首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Proterozoic bedding-parallel fault zone is described from the Witwatersrand basin in South Africa. The fault zone is dominated by pseudotachylite, the youngest tectonite present, but also contains quartz veins and cataclasites which post-date the spatially associated mylonites. Both tectonic eliminations and duplications are caused by the fault zone which is dominated by a northerly to westerly overthrusting. The fault rocks probably did not form during a single event but as a result of a minimum of two periods of activation of the fault zone separated in time by at least the period required to deposit in excess of 4 km of sediments belonging to the lower part of the Transvaal Sequence. Equivocal evidence suggests that the pseudotachylites, which probably formed as a result of frictional fusion on fault planes, may have formed at similar depths to the mylonites. Consequently the related parameters of pressure and temperature are not considered to be as important in determining whether brittle or ductile deformation occurs, as are pore fluid pressure and strain rate. The age, direction of tectonic transport and a characteristic enrichment in lead all suggest that there may be a genetic link between the pseudotachylites in this fault zone and the type pseudotachylites at Vredefort, 60 km to the south.  相似文献   

2.
Gangavalli (Brittle) Shear Zone (Fault) near Attur, Tamil Nadu exposes nearly 50 km long and 1–3 km wide NNE–SSW trending linear belt of cataclasites and pseudotachylyte produced on charnockites of the Southern Granulite Terrane. Pseudotachylytes, as well as the country rock, bear the evidence of conjugate strike slip shearing along NNE–SSW and NW–SE directions, suggesting an N–S compression. The Gangavalli Shear Zone represents the NNE–SSW fault of the conjugate system along which a right lateral shear has produced seismic slip motion giving rise to cataclasites and pseudotachylytes. Pseudotachylytes occur as veins of varying width extending from hairline fracture fills to tens of meters in length. They carry quartz as well as feldspar clasts with sizes of few mm in diameter; the clast sizes show a modified Power law distribution with finer ones (<1000 \({\upmu }\)m\(^{2})\) deviating from linearity. The shape of the clasts shows a high degree of roundness (>0.4) due to thermal decrepitation. In a large instance, devitrification has occurred producing albitic microlites that suggest the temperature of the pseudotachylyte melt was >1000\(^{\circ }\hbox {C}\). Thus, pseudotachylyte veins act as a proxy to understand the genetic process involved in the evolution of the shear zone and its tectonic settings.  相似文献   

3.
Gold deposits in the Syama and Tabakoroni goldfields in southern Mali occur along a north-northeast trending mineralised litho-structural corridor that trends for approximately 40 km. The deposits are interpreted to have formed during a craton-wide metallogenic event during the Eburnean orogeny. In the Syama goldfield, gold mineralisation in 9 deposits is hosted in the hanging-wall of the Syama-Bananso Shear Zone in basalt, greywacke, argillite, lamprophyre, and black shale. Gold is currently mined primarily from the oxidised-weathered zone of the ore bodies. In the Syama deposit, mineralisation hosted in altered basalt is associated with an intense ankerite–quartz–pyrite stockwork vein systems, whereas disseminated style mineralisation is also present in greywackes. In contrast, the Tellem deposit is hosted in quartz–porphyry rocks.In the Tabakoroni goldfield, gold mineralisation is hosted in quartz veins in tertiary splay shears of the Syama-Bananso Shear Zone. The Tabakoroni orebody is associated with quartz, carbonate and graphite (stylolite) veins, with pyrite and lesser amounts of arsenopyrite. There are four main styles of gold mineralisation including silica-sulphide lodes in carbonaceous fault zones, stylolitic quartz reefs in fault zones, quartz–Fe–carbonate–sulphide lodes in mafic volcanics, and quartz–sulphide stockwork veins in silicified sediments and porphyry dykes. The several deposit styles in the goldfield thus present a number of potential exploration targets spatially associated with the regional Syama-Bananso Shear Zone and generally classified as orogenic shear-hosted gold deposits.  相似文献   

4.
The area of investigation at and around Mashak Pahar, Bankura district, West Bengal, India comprises a number of rock types namely: granite gneiss, migmatized quartz tourmaline gneiss, quartz pebble conglomerate, ferruginous quartzite, quartz tourmaline veins (as veins) and graphite schists. Interestingly, the study area lies in the region extending South Purulia Shear Zone (~Tamar–Porapahar Shear Zone) which marks the boundary between two contrasting tectonic blocks of eastern India, namely, the Chhotanagpur Gneissic Terrane (CGC) to the north and Singhbhum Group of rocks to the south. The rocks of the study area are poly-phasedly deformed by three phases of folding, namely, F1, F2 and F3. All the tourmalines are classified to be of ‘Alkali Group’. Chemistry of tourmalines from migmatized quartz tourmaline gneiss and those from quartz tourmaline veins are in conformity with their relation to (earthquake induced) shear system evolution in this terrain. In general, the compositional evolution of tourmaline during prograde metamorphism (~400°–730°C) has been supported by both petrographic and chemical evidences. Assessment of mineral–chemical data of constituent tourmaline grains clearly suggests compositional variations across zonal boundaries within tourmaline that was controlled by changing metamorphic milieu in this terrane. Field and petrographic evidences clearly indicate activation of earlier and later shears in this region accompanied by infiltration of boron and formation of zoned tourmaline crystals.  相似文献   

5.
大别造山带东部假玄武玻璃的显微构造特征及其意义   总被引:3,自引:0,他引:3  
最近,在大别造山带东部发现了广泛的地震成因假玄武玻璃,这些假玄武玻璃主要呈简单脉状沿NE-SW向走滑断裂带或剪切带发育,后者大多与郯庐断裂带平行并穿切了包括白垩纪花岗岩在内的地质体。某些假玄武玻璃内发育由暗色石英条纹构成的糜棱质条带。本文通过普通光学显微镜和扫描电镜观察分析,详细研究对比了不同断裂带内部发育的假玄武玻璃及其围岩在显微构造特征上的差异及联系。根据岩石的组构特征,证实所发现的这些假玄武玻璃主要是由母岩的超碎裂岩化形成的,但在点1发育的假玄武玻璃基质的扫描电镜影象特征上,沿某些残斑矿物(钾长石、斜长石、黄铁矿)的边缘可以看到些许代表摩擦熔融成因的熔蚀状港湾结构,说明假玄武玻璃形成过程中曾经发生了程度较低的局部熔融作用。肉眼所见到的糜棱质石英条纹在显微镜下证实为早期的糜棱面理。同时,岩石组构的叠加显示,含假玄武玻璃的断裂带及假玄武玻璃本身普遍具有多期性,且晚期构造产物(或假玄武玻璃)总是较早期产物(或假玄武玻璃)碎裂岩化作用更加强烈,说明先期存在的构造软化带在控制假玄武玻璃形成过程中起着非常重要的作用,即构造带抬升过程中伴随的多期构造及细粒化是形成假玄武玻璃的基础。岩石的变形序列总体上显示为韧性-韧脆性-脆性的演化过程,从而证实了这些假玄武玻璃总体上形成于造山带抬升过程,而不是早期的俯冲过程。  相似文献   

6.
前人对河台金矿中的假玄武玻璃早有报道,但是因为未认识到其与成矿的关系而被忽视。在前人发现的糜棱岩中假玄武玻璃的基础上,本次研究又发现了三种其他岩性中的假玄武玻璃。河台金矿中的假玄武玻璃呈黑色脉状、网脉状和树枝状贯穿于糜棱岩化片岩、糜棱岩、混合岩和矿体中。本研究结合野外宏观特征和室内的岩相学微观特征,运用粉晶X射线衍射、全岩地球化学和Ar-Ar同位素等实验分析手段,比较了河台金矿不同地质体中假玄武玻璃岩脉的特征。研究发现假玄武玻璃脉体中存在树枝状微晶结构和碎屑颗粒的港湾结构,同时也含有碎裂成因的石英、长石,表明其成因以同震断层的摩擦熔融为主,并伴随有少量碎裂化。通过计算得出假玄武玻璃样品中结晶态的各类矿物含量为石英53.3%、伊利石20.5%、高岭石17.3%、钾长石8.9%。假玄武玻璃与围岩都具有富SiO_2和Al_2O_3,富K_2O贫Na_2O,低MgO和Fe_2O_3~T的地球化学特征。两者的稀土元素配分型式也非常相似,都显示轻稀土富集和中等程度的负Eu异常(δEu=0.51~0.71)。假玄武玻璃的显微构造和地球化学特征指示其主要是由围岩原地熔融形成的,形成深度在6~18 km。我们认为河台金矿的假玄武玻璃可以指示云开大山抬升过程中伴随着地震的发生,同时,假玄武玻璃脉体在空间上切穿矿体,因此假玄武玻璃的40Ar/39Ar年龄123.3±1.0 Ma可以作为河台金矿的成矿年龄上限。  相似文献   

7.
Shear and extensional veins formed during the reactivation of the Magdala shear system at Stawell in western Victoria, Australia, contribute to the formation of the auriferous Central and Basalt Contact lodes. Within this shear system is a range of fault rocks accompanied by steep-dipping (>65°) quartz-rich laminated shear veins and relatively flat-lying extensional veins. Both vein sets appear to have been a primary source for the host rock permeability during fluid flow in a regime of significant deviatoric stresses. The macro- and microstructures suggest that the dilatancy, that produced mineralized veins, formed under conditions of overpressure generated by fluid infiltration late in a tectonic regime. A new microfabric analysis technique is used to investigate the quartz-rich veins, which allows rapid integration of the microstructure with the crystallographic preferred orientations (CPOs). Both the shear and extensional quartz veins have a random CPO with ∼120° dihedral angles between the quartz–quartz grains, which is typical of a metamorphic equilibrium microfabric. The microstructures indicate that the quartz has undergone extensive grain adjustment in the solid-state, with grain shape and size affected by interfacial solution (pressure solution) effects. These features are consistent with inferences from experimental rock deformation studies, where grain boundary migration is enhanced in a water-rich environment. The onset of solution-transfer processes (pressure solution) developed as the quartz microfabric stabilized and continued to modify the CPO and microstructure significantly. It is concluded that grain growth and pressure solution are coupled diffusive mass transfer processes, related to fluctuations in pore fluid pressures in a region undergoing deformation at near lithostatic pressures.  相似文献   

8.
The Cleo gold deposit, 55 km south of Laverton in the Eastern Goldfields Province of Western Australia, is characterised by banded iron‐formation (BIF)‐hosted ore zones in the gently dipping Sunrise Shear Zone and high‐grade vein‐hosted ore in the Western Lodes.There is evidence that gold mineralisation in the Western Lodes (which occurred at ca 2655 Ma) post‐dates the majority of displacement along the Sunrise Shear Zone, but it remains uncertain if the ore in both structures formed simultaneously or separately. Overall, the Pb, Nd, Sr, C, O and S isotopic compositions of ore‐related minerals from both the Western Lodes and ore zones in the Sunrise Shear Zone are similar. Early low‐salinity aqueous‐carbonic fluids and late high‐salinity fluids with similar characteristics are trapped in inclusions in quartz veins from both the Sunrise Shear Zone and the Western Lodes. The early CO2, CO2–H2O, and H2O‐dominant inclusions are interpreted as being related to ore formation, and to have formed from a single low‐salinity aqueous‐carbonic fluid as a result of intermittent fluid immiscibility. Homogenisation temperatures indicate that these inclusions were trapped at approximately 280°C and at approximately 4 km depth, in the deeper epizonal range. Differences between the ore zones are detected in the trace‐element composition of gold samples, with gold from the Sunrise Shear Zone enriched in Ni, Pb, Sn, Te and Zn, and depleted in As, Bi, Cd, Cu and Sb, relative to gold from the Western Lodes. Although there are differences in gold composition between the Sunrise Shear Zone and Western Lodes, and hence the metal content of ore fluids may have varied slightly between the different ore zones, no other systematic fluid or solute differences are detected between the ore zones. Given the fact that the ore fluids in each zone have very similar bulk properties, the considerable differences in gold grade, sulfide mineral abundance, and ore textures between the two ore zones most likely result from different gold‐deposition mechanisms. The association of ore zones in the Sunrise Shear Zone with pyrite‐replaced BIF suggests that wall‐rock sulfidation was the most significant mechanism of gold precipitation, through the destabilisation of gold‐bisulfide complexes. The Western Lodes, however, do not exhibit any host‐rock preference and multistage veins commonly contain coarse‐grained gold. Fluid‐inclusion characteristics and breccia textures in veins in the Western Lodes suggest that rapid pressure changes, brought about by intermittent release of overpressured fluids and concomitant phase separation, are likely to have caused the destabilisation of gold‐thiocomplexes, leading to formation of higher‐grade gold ore zones.  相似文献   

9.
The Nassara-Au prospect is located in the Birimian Boromo Greenstone Belt in southwestern Burkina Faso. It is part of a larger mineralized field that includes the Cu–Au porphyry system of Gaoua, to the north. At Nassara, mineralization occurs within the West Batié Shear Zone that follows the contact between volcanic rocks (basalt and andesite) and volcano-sediments (pyroclastics and black shales) at the southern termination of the Boromo Belt. Gold is associated with pyrite and other Fe-bearing minerals that occur disseminated within the sheared volcanic and volcano-sedimentary rocks. In particular, highest grades are distinguished in alteration halos of small quartz–albite–ankerite veins that form networks along the shear zone. Here, pyrites are marked by As-poor and As-rich growth zones, the latter containing gold inclusions. Gold mineralization formed during D2NA. Subsequent shear fractures related to D3NA related are devoid of gold. Nassara is a classical orogenic gold occurrence where gold is associated to disseminated pyrite along quartz veins.  相似文献   

10.
东准噶尔蒙西斑岩铜钼矿床脉体特征及其形成机制   总被引:5,自引:1,他引:4  
蒙西斑岩铜钼矿床位于东准噶尔伊吾县琼河坝花岗岩北侧,以发育细脉、网脉状矿化为特征。脉体类型多样,包括石英脉、石英硫化物脉和硫化物脉等。根据脉体力学成因机制,其又可划分为水压破裂充填脉和构造破裂充填脉。构造破裂充填脉体按破裂形成的位错特征有正断与逆断两种。地表石英脉产状陡立,明显受断裂控制。脉体体积分数统计结果显示流体富集区呈向北缓倾的带状分布于深100~400m范围内,并与矿化富集带有较好的对应关系。脉体富集带内,脉体以共轭形式存在,一组为倾角较小的逆断破裂充填脉,另一组为倾角较大的正断破裂充填脉,他们可能为缓倾逆冲剪切带的次级破裂与充填脉,即富矿带内脉体是沿矿区低角度逆冲断裂次级破裂面充填的。矿区地表及深部(400m以下)脉体以陡立为主,矿化较弱。矿区流体的运移具先沿水压直立破裂往上运移,进入剪切带后沿剪切带次级破裂侧向和向上运移,并在剪切带中富集成矿。低温矿物组合脉体穿切高温矿物组合脉体的特征说明脉体形成过程矿区处于隆升构造环境,这对斑岩铜矿成矿有利。  相似文献   

11.
In the Central Rhodopes of southern Bulgaria, an eclogite-bearing rock sheet belonging to the Middle Allochthon (Starcevo Unit) is over- and underlain by eclogite-free, amphibolite-facies rock units along low-angle shear zones, the Borovica Shear Zone at the top and the Starcevo-Ardino Shear Zone at the base. The age of these shear zones is determined by U–Pb zircon dating of pre-, syn- and posttectonic magmatic rocks, mostly pegmatite veins, using LA–SF–ICP–MS. Zircons from pre- to syntectonic pegmatites within the Borovica Shear Zone yielded ages of ca. 45–43?Ma, indicating that the shear zone was active at that time, and zircons from a pretectonic pegmatite and a posttectonic granitoid body within the Starcevo-Ardino Shear Zone yielded ages of ca. 45 and ca. 36?Ma, respectively, giving a time frame for the activity of that shear zone which probably rather postdated the activity of the Borovica Shear Zone. By combining the ages with the kinematics of the shear zones and the metamorphic history of the rock units, the following scenario is sketched: Soon after the Starcevo Unit reached peak pressure (eclogite facies), it was exhumed to a mid-crustal level by top-to-the-north-west, extensional unroofing along the Borovica Shear Zone, in a kinematic framework of orogen-parallel extension. Beginning at ca. 40?Ma, the partly exhumed Starcevo Unit was underthrust from the south-west by continental crust of the foreland (Apulia), forming the Lower Allochthon of the Rhodopes, along the Starcevo-Ardino Shear Zone. These results underline the significance of orogen-parallel extension for the exhumation of high-pressure rocks. With respect to regional geology of the Hellenides and the Aegean, it is found that the tectonic architecture of the Rhodopes is essentially of Tertiary age. Cretaceous syn-metamorphic shear zones do exist but are largely restricted to higher levels of the nappe stack (Upper Allochthon). The Rhodopes do not represent an older essentially Mesozoic core of the Hellenides but are formed by the internal, higher-metamorphic portions of the same major nappe systems as occur in the Hellenides.  相似文献   

12.
Pseudotachylite veins have been found in the mylonite zone of the Hidaka metamorphic belt, Hokkaido, northern Japan. They are associated with faults with WNW-ESE to ENE-WSW or NE-SW trends which make a conjugate set, cutting foliations of the host mylonitic rocks with high obliquity. The mylonitic rocks comprise greenschist facies to prehnite-pumpellyite facies mineral assemblages. The mode of occurrence of the pseudotachylite veins indicates that they were generated on surfaces of the faults and were intruded as injection veins along microfractures in the host rocks during brittle deformation in near-surface environments. An analysis of the deformational and metamorphic history of the Hidaka Main Zone suggests that the ambient rock temperature was 200–300° C immediately before the formation of the Hidaka pseudotachylite. Three textural types of veins are distinguished: cryptocrystalline, microcrystalline and glassy. The cryptocrystalline or glassy type often occupies the marginal zones of the microcrystalline-type veins. The microcrystalline type is largely made up of quench microlites of orthopyroxene, clinopyroxene, biotite, plagioclase and opaque minerals with small amounts of amphibole microlites. The interstices of these microlites are occupied by glassy and/or cryptocrystalline materials. The presence of microlites and glasses in the pseudotachylite veins suggests that the pseudotachylites are the products of rapid cooling of silicate melts at depths of less than 5 km. The bulk chemical composition of the pseudotachylite veins is characterized by low SiO2 and a high water content and is very close to that of the host mylonitic rocks. This indicates that the pseudotachylite was formed by virtual total melting of the host rocks with sufficient hydrous mineral phases. Local chemical variation in the glassy parts of the pseudotachylite veins may be due to either crystallization of quench microlites or the disequilibrium nature of melting of mineral fragments and incomplete mixing of the melts. Pyroxene microlites show a crystallization trend from hypersthene through pigeonite to subcalcic augite with unusually high Al contents. The presence of pigeonite and high-Al pyroxene microlites, of hornblende and biotite microlites and rare plagioclase microlites may indicate the high temperature and high water content of the melt which formed the pseudotachylite veins. The melt temperatures were estimated to be up to 1100° C using a two-pyroxene geothermometer. Using published data relating water solubilities in high-temperature andesitic magmas to pressure, a depth estimate of about 4 km is inferred for the Hidaka pseudotachylites. Evidence derived from pseudotachylites in the Hidaka metamorphic belt supports the conclusion that pseudotachylite is formed by frictional melting along fault surfaces at shallow depths from rocks containing hydrous minerals.  相似文献   

13.
The Maria da Fé Shear Zone (MFSZ) is a sinistral strike-slip kilometric-scale structure developed in the late Neoproterozoic during the assembly of Gondwana. The MFSZ development is related to the NW–SE collision between the São Francisco Paleocontinent and the Rio Negro Magmatic Arc, which formed the Ribeira Belt. This paper describes the shear zone in detail, concluding that the orientation and age are consistent with NW–SE shortening during the afore mentioned collision. A U–Pb SHRIMP Concordia age of 586.9 ± 8.7 Ma is reported from zircon grains of a granitic dyke that crystallised synkinematically to the main tectonic activity of the shear zone. Another group of zircon grains from the same sample generated an upper intercept age of 2083 ± 43 Ma anchored in the younger Concordia age. These zircon grains are interpreted as relict grains of the basement from which the granite dyke was generated by partial melting. The temperature during mylonitization in the MFSZ was estimated in the range from 450 to 600 °C, based on microstructures in quartz and feldspar. An earlier collision in the same region, between 640 and 610 Ma, led to an extensive nappe-stack with tectonic transport to ENE, integrating the southern Brasilia Belt. One of the thrust zones between these nappes in the studied area is the Cristina Shear Zone with mylonites that were generated under upper amphibolite to granulite facies conditions. Brittle-ductile E–W metric-scale shear zones are superimposed on the MFSZ, which were active in similar, but probably slightly cooler, metamorphic conditions (≈500 °C).  相似文献   

14.
Structural, stratigraphic and petrologic studies between Amet and Sembal in the Udaipur district of southcentral Rajasthan indicate that all the rocks belonging to the Banded Gneissic Complex, the Aravalli Group and the Raialo Formation have been involved in isoclinal folding on a westerly trend, co-axial refolding, and upright folding on a north to north-northeast trend. There is neither an unconformity nor an overlap between the Aravallis and the Raialos. The conglomerates supposed to mark the erosional unconformity above the Banded Gneissic Complex near Rajnagar is a tectonic mélange of folded and torn quartz veins in mica schist within the Aravalli Group. The Aravalli—Raialo metasediments have been migmatized synkinematically with the first folding to give rise to the Banded Gneissic Complex; the gneissic complex does not have any separate stratigraphic entity. By contrast, there is an undoubted erosional unconformity between the type Aravalli rocks and the underlying Sarara granite to the south. These relations, coupled with the continuity of the Aravalli rocks of Udaipur northward to the metasedimentary rocks of the Sembal—Amet area along the strike, and a comparable structural history, point to granitic rocks of at least two generations in the Early Precambrian of central and southern Rajasthan. Preliminary radiometric dating of rocks of known stratigraphic—structural relationship seems to confirm the presence of granitic rocks of two ages in the Early Precambrian, and of a considerable interval between the deposition of the Aravalli—Raialo rocks and the Delhi rocks. The Udaipur granite, post-dating the first deformation but preceding the upright folding on the northerly trend, provides evidence for granitic activity of a third phase before the deposition of rocks of the Delhi Group.  相似文献   

15.
Near Granite Falls, Minnesota sub-parallel pseudotachylyte, mafic dikes, and calcite veins crosscut Archean granulite facies rocks in the Minnesota River valley adjacent to the north-dipping Yellow Medicine Shear Zone (YMSZ; N80°E) that separates the Montevideo and Morton tectonic terranes. The docking of these two Archean terranes occurred prior to intrusion of the 2.067 Ga Kenora-Kabetogama dike swarm as demonstrated by aeromagnetic anomalies (correlated with field exposures) that cross the YMSZ without offset. Tectonic adjustments along the YMSZ associated with the Penokean Orogeny ( 1.8 Ga) are likely responsible for pseudotachylyte formation.Pseudotachylyte is exposed in 22 sub-parallel veins ( N80°E, 90°) each less than 2 cm wide across an outcrop width of 45 m. The pseudotachylyte matrix is commonly banded, and contains crystal fragments (quartz, plagioclase, amphibole, rutile, apatite, ilmenite, ulvöspinel), magnetite microlites, flow banding swirls, amygdules (filled with calcite, ankerite and siderite), collapsed vesicles, and abundant lithic clasts. Pseudotachylyte formed in a number of phases. Kinematic reconstruction is complex, utilizing winged porphyroclasts, S-C structures in the country rock, and fault drag indicators along the pseudotachylyte zones. Dextral motion along the YMSZ is the most common observation. Mechanically twinned calcite within amygdules in the pseudotachylyte preserves horizontal shortening normal to the pseudotachylyte strike. Calcite veins are apparently contemporaneous with the pseudotachylyte; one set preserves twinning strains identical to the calcite amygdule strains, and the second set contains a horizontal, vein-parallel (N70°E) shortening strain. The pseudotachylyte contains a flow fabric, as determined by AMS techniques, that is a proxy for vertical flow (Kmax is vertical). The Kenora-Kabetogama dikes, identified geochemically, are locally parallel to the pseudotachylyte and the adjacent YMSZ tectonic suture and preserve a vertical-to-horizontal, dike-parallel AMS fabric from east (Franklin) to west (Granite Falls). Hornblende andesite dikes (055°, 1.8 Ga) are not found south of the suture, are not associated with pseudotachylyte and have a different paleopole and AMS fabric.  相似文献   

16.
Recent field survey in the eastern Dabieshan Mountains has revealed extensive occurrences of pseudotachylite. The pseudotachylite tends to occur as simple veins and injected networks along the NE-SW-trending fracture zones or shear zones, which are parallel to the Tanlu fault zone and cut all the pre-Cretaceous geological bodies. The characteristics of both the microstructures gained by the optical microscope and SEM imaging and the geochemistry between the pseudotachylites and their host rocks show that the pseudotachylites were formed mainly by ultracataclasis of their wall rocks in which they occur. The bulk K-Ar ages of the pseudotachylites yielded a narrow range of 81 -93 Ma, and moreover the laser-probe 40Ar/39Ar dating of phengite overprinting on the pseudotachylite gave a weighted mean age of 78.9 Ma. These results show that the pseudotachylites from the eastern Dabieshan Mountains formed along the NE-SW-trending fault zone during the uplifting of the orogenic belt at 80-90 Ma, which places impor  相似文献   

17.
The Hyde-Macraes Shear Zone (HMSZ) is a regionally continuous, low-angle, NE dipping (~15°) late-metamorphic thrust zone in the Mesozoic Otago Schist. The shear zone, which is host to large volumes of mineralised schist, consists of foliated fissile schist with some massive schist pods. Two sets of quartz veins are found within the HMSZ: thrust-related, shallowly dipping veins that were emplaced parallel or sub-parallel to the shears and swarms of steeply dipping extensional veins, which cut across the metamorphic foliation. The latter are restricted to the massive schist pods. Mutual cross-cutting relationships occur between steep extensional veins and shallow-dipping veins, suggesting that they formed contemporaneously. The co-existence of these two vein types locally implies local rotation of the principal stress axes to produce extensional veins within a regional thrust setting. The steep extensional veins are spatially related to lateral and oblique ramps within the HMSZ. Three-dimensional mechanical models show that these lateral or oblique ramps can produce favourable conditions for extensional vein formation when combined with a high fluid pressure and oblique convergence. Mechanical requirements include a reduced differential stress, a positive volumetric strain and an increase in the horizontal shear stress. Our models show that under certain conditions, it is possible for extension-related structures to form during shortening because of local changes in the stress state without the need for a regional scale switch in the imposed stress field. The convergence direction across the HMSZ during formation of the steep extensional veins was ~WNW.  相似文献   

18.
坦桑尼亚克拉通西北部的苏库马绿岩带是坦桑尼亚环维多利亚湖绿岩带重要的金矿聚集区。区内金矿化类型以含金石英脉为主,矿体的产出主要受剪切构造带控制。通过研究区域构造特征和岩石地球化学特征,认为苏库马绿岩带中玄武岩为弧后环境形成,流纹岩和花岗岩形成于陆弧环境,N--S向挤压作用和E--W向伸展作用是区域内主要的构造展布特征。建立了含金石英脉的成矿模式,表明具有金矿化作用的石英脉集中分布在EW、SEE、NE向剪切构造破碎带中,含金石英脉富矿体的形成经历了多期构造变形和成矿流体的叠加、富集作用。  相似文献   

19.
Granulites are developed in various tectonic settings and during different geological periods, and have been used for continental correlation within supercontinent models. In this context the Balaram-Kui-Surpagla-Kengora granulites of the South Delhi Terrane of the Aravalli Mobile Belt of northwestern India are significant. The granulites occur as shear zone bounded lensoidal bodies within low-grade rocks of the South Delhi Terrane and comprise pelitic and calcareous granulites, a gabbro-norite-basic granulite suite and multiple phases of granites of the Ambaji suite. The granulites have undergone three major phases of folding and shearing. The F1 and F2 folds are coaxial along NE-SW axis, and F3 folds are developed across the former along NW-SE axis. Thus, various types of interference patterns are produced. The granulite facies metamorphism is marked by a spinel–cordierite–garnet–sillimanite–quartz assemblage with melt phase and is synkinematic to the F1 phase of folding. The peak thermobarometric condition is set at ≥850 °C and 5.5–6.8 kb. The granulites have been exhumed through thrusting along multiple ductile shear zones during syn- to post-F2 folding. Late-stage shearing has produced cataclasites and pseudotachylites. Sensitive High Resolution Ion MicroProbe (SHRIMP) U–Pb dating of zircon from pelitic granulites and synkinematically emplaced granites indicate that: (1) the sedimentary succession of the South Delhi Terrane was deposited between 1240 and 860 Ma with detritus derived from magmatic sources with ages between 1620 and 1240 Ma; (2) folding and granulite metamorphism have taken place between ca. 860 and 800 Ma, and exhumation at around ca. 800–760 Ma; and (3) the last phase of granitic activity occurred at ca. 759 Ma. This shows, for the first time, that the granulites of the South Delhi Terrane are much younger than those of the Sandmata Granulite Complex of the northern part of the Aravalli Mobile Belt, the Saussar granulites of the Central India Mobile Belt and the Eastern Ghats Mobile Belt. Instead, they show similarities to the Neoproterozoic granulites of the Circum Indian Orogens that include the East African Orogen (East Africa and Madagascar), the Southern Granulite Terrane of India and much of Sri Lanka. We suggest that the South Delhi Basin probably marks a trace of the proto-Mozambique Ocean in NW India within Gondwana, that closed when the Marwar Craton, arc fragments (Bemarivo Belt in Madagascar and the Seychelles) and components of the Arabian-Nubian Shield collided with the Aravalli-Bundelkhand Protocontinent at ca. 850–750 Ma.  相似文献   

20.
Incipient metamorphism accompanying thrusting, folding and cleavage development has been investigated in a varied sequence of Palaeozoic sediments near the Variscan front in SW Dyfed, Wales. The aim was to evaluate a critical stage in the progression from heterogeneous sediment, whose detrital phases are neither in equilibrium with one another, nor with pore fluids, through indurated sedimentary rock to metamorphic rock comprising newly formed crystals that equilibrated with one another as they grew. Quartz veins are widely developed in the area, especially in the more psammitic lithologies, while finer grained rocks became cleaved during tectonic deformation. Mineralogical constraints and fluid inclusion measurements suggest maximum temperatures around 200-310d? C (slightly higher in the Marloes-Musselwick Thrust Sheet than in other parts of the structural succession) at depths of the order of 6-13 km. Quartz veins yield distinctly heavier oxygen isotopic compositions than detrital quartz grains in the adjacent wall rocks, although care must be taken in interpreting the data because slivers of detrital grains may become incorporated into veins, while matrix detrital grains may incorporate veinlets or rims of newly formed quartz. It is concluded that vein quartz grew in isotopic equilibrium with a fluid phase whose isotopic composition was primarily controlled by exchange with phyllosilicates, not detrital quartz grains. Vein and matrix quartzes from the Marloes-Musselwick Thrust Sheet are distinctly lighter (δ18Oveins=+14 to +18% and δ18Omatrix=+11 to +14%) than those from other thrust sheets (δ18O =+17 to +20% and +14 to +17%, respectively). We conclude that vein quartz and phyllosilicate grains in cleavage domains probably attained equilibrium with a locally buffered pore fluid at the peak of metamorphism, but many relict grains of different chemical and isotopic composition remained elsewhere in the rock. Local fluid migration along veins and through cleavage lamellae facilitated the attainment of equilibrium, but there is little evidence for large-scale infiltration of externally derived fluids. With further metamorphism the quartz in these rocks would attain an isotopic composition intermediate between that of the heavy vein material and light detritus which coexist here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号