases in ENSO predictions and simulations from climate models. In this paper, the intensity and the spatial structure of ocean–atmosphere feedback terms (precipitation, surface wind stress, and ocean surface heat flux) associated with ENSO are evaluated for six different reanalysis products. The analysis provides an estimate for the feedback terms that could be used for model validation studies. The analysis includes the robustness of the estimate across different reanalyses. Results show that one of the “coupled” reanalysis among the six investigated is closer to the ensemble mean of the results, suggesting that the coupled data assimilation may have the potential to better capture the overall atmosphere–ocean feedback processes associated with ENSO than the uncoupled ones.  相似文献   

10.
The impact of the warm SST bias in the Southeast Pacific (SEP) on the quality of seasonal and interannual variability and ENSO prediction in a coupled GCM is investigated. The reduction of this bias is achieved by means of empirical heat flux correction that is constant in time. It leads to a wide range of changes in the tropical Pacific climate including enhanced southeast trades, well-defined dry zone in the SEP, better simulation of the South Pacific Convergence Zone and stronger cross-equatorial asymmetry of the mean state in the eastern Pacific. As a result of the mean climate correction, significant improvements in the simulation of the seasonal cycle of the oceanic and atmospheric states are also observed both at the equator and basin-wide. Due to more realistic simulation of the seasonal evolution of the cold tongue, tropical convection and surface winds in the corrected version of the model, phase-lock of ENSO to the annual cycle looses its strong semi-annual component and becomes quite similar to the observed, although the amplitude of ENSO is reduced. Zonal wind stress response to the SST anomalies in the central-eastern Pacific also becomes more realistic. ENSO retrospective forecast experiments conducted with the directly coupled and the flux-corrected versions of the model demonstrate that deficiencies in the seasonal evolution of the cold tongue/Inter-Tropical Convergence Zone complex (that were largely due to the SEP bias in this model) and the related errors in the ENSO phase-lock to the annual cycle can seriously degrade ENSO prediction. By reducing these errors, ENSO predictive skill in the coupled model was substantially enhanced.  相似文献   

11.
Observations indicated that for the El Niño/Southern Oscillation (ENSO) there have been eastward displacements of the zonal wind stress (WS) anomalies and surface heat flux (short wave heat flux and latent heat flux) anomalies during El Niño episodes in the 1981–1995 regime relative to the earlier regime of 1961–1975 (without corresponding displacements during La Niña episodes). Our numerical experiments with the Zebiak–Cane coupled model generally reproduced such displacements when the model climatological fields were replaced by the observed climatologies [of sea surface temperature (SST), surface WS and surface wind atmospheric divergence] and simulated climatologies (of oceanic surface layer currents and associated upwelling) for the 1981–1995 regime. Sensitivity tests indicated that the background atmospheric state played a much more important role than the background ocean state in producing the displacements, which enhanced the asymmetry between El Niño and La Niña in the later regime. The later regime climatology state resulted in the eastward shifts in the ENSO system (WS and SST) only during El Niño, through the eastward shift of the atmosphere convergence heating rate in the coupled model. The ENSO period and ENSO predictability were also enhanced in the coupled model under the later regime climatology. That the change in the mean state of the tropical Pacific atmosphere and ocean after the mid 1970s could have produced the observed changes in ENSO properties is consistent with our findings.  相似文献   

12.
A new hybrid coupled model(HCM) is presented in this study, which consists of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model. The ocean component is the intermediate ocean model(IOM)of the intermediate coupled model(ICM) used at the Institute of Oceanology, Chinese Academy of Sciences(IOCAS). The atmospheric component is ECHAM5, the fifth version of the Max Planck Institute for Meteorology atmospheric general circulation model. The HCM integrates its atmospheric and oceanic components by using an anomaly coupling strategy. A100-year simulation has been made with the HCM and its simulation skills are evaluated, including the interannual variability of SST over the tropical Pacific and the ENSO-related responses of the global atmosphere. The model shows irregular occurrence of ENSO events with a spectral range between two and five years. The amplitude and lifetime of ENSO events and the annual phase-locking of SST anomalies are also reproduced realistically. Despite the slightly stronger variance of SST anomalies over the central Pacific than observed in the HCM, the patterns of atmospheric anomalies related to ENSO,such as sea level pressure, temperature and precipitation, are in broad agreement with observations. Therefore, this model can not only simulate the ENSO variability, but also reproduce the global atmospheric variability associated with ENSO, thereby providing a useful modeling tool for ENSO studies. Further model applications of ENSO modulations by ocean–atmosphere processes, and of ENSO-related climate prediction, are also discussed.  相似文献   

13.
We analyse the differences in the properties of the El Niño Southern Oscillation (ENSO) in a set of 17 coupled integrations with the flux-adjusted, 19-level HadCM3 model with perturbed atmospheric parameters. Within this ensemble, the standard deviation of the NINO3.4 deseasonalised SSTs ranges from 0.6 to 1.3 K. The systematic changes in the properties of the ENSO with increasing amplitude confirm that ENSO in HadCM3 is prevalently a surface (or SST) mode. The tropical-Pacific SST variability in the ensemble of coupled integrations correlates positively with the SST variability in the corresponding ensemble of atmosphere models coupled with a static mixed-layer ocean (“slab” models) perturbed with the same changes in atmospheric parameters. Comparison with the respective coupled ENSO-neutral climatologies and with the slab-model climatologies indicates low-cloud cover to be an important controlling factor of the strength of the ENSO within the ensemble. Our analysis suggests that, in the HadCM3 model, increased SST variability localised in the south-east tropical Pacific, not originating from ENSO and associated with increased amounts of tropical stratocumulus cloud, causes increased ENSO variability via an atmospheric bridge mechanism. The relationship with cloud cover also results in a negative correlation between the ENSO activity and the model’s climate sensitivity to doubling CO2.  相似文献   

14.
张学洪  俞永强  刘辉 《大气科学》1998,22(4):511-521
利用一个全球海气耦合模式长期积分所给出的资料,分析了冬季北太平洋海表湍流热通量(潜热和感热)异常及其对海表温度(SST)异常的影响,并比较了海表热通量诸分量和海洋内部的动力学过程对SST变化的相对重要性。结果表明,冬季热带外海洋上的湍流热通量是影响SST的主要因子,但在北太平洋中部海水的平流作用也不可忽视。冬季热带外海洋向大气释放的潜热和感热通量与SST倾向(而不是SST本身)之间存在着显著的相关,这同Cayan和Reynolds等利用COADS资料和NCEP资料同化模式分析的结果是一致的。模式诊断的结果支持这样一种看法:和热带海洋不同,冬季热带外海洋上的海气相互作用主要地表现为大气对海洋的强迫作用,而不是相反。模式给出的SST倾向的第一个EOF分量及其与海平面气压场的相关特征同Wallace等从观测资料分析所得到的结果是一致的;进一步的分析表明:在冬季北太平洋的大部分区域(特别是西太平洋),大尺度大气环流异常在很大程度上决定着SST的异常,而这种决定作用正是通过它对湍流热通量的强烈影响来实现的。  相似文献   

15.
利用月平均的HadISST海表温度、NCEP再分析资料、OAFlux海表面热通量及相关物理量资料、NCAR/NOAA云量场资料,分析了热带太平洋海表热通量的年际特征,并且进一步分析了传统El Ni?o和El Ni?o Modoki事件中湍流热通量的异常演变特征以及影响因子。在热带太平洋上,净热通量的年际变化最大振幅出现在赤道太平洋上,且主要取决于潜热通量和短波辐射通量的变化。本文还利用两类ENSO事件旺盛期海温指数对不同时期海面热通量场的偏回归分析,考察了热带太平洋海表面热通量与两类ENSO事件中海温的联系。两类海温指数对各时期热带太平洋净热通量的回归均表现为赤道太平洋上存在显著的负异常,在Ni?o3指数偏回归下的负异常范围和强度都较El Ni?o Modoki指数回归的要大,且更偏于赤道东太平洋,而旺盛期海温对同期赤道东太平洋上湍流热通量的影响最大。  相似文献   

16.
The effects of freshwater flux (FWF) on modulating ENSO have been of great interest in recent years. Large FWF bias is evident in Coupled General Circulation Models (CGCMs), especially over the tropical Pacific where large precipitation bias exists due to the so-called "double ITCZ" problem. By applying an empirical correction to FWF over the tropical Pacific, the sensitivity of ENSO variability is investigated using the new version (version 1.0) of the NCAR's Community Earth System Model (CESM1.0), which tends to overestimate the interannual variability of ENSO accompanied by large FWF into the ocean. In response to a small adjustment of FWF, interannual variability in CESM1.0 is reduced significantly, with the amplitude of FWF being reduced due to the applied adjustment part whose sign is always opposite to that of the original FWF field. Furthermore, it is illustrated that the interannual variability of precipitation weakens as a response to the reduced interannual variability of SST. Process analysis indicates that the interannual variability of SST is damped through a reduced FWF-salt-density-mixing-SST feedback, and also through a reduced SST-wind-thermocline feedback. These results highlight the importance of FWF in modulating ENSO, and thus should be adequately taken into account to improve the simulation of FWF in order to reduce the bias of ENSO simulations by CESM.  相似文献   

17.
A nine-layer spectral atmospheric general circulation model is coupled to a twenty-layer global oceanic general circulation model with the “prediction-correction” monthly anomaly exchange scheme which has been proposed at the Institute of Atmospheric Physics (IAP). A forty-year integration of the coupled model shows that the CGCM is fairly successful in keeping a reasonable pattern of the modelled SST although most of the Pacific become warmer than those given by the uncoupled ocean model. The model tends to reach a more realistic state than the uncoupled one in terms of downward surface heat flux into ocean particularly in the equatorial Pacific region. Also, the model is capable to simulate interannual variability of sea surface temperature in tropical region.  相似文献   

18.
An analysis on the physical process of the influence of AO on ENSO   总被引:4,自引:1,他引:3  
The influence of the spring AO on ENSO has been demonstrated in several recent studies. This analysis further explores the physical process of the influence of AO on ENSO using the NCEP/NCAR reanalysis data over the period 1958–2010. We focus on the formation of the westerly wind burst in the tropical western Pacific, and examine the evolution and formation of the atmospheric circulation, atmospheric heating, and SST anomalies in association with the spring AO variability. The spring AO variability is found to be independent from the East Asian winter monsoon activity. The spring AO associated circulation anomalies are supported by the interaction between synoptic-scale eddies and the mean-flow and its associated vorticity transportation. Surface wind changes may affect surface heat fluxes and the oceanic heat transport, resulting in the SST change. The AO associated warming in the equatorial SSTs results primarily from the ocean heat transport in the face of net surface heat flux damping. The tropical SST warming is accompanied by anomalous atmospheric heating in the subtropical north and south Pacific, which sustains the anomalous westerly wind in the equatorial western Pacific through a Gill-like atmospheric response from spring to summer. The anomalous westerly excites an eastward propagating and downwelling equatorial Kelvin wave, leading to SST warming in the tropical central-eastern Pacific in summer-fall. The tropical SST, atmospheric heating, and atmospheric circulation anomalies sustain and develop through the Bjerknes feedback mechanism, which eventually result in an El Niño-like warming in the tropical eastern Pacific in winter.  相似文献   

19.
 A systematic comparison of observed and modeled atmospheric surface heat and momentum fluxes related to sea surface temperature (SST) variability on interannual time scales in the tropical Pacific is conducted. This is done to examine the ability of atmospheric general circulation models (AGCMs) in the Atmospheric Model Intercomparison Project (AMIP) to simulate the surface fluxes important for driving the ocean on interannual time scales. In order to estimate the model and observed response to such SST variability, various regression calculations are made between a time series representing observed ENSO SST variability in the tropical Pacific and the resulting surface flux anomalies. The models exhibit a range of differences from the observations. Overall the zonal wind stress anomalies are most accurately simulated while the solar radiation anomalies are the least accurately depicted. The deficiencies in the solar radiation are closely related to errors in cloudiness. The total heat flux shows some cancellation of the errors in its components particularly in the central Pacific. The performance of the GCMs in simulating the surface flux anomalies seems to be resolution dependent and low-resolution models tend to exhibit weaker flux responses. The simulated responses in the western Pacific are more variable than those of the central and eastern Pacific but in the west the observed estimates are less robust as well. Further improvements in atmospheric GCM flux simulation through better physical parametrization is clearly required if such models are to be used to their full potential in coupled modeling and climate forecasting. Received: 24 August 1999 / Accepted: 11 September 2000  相似文献   

20.
The extratropical response to tropical remote forcing has been examined with so-called tropical ocean-global atmosphere experiments, which use prescribed sea surface temperature (SST) in the tropical Pacific and a slab mixed-layer ocean model elsewhere. In this study we have revisited this experimental design and found that the extratropical response is quite sensitive to the meridional extent of tropical prescribed SST domain. Even in the case of a prescribed annual cycle only (i.e., no ENSO), the differences in the prescribed SST regions lead to different atmospheric motions in the adjacent extratropics. When the tropical forcing includes ENSO, the sensitivity to the meridional domain is more prominent, especially during La Niña events. In La Niña, the prescribed SST is warmer than the simulated SST in the northern subtropics, and the warmer SST differences continue to 30°N. This broad SST differences accompany enhanced atmospheric meridional circulation that directly connects the tropics and extratropics within the Pacific basin. Moreover, the Rossby wave excitation also increases, so the effect of prescribed region difference is felt beyond the Pacific basin. On the other hand, the effect of ENSO sea surface temperature anomalie (i.e., ENSO experiment composite minus control experiment annual cycle, both of which have the same prescribed SST domain) is stronger in the broad tropical forcing experiment. However, the ENSO anomaly composite from own annual cycle is similar regardless of the meridional extent of forcing region, and commonly mimics the Northern Hemisphere El Niño composite of nature in the boreal winter season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号