首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 308 毫秒
1.
Summary. Results from eight seismic refraction lines, 35–90 km long, in the Bristol Channel area are presented. The data, mostly land recordings of marine shots, have been interpreted mainly by ray-tracing and time-term modelling. Upper layer velocities through Palaeozoic rocks usually fall within the range 4.8–5.2 km s−1. Below the Carboniferous Limestone with a normal velocity of 5.1–5.2 kms−1, the Old Red Sandstone with a velocity of 4.7–4.8 kms−1 acts as a low velocity layer, as do parts of the underlying Lower Palaeozoic succession. In the central South Wales/Bristol Channel area and the Mendips, a 5.4–5.5 km s−1 refractor is correlated with a horizon at or near the top of the Lower Palaeozoic succession. Under the whole area, except for north Devon, a 6.0–6.2 km s−1 basal refractor has been located and is correlated with Precambrian crystalline basement rocks. In general, this refractor deepens southwards from a series of basement highs, which existed before the major movements of the Variscan orogeny in South Wales, resulting in a southerly thickening of the pre Upper Carboniferous supra-basement sequence. In north Devon, a 6.2 km s−1 refractor at shallow depth, interpreted as a horizon in the Devonian or Lower Palaeozoic succession, overlies a deep reflector that may represent the Precambrian crystalline basement.  相似文献   

2.
Summary. Travel times and waveforms of long-period SH -waves recorded at distances of 10–30° and some SS waveforms are used to constrain the upper mantle velocities down to a depth of 400km beneath both the Indian Shield and the Tibetan Plateau. the shear velocity in the uppermost mantle beneath both the Indian Shield and the Tibetan Plateau is high and close to 4.7 km s−1. the Indian Shield has a fairly thick high velocity lid, and the mean velocity between 40 and 250 km is between 4.58 and 4.68 km s−1. In contrast, S -wave travel times and waveforms of S -waves, as well as a few for SS , show that the mean velocity between 70 and 250km beneath the central and northern part of the Tibetan Plateau is slower by 4 per cent or more than that beneath the Indian Shield and probably is between 4.4 and 4.5km s−1. No large differences in the structure of the two areas below 250 km are required to explain both the arrival times and the waveforms of SH phases crossing Tibet or the Indian Shield. These results show that the structure of Tibet is not that of a shield and imply that the Indian plate is not underthrusting the whole of the Tibetan Plateau at the present time.  相似文献   

3.
We present velocity constraints for the upper-mantle transition zones beneath Central Siberia based on observations of the 1982 RIFT Deep Seismic Sounding (DSS) profile. The data consist of seismic recordings of a nuclear explosion in north-western Siberia along a 2600 km long seismic profile extending from the Yamal Peninsula to Lake Baikal. We invert seismic data from the mantle transition zones using a non-linear inversion scheme using a genetic algorithm for optimization and the WKBJ method to compute the synthetic seismograms. A statistical error analysis using a graph-binning technique was performed to provide uncertainty values in the velocity models.
Our best model for the upper-mantle velocity discontinuity near 410 km depth has a two-stage velocity-gradient structure, with velocities increasing from 8.70–9.25 km s−1 over a depth range of 400–415 km, a gradient of 0.0433 s−1, and from 9.25–9.60 km s−1 over a depth range of 415–435 km, a gradient of 0.0175 s−1. This derived model is consistent with other seismological observations and mineral-physics models. The model for the velocity discontinuity near 660 km depth is simple, sharp and includes velocities increasing from 10.15 km s−1 at 655 km depth to 10.70 km s−1 at 660 km depth, a gradient of 0.055 s−1.  相似文献   

4.
Summary. Closely spaced refraction profiling across the Whipple Mountains metamorphic core complex in southeastern California yields a complex picture of crustal structure in this region of large continental extension. A NE-directed profile, parallel to the extension direction, reveals a high-velocity mid-crustal layer (6.6–6.8 km s−1) at 16-18 km depth, bounded above and below by laterally discontinuous low-velocity zones (<6.0 km s−1). In marked contrast, a NW-directed profile shows a more uniform 6.0 km s−1 crust down to the crust-mantle boundary. The apparent contrast between these two perpendicular profiles may be related not only to a more complex geologic structure in the NW-SE direction, but also to velocity anisotropy associated with mid-crustal mylonites. Despite the differences between the two refraction profiles, both define a flat Moho at 26-27 km depth with an associated upper mantle-velocity of 7.8 km s−1. This observation is significant as it suggests that, although the amount of extension has been highly variable regionally, the crust is no thinner beneath the Whipple Mountains (where extension has been extreme) than the surrounding mountain ranges. Such an observation requires either that the crust was considerably thicker prior to extension, or that lateral flow in the lower crust and/or inflation of the crust via magmatism occurred contemporaneous with extension.  相似文献   

5.
In order to investigate the velocity structure, and hence shed light on the related tectonics, across the Narmada–Son lineament, traveltimes of wide-angle seismic data along the 240 km long Hirapur–Mandla profile in central India have been inverted. A blocky, laterally heterogeneous, three-layer velocity model down to a depth of 10 km has been derived. The first layer shows a maximum thickness of the upper Vindhyans (4.5 km s−1 ) of about 1.35 km and rests on top of normal crystalline basement, represented by the 5.9 km s−1 velocity layer. The anomalous feature of the study is the absence of normal granitic basement in the great Vindhyan Graben, where lower Vindhyan sediments (5.3 km s−1 ) were deposited during the Precambrian on high-velocity (6.3 km s−1 ) metamorphic rock. The block beneath the Narmada–Son lineament represents a horst feature in which high-velocity (6.5 km s−1 ) lower crustal material has risen to a depth of less than 2 km. South of the lineament, the Deccan Traps were deposited on normal basement during the upper Cretaceous period and attained a maximum thickness of about 800 m.  相似文献   

6.
Seismic anisotropy within the uppermost mantle of southern Germany   总被引:1,自引:0,他引:1  
This paper presents an updated interpretation of seismic anisotropy within the uppermost mantle of southern Germany. The dense network of reversed and crossing refraction profiles in this area made it possible to observe almost 900 traveltimes of the Pn phase that could be effectively used in a time-term analysis to determine horizontal velocity distribution immediately below the Moho. For 12 crossing profiles, amplitude ratios of the Pn phase compared to the dominant crustal phase were utilized to resolve azimuthally dependent velocity gradients with depth. A P -wave anisotropy of 3–4 per cent in a horizontal plane immediately below the Moho at a depth of 30 km, increasing to 11 per cent at a depth of 40 km, was determined. For the axis of the highest velocity of about 8.03 km s−1 at a depth of 30 km a direction of N31°F was obtained. The azimuthal dependence of the observed Pn amplitude is explained by an azimuth-dependent sub-Moho velocity gradient decreasing from 0.06 s−1 in the fast direction to 0 s−1 in the slow direction of horizontal P -wave velocity. From the seismic results in this study a petrological model suggesting a change of modal composition and percentage of oriented olivine with depth was derived.  相似文献   

7.
The highest intermediate depth moment release rates in Indonesia occur in the slab beneath the largely submerged segment of the Banda arc in the Banda Sea to the east of Roma, termed the Damar Zone. The most active, western-part of this zone is characterized by downdip extension, with moment release rates (∼1018 Nm yr–1 per 50 km strike length) implying the slab is stretching at ∼10−14 s−1 consistent with near complete slab decoupling across the 100–200 km depth range. Differential vertical stretching along the length of the Damar Zone is consistent with a slab rupture front at ∼100–200 km depth beneath Roma propagating eastwards at ∼100 km Myr–1. Complexities in the slab deformation field are revealed by a narrow zone of anomalous in-plane P -axis trends beneath Damar, where subhorizontal constriction suggests extreme stress concentrations ∼100 km ahead of the slab rupture front. Such stress concentrations may explain the anomalously deep ocean gateways in this region, in which case ongoing slab rupture may have played a key role in modulating the Indonesian throughflow in the Banda Sea over the last few million years.  相似文献   

8.
We study the crustal structure of eastern Marmara region by applying the receiver function method to the data obtained from the 11 broad-band stations that have been in operation since the 1999 İzmit earthquake. The stacked single-event receiver functions were modelled by an inversion algorithm based on a five-layered crustal velocity model to reveal the first-order shear-velocity discontinuities with a minimum degree of trade-off. We observe crustal thickening from west (29–32 km) to east (34–35 km) along the North Anatolian Fault Zone (NAFZ), but we observe no obvious crustal thickness variation from north to south while crossing the NAFZ. The crust is thinnest beneath station TER (29 km), located near the Black Sea coast in the west and thickest beneath station TAR (35 km), located inland in the southeast. The average crustal thickness and S -wave velocity for the whole regions are  31 ± 2  km and  3.64 ± 0.15 km s−1  , respectively. The eastern Marmara region with its average crustal thickness, high heat flow value (101 ± 11 mW m−2) and with its remarkable extensional features seems to have a Basin and Range type characteristics, but the higher average shear velocities (∼3.64 km s−1) and crustal thickening from 29 to 35 km towards the easternmost stations indicate that the crustal structure shows a transitional tectonic regime. Therefore, we conclude that the eastern Marmara region seems to be a transition zone between the Marmara Sea extensional domain and the continental Anatolian inland region.  相似文献   

9.
Summary. A structural model of the Mid-Atlantic Ridge at 37° N is proposed on the basis of travel-time data and synthetic seismograms. At the ridge axis the crust is only 3 km thick and overlies material with an anomalously low'upper mantle'velocity of 7.2 km s−1. Crustal thickening and the formation of layer 3 and a layer with velocity 7.2–7.3 km s−1 takes place within a few kilometres of the axis, producing a 6–7 km thick crust by less than 10 km from the axis. A normal upper mantle velocity of 8.1 km s−1 exists within 10 km of the axis. Shear waves propagate across the axis, thus precluding the existence of any sizeable magma chamber at shallow depth.  相似文献   

10.
Deep seismic soundings along Hirapur-Mandla profile, central India   总被引:1,自引:0,他引:1  
Summary. The crustal depth section along Hirapur-Mandla profile has been computed in two steps from Deep Seismic Sounding (DSS) data. The shallow section up to the crystalline basement is derived by inverting first arrival refraction travel times. The upper Vindhyan sediments (velocity 4.5 km s−1) have a maximum thickness of about 1.5 km at Bakshaho. The lower Vindhyan sediments (velocity 5.4 km s−1) were deposited north of Narmada-Son lineament between Katangi and Narsinghgarh in a graben developed in crystalline basement. The thickness of the lower Vindhyans increases from north to south towards Katangi and the depth to the basement reaches 5.5 km near Jabera. The depth to the Moho boundary varies from 39.5 km near Tikaria to 45 km at Narsinghgarh. The narrow block between Katangi and Jabalpur forms a horst feature which represents the Narmada-Son lineament forming the southern boundary of the Vindhyan basin. Two-dimensional ray tracing was performed generating travel time curves from various shot points which were matched with observed travel time data.  相似文献   

11.
Summary. Group velocities for first and second higher mode Rayleigh waves, in the frequency range 0.8–4.8 Hz, generated from a local earthquake of magnitude 3.7 M L in western Scotland, are measured at stations along the 1974 LISPB line. These provide detailed information about the crustal structure west of the line. The data divide the region into seven apparently homogeneous provinces. Averaged higher mode velocity dispersion curves for each province are analysed simultaneously using a linearized inversion technique, yielding regionalized shear velocity profiles down to a depth of 17 km into the upper crust. Shear wave velocity is between 3.0 and 3.4 km s−1 in the upper 2 km, with a slow increase to around 3.8 km s−1. P -wave models computed using these results agree with profiles from the LISPB and LUST refraction experiments.  相似文献   

12.
Crust and upper mantle structure of the central Iberian Meseta (Spain)   总被引:2,自引:0,他引:2  
Summary. Quarry blasts recorded along three lines on the central Iberian Meseta are used in an attempt to interpret the crustal structure. The results of the interpretation of the data, together with published surface wave and earthquake data, suggest a layered structure of the crust having the following features: the basement, in some areas covered by up to 4 km of sediments, has a P -velocity of 6.1 km s−1; a low-velocity layer, between 7 and 11 km depth, seems to exist on the basis of both P and S interpretation of seismic data; a thick middle crust of 12 km has a P -velocity of 6.4 km s−1 and overlies a lower crust with a mean P -velocity of 6.9 km s−1 and a possible slight negative gradient; the mean v p/ v s ratio for the crust is about 1.75; the Moho is reached at about 31 km depth and consists of a transition zone at least 1.5 km thick. The P -velocity of the upper mantle is close to 8.1 km s−1 and the S -velocity about 4.5 km s−1, which gives a v p /v s ratio of 1.8 for the uppermost mantle. A tentative petrological interpretation of the velocities and composition of the layers is given.  相似文献   

13.
Summary. The continent-ocean transition adjacent to Hatton Bank was studied using a dense grid of single-ship and two-ship multichannel seismic profiles. The interpretation of the explosive expanding spread profiles (ESPs) which were shot as part of this survey are discussed here in detail. Extensive seaward dipping reflectors are developed in the upper crust across the entire margin. These seaward dipping reflectors continue northwards on the Faeroes and Vøring margins, where they have been shown to be caused by basaltic lavas, as well as on the conjugate margin of East Greenland. The dipping reflectors are an important feature of the rifting history of the margin and show that extensive volcanism was associated with the extension. The ESPs show clear seismic arrivals out to ranges of 100 km. Wide-angle Moho reflections can be seen on all the lines as well as good mid and lower crustal arrivals. The determination of seismic velocity structure was constrained by ray tracing and by amplitude modelling using reflectivity synthetic seismograms. The results from the ESPs show that there is a thick region of lower crustal material beneath the margin with an unusually high crustal velocity of 7.3–7.4 km s−1. This lower crustal material reaches a maximum thickness of 14 km beneath the central part of the margin and is terminated at depth by the Moho. The lower crustal lens of high-velocity material is interpreted as underplated or intruded igneous rocks associated with the large volumes of extrusive basaltic lavas, now seen as dipping reflectors on the margin.  相似文献   

14.
The crustal and upper mantle structure of the northwestern North Island of New Zealand is derived from the results of a seismic refraction experiment; shots were fired at the ends and middle of a 575 km-long line extending from Lake Taupo to Cape Reinga. The principal finding from the experiment is that the crust is 25 ± 2 km thick, and is underlain by what is interpreted to be an upper mantle of seismic velocity 7.6 ± 0.1 km s−1, that increases to 7.9 km s−1 at a depth of about 45 km. Crustal seismic velocities vary between 5.3 and 6.36 km s−1 with an average value of 6.04 km s−1. There are close geophysical and geological similarities between the north-western North Island of New Zealand and the Basin and Range province of the western United States. In particular, the conditions of low upper-mantle seismic velocities, thin crust with respect to surface elevation, and high heat-flow (70–100 mW m−2) observed in these two areas can be ascribed to their respective positions behind an active convergent margin for about the past 20 Myr.  相似文献   

15.
Summary. The seismic structure has been measured to a depth of about 3 km along a 30 km seismic profile in east central Ireland. This profile is unusual in that it is the S -wave velocity—depth structure that has been measured to a degree of precision more normally associated with P -wave results. One reason for this is that the sources used were quarry blasts which generated strong S -waves and short-period surface waves but rather weak P -waves.
The results show a layer of Carboniferous limestone with shear velocity 2.65 km−1 s overlying a layer with a velocity of 3.06 km s−1. This second layer was interpreted as Lower Palaeozoic strata (Silurian/Ordovician) since this velocity was evident in an inlier seen at the surface at the northern end of the line. A third refraction horizon, shear velocity 3.45 km s−1 and displaying a basinal structure, was also recognized. This may be Cambrian or Precambrian basement.  相似文献   

16.
We image the Hikurangi subduction zone using receiver functions derived from teleseismic earthquakes. Migrated receiver functions show a northwest dipping low shear wave feature down to 60 km depth, which we associate with the crust of the subducted Pacific Plate. Receiver functions (RF) at several stations also show a pair of negative and positive polarity phases with associated conversion depths of ∼20–26 km, where the subducted Pacific Plate is at a depth of ∼40–50 km beneath the overlying Australian Plate. RF inversion solutions model these phases with a thin low S -wave velocity zone less than 4 km thick, and an S -wave velocity contrast of more than ∼0.5 km s−1 with the overlying crust. We interpret this phase pair as representing fluids near the base of the lower crust of the Australian Plate, directly overlying the forearc mantle wedge.  相似文献   

17.
The first detailed deep seismic refraction study in the Bransfield Strait, West Antarctica, using sensitive OBSs (ocean bottom seismographs) was carried out successfully during the Antarctic summer of 1990/1991. The experiment focused on the deep crustal structure beneath the axis of the Bransfield Rift. Seismic profile DSS-20 was located exactly in the Bransfield Trough, which is suspected to be a young rift system. Along the profile, five OBSs were deployed at spacings of 50-70 km. 51 shots were fired along the 310 km profile. This paper gives the first presentation of the results. A detailed model of the crustal structure was obtained by modelling the observed traveltimes and amplitudes using a 2-D ray-tracing technique. The uppermost (sedimentary?) cover, with velocities of 2.0-5.5 km s−1, reaches a depth of up to 8 km. Below this, a complex with velocities of 6.4-6.8 km s−1 is observed. The presence of a high-velocity body, with V p= 7.3-7.7 km s−1, was detected in the 14-32 km depth range in the central part of the profile. These inhomogeneities can be interpreted as a stage of back-arc spreading and stretching of the continental crust, coinciding with the Deception-Bridgeman volcanic line. Velocities of 8.1 km s−1, characteristic of the Moho, are observed along the profile at a depth of 30-32 km.  相似文献   

18.
Summary. The Hatton Bank passive continental margin exhibits thick seaward dipping reflector sequences which consist of basalts extruded during rifting between Greenland and Rockall Plateau. Multichannel seismic reflection profiling across the margin reveals three reflector wedges with a maximum thickness near 7 km, extending from beneath the upper continental slope to the deep ocean basin. We present results of the velocity structure within the dipping reflector sequences at eight locations across the margin, interpreted by synthetic seismogram modelling a set of multichannel expanding spread profiles parallel to the margin. At the top of some reflector sequences, we observe a series of 100 m thick high- and low-velocity zones, which are interpreted as basalt flows alternating with sediments or weathered and rubble layers. At the profile locations, the base of the dipping reflectors correlates with P -wave velocities near 6.5 km s−1. However, elsewhere the reflectors appear to extend significantly deeper than the inferred 6.5 km s−1 velocity contour, indicating that the velocity structure may not be controlled solely by lithological boundaries but also by metamorphic effects. Shear-waves were observed on two lines, permitting the calculation of Poisson's ratio. The decrease in Poisson's ratio from 0.28 to near 0.25 in the upper 5 km of crust may also indicate the effect of metamorphism on seismic properties, or alternatively may be explained by crack closure under load.  相似文献   

19.
Summary. The stretching and thinning of the continental crust, which occurs during the formation of passive continental margins, may cause important changes in the velocity structure of such crust. Further, crust attenuated to a few kilometres' thickness, can be found underlying 'oceanic' water depths. This paper poses the question of whether thinned continental crust can be distinguished seismically from normal oceanic crust of about the same thickness. A single seismic refraction line shot over thinned continental crust as part of the North Biscay margin transect in 1979 was studied in detail. Tau— p inversion suggested that there are differences between oceanic and continental crust in the lower crustal structure. This was confirmed when synthetic seismograms were calculated. The thinned continental crust (β± 7.0) exhibits a two-gradient structure in the non-sedimentary crust with velocities between 5.9 and 7.4 km s−1; an upper 0.8 s−1 layer overlies a 0.4 s−1 layer. No layer comparable to oceanic layer 3 was detected. The uppermost mantle also contains a low-velocity zone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号