首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of basin hydrology on hydraulic geometry of channels variability for incised streams were investigated using available field data sets and models of watershed hydrology and channel hydraulics for the Yazoo River basin,USA.The study presents the hydraulic geometry relations of bankfull discharge,channel width,mean depth,cross-sectional area,longitudinal slope,unit stream power,and mean velocity at bankfull discharge as a function of drainage area using simple linear regression.The hydraulic geometry relations were developed for 61 streams,20 of them are classified as channel evolution model(CEM) Types Ⅳ and Ⅴ and 41 of them are CEM streams Types Ⅱ and Ⅲ.These relationships are invaluable to hydraulic and water resources engineers,hydrologists,and geomorphologists involved in stream restoration and protection.These relations can be used to assist in field identification of bankfull stage and stream dimension in un-gauged watersheds as well as estimation of the comparative stability of a stream channel.A set of hydraulic geometry relations are presented in this study,these empirical relations describe physical correlations for stable and incised channels.Cross-sectional area,which combines the effects of channel width and mean channel depth,was found to be highly responsive to changes in drainage area and bankfull discharge.Analyses of cross-sectional area,channel width,mean channel depth,and mean velocity in conjunction with changes in drainage area and bankfull discharge indicated that the channel width is much more responsive to changes in both drainage area and bankfull discharge than are mean channel depth or mean velocity.  相似文献   

2.
Channelisation measures taken halfway the 20th century have had destructive consequences for the diversity of the ecology in the majority of the lowland streams in countries such as the Netherlands. Re-meandering is the common practice in restoring these lowland streams. Three reconstructed streams were monitored during the initial two years after construction of a new channel. The monitoring program included morphological surveys, sediment sampling, habitat pattern surveys, and discharge and water level measurements. Adjustments of the longitudinal bed profile formed the main morphological response. These adjustments were most likely caused by a lack of longitudinal connectivity of the streams as a whole, interrupting transport of sediment at locations of weirs and culverts. Bank erosion was observed only in a limited number of channel bends, and was often related to floodplain heterogeneity. Longitudinal channel bed adjustments and bank erosion were mainly caused by exogenous influences. In channel bends, the cross-sectional shape transformed from trapezoidal to the typical asymmetrical shape as found in meandering rivers. This behaviour can be attributed to an autogenous response to the prevailing flow conditions. Due to the prevailing fine sediment characteristics, bed material is readily set in motion and is being transported during the entire year. The existing design principles fail to address the initial morphological development after reconstruction. An evaluation of pre-set targets to realise water depth and flow velocity ranges shows the current procedures to be deficient. Based on this unfavourable evaluation, and the two-dimensional nature of habitat patterns needed to improve the conditions for stream organisms, we recommend to predict morphological developments as part of the design procedures for lowland stream restoration in the Netherlands.  相似文献   

3.
Sediment transport in the Erlenbach, a small stream with step‐pool morphology in the canton of Schwyz, Switzerland, has been monitored for more than 20 years. During this time three exceptional events (events with high sediment yield and long return times that have a large effect on channel morphology) have impacted the stream and partly or completely rearranged the existing step‐pool morphology. In the aftermath of the events, sediment transport rates at a given discharge and total sediment yield remained elevated for about a year or longer. For the last event, dated on the 20 June 2007, observations of boulder mobility and step destruction were used to interpret channel stability. Boulders with median diameters of up to 135 cm and estimated weights of more than 2·5 tons have moved during the 2007 event. Using hydraulic observations and shear stress calculations boulders up to 65 cm in diameter were predicted to have been fully mobile in peak conditions, even if form resistance and increased critical stresses needed for the initiation of motion in steep streams were taken into account. For two of the events, estimated peak shear stresses at the bed exceeded 1000 Pa, calculated both from observations of the flow hydraulics and from boulder mobility. This suggests that highly energetic flows occur relatively frequently in small, steep streams and that large boulders can be transported by fluvial processes in such streams. The observations have potential significance for hazard risk mitigation, stream engineering and restoration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Non-perennial streams comprise over half of the global stream network and impact downstream water quality. Although aridity is a primary driver of stream drying globally, surface flow permanence varies spatially and temporally within many headwater streams, suggesting that these complex drying patterns may be driven by topographic and subsurface factors. Indeed, these factors affect shallow groundwater flows in perennial systems, but there has been only limited characterisation of shallow groundwater residence times and groundwater contributions to intermittent streams. Here, we asked how groundwater residence times, shallow groundwater contributions to streamflow, and topography interact to control stream drying in headwater streams. We evaluated this overarching question in eight semi-arid headwater catchments based on surface flow observations during the low-flow period, coupled with tracer-based groundwater residence times. For one headwater catchment, we analysed stream drying during the seasonal flow recession and rewetting period using a sensor network that was interspersed between groundwater monitoring locations, and linked drying patterns to groundwater inputs and topography. We found a poor relationship between groundwater residence times and flowing network extent (R2 < 0.24). Although groundwater residence times indicated that old groundwater was present in all headwater streams, surface drying also occurred in each of them, suggesting old, deep flowpaths are insufficient to sustain surface flows. Indeed, the timing of stream drying at any given point typically coincided with a decrease in the contribution from near-surface sources and an increased relative contribution of groundwater to streamflow at that location, whereas the spatial pattern of drying within the stream network typically correlated with locations where groundwater inputs were most seasonally variable. Topographic metrics only explained ~30% of the variability in seasonal flow permanence, and surprisingly, we found no correlation with seasonal drying and down-valley subsurface storage area. Because we found complex spatial patterns, future studies should pair dense spatial observations of subsurface properties, such as hydraulic conductivity and transmissivity, to observations of seasonal flow permanence.  相似文献   

5.
The effect of fully submerged boulders on the flow structure in channels has been studied by some researchers. However, many natural streams have bed material with boulders that are not fully submerged under water. In many natural streams, boulders cover between 1% and 10% of the area of the stream reach. The effect of non-submerged boulders on the velocity profile and flow characteristics is very important for assessing riverbed deformation. The objectives of this paper are to find the pattern of velocity distribution around a non-submerged boulder and to compare it with the classical studies on flow resistance and Reynolds stress distribution in open channels. Also, by considering the variation in the Reynolds stress distribution at different locations around a non-submerged boulder, the effect of a non-submerged boulder on the estimation of shear velocity and resistance to flow has been investigated. Results indicates that inside the scour hole caused by a non-submerged boulder in a river velocity distributions are irregular. However, velocity distributions are regular outside the scour hole. The presence of the boulder causes a considerable deviation of the Reynolds shear stress from the classic distribution, showing a non-specific distribution with negative values. The classical methods for calculating shear velocity are not suitable because these methods do not give detailed velocity and Reynolds stress distributions in natural rivers with a lot of boulders. Thus, the effect of a non-submerged boulder on the estimation of the resistance to flow by considering the variations in velocity and Reynolds stress distributions at different locations around a non-submerged boulder is important and needs to be studied in a natural river instead of just in laboratory flumes. The negative values in Reynolds stress distribution around a boulder indicate that the classical methods are unable to predict resistance to flow, and also show strong turbulence inside the scour hole where the complex flow conditions present ambiguous Reynolds stress distributions. In the current study, to obtain a reasonable estimation of parameters in natural rivers, the classical method has been modified by considering velocity and Reynolds stress distributions through the boundary layer method.  相似文献   

6.
D. J. Booker 《水文研究》2003,17(3):577-599
In urban rivers, flow regime and channel morphology are the drivers of physical habitat quality for aquatic species. Peak discharges are increased at high flows as a result of impermeable catchments and channel engineering for flood protection schemes. Hazardous conditions and flashy hydrographs mean that measurement of velocities at high flows is a difficult task. This research uses a three‐dimensional computational fluid dynamics (3D‐CFD) model to simulate hydraulic patterns in two urban river channels. A 3D‐CFD code, called SSIIM, was used to simulate hydraulic conditions in two engineered river reaches of the River Tame, Birmingham, UK. These two sites represent channels with different levels of engineering. Models were calibrated and tested using field measurements. Results show that modelled water surface levels and velocity profiles are well simulated. Calibrated roughness heights are compared with those derived from field measurement of sediment size. Numerical experiments are used to assess the relationship between grid resolution in the vertical dimension and the form of the modelled velocity profiles. Biologists have used laboratory experiments to determine maximum sustainable swimming speeds (MSSS) of fish, often in order to assess what level of a particular pollutant may be tolerable. In this work, simulations of high‐flow hydraulic patterns are used to compare velocity patterns with fish MSSS. Results show that when the water levels rise to fill the first channel of the two‐stage channels at the sites, which occurred 16 times in 2000, MSSS are surpassed in the majority of available habitat, suggesting that excessive velocities at high flows are one factor that limits fish habitat. A comparison between the two reaches shows that there is less available habitat in the more modified reach. Conclusions suggest that an approach that integrates water quality issues and physical channel characteristics must be taken in river rehabilitation schemes, as improvements to water quality alone may not be sufficient to improve habitat quality to the desired level. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
There is a need to identify measurable characteristics of stream channel morphology that vary predictably throughout stream networks and that influence patterns of hyporheic exchange flow in mountain streams. In this paper we characterize stream longitudinal profiles according to channel unit spacing and the concavity of the water surface profile. We demonstrate that: (1) the spacing between zones of upwelling and downwelling in the beds of mountain streams is closely related to channel unit spacing; (2) the magnitude of the vertical hydraulic gradients (VHGs) driving hyporheic exchange flow increase with increasing water surface concavity, measured at specific points along the longitudinal profile; (3) channel unit spacing and water surface concavity are useful metrics for predicting how patterns in hyporheic exchange vary amongst headwater and mid‐order streams. We use regression models to describe changes in channel unit spacing and concavity in longitudinal profiles for 12 randomly selected stream reaches spanning 62 km2 in the H.J. Andrews Experimental Forest in Oregon. Channel unit spacing increased significantly, whereas average water surface concavity (AWSC) decreased significantly with increasing basin area. Piezometer transects installed longitudinally in a subset of stream reaches were used to measure VHG in the hyporheic zone, and to determine the location of upwelling and downwelling zones. Predictions for median pool length and median distance between steps in piezometer reaches bracketed the median distance separating zones of upwelling in the stream bed. VHG in individual piezometers increased with increasing water surface concavity at individual points in the longitudinal profile along piezometer transects. Absolute values of VHG, averaged throughout piezometer transects, increased with increasing AWSC, indicating increased potential for hyporheic exchange flow. These findings suggest that average hyporheic flow path lengths increase—and the potential for hyporheic exchange flow in stream reaches decreases—along the continuum from headwater to mid‐order mountain streams. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
An extensive survey and topographic analysis of five watersheds draining the Luquillo Mountains in north‐eastern Puerto Rico was conducted to decouple the relative influences of lithologic and hydraulic forces in shaping the morphology of tropical montane stream channels. The Luquillo Mountains are a steep landscape composed of volcaniclastic and igneous rocks that exert a localized lithologic influence on the stream channels. However, the stream channels also experience strong hydraulic forcing due to high unit discharge in the humid rainforest environment. GIS‐based topographic analysis was used to examine channel profiles, and survey data were used to analyze downstream changes in channel geometry, grain sizes, stream power, and shear stresses. Results indicate that the longitudinal profiles are generally well graded but have concavities that reflect the influence of multiple rock types and colluvial‐alluvial transitions. Non‐fluvial processes, such as landslides, deliver coarse boulder‐sized sediment to the channels and may locally determine channel gradient and geometry. Median grain size is strongly related to drainage area and slope, and coarsens in the headwaters before fining in the downstream reaches; a pattern associated with a mid‐basin transition between colluvial and fluvial processes. Downstream hydraulic geometry relationships between discharge, width and velocity (although not depth) are well developed for all watersheds. Stream power displays a mid‐basin maximum in all basins, although the ratio of stream power to coarse grain size (indicative of hydraulic forcing) increases downstream. Excess dimensionless shear stress at bankfull flow wavers around the threshold for sediment mobility of the median grain size, and does not vary systematically with bankfull discharge; a common characteristic in self‐forming ‘threshold’ alluvial channels. The results suggest that although there is apparent bedrock and lithologic control on local reach‐scale channel morphology, strong fluvial forces acting over time have been sufficient to override boundary resistance and give rise to systematic basin‐scale patterns. Copyright © 2010 John Wiley and Sons, Ltd.  相似文献   

9.
Methods to assess the physical habitat provide important tools for many aspects of river management. Hydraulic units (defined as a homogeneous patch of flow type and substrate) were described in mountain streams of Central Argentina and the distribution of macrozoobenthos in these habitat units was analyzed. Four streams from the upper Carcarañá River Basin (Córdoba, Argentina) were sampled in two hydrological periods. Hydraulic units (as substrate and flow type), current velocity, depth, macrophytes and macroalgae were assessed. Three benthic samples were taken in each hydraulic unit. A total of 12 hydraulic units were registered, which varied seasonally in their proportional abundance. The highest values of taxonomic richness, total abundance, diversity and evenness were found in the low-water period. The most heterogeneous hydraulic units (characterized by substrate of diverse grain size) presented the highest richness, diversity and evenness, whereas the highest total abundance was observed in hydraulic units with homogeneous substrate, such as bedrock or gravel sand. Canonical correspondence analysis grouped samples and taxa mainly in relation to the hydraulic units, and temporal variation in macroinvertebrate assemblages was observed. We found that the interaction between hydrological and geomorphological conditions affected benthic assemblages and that their organization is important at a mesoscale. Therefore, hydraulic units may be considered important tools in assessing stream integrity in lotic systems of central Argentina.  相似文献   

10.
Stream channel morphology forms the template upon which hydraulic aspects of aquatic habitat are created, yet spatial and temporal variability in habitat imposed by changing morphology is not well understood. This paper presents a conceptual model linking sediment supply patterns to spatial and temporal variability in channel form and aquatic habitat. To evaluate this model, change over time in three habitat variables is quantified using a 2D hydrodynamic modeling approach. A 45-year record of topographic data from Carnation Creek, a catchment in coastal British Columbia, is used for the flow modeling. Using the Nays2DH modeling platform, water depths and velocities are simulated in eight channel segments located at different positions relative to locations of historical colluvial input using seven flow levels ranging from 3% to 400% of mean annual discharge (0.02 to 3.31 m s ). Results indicate that habitat availability changes through time as a result of sediment supply-driven changes to channel morphology and wood loads, but patterns in habitat vary as a function of dominant channel segment morphology. Spatial and temporal variability in morphology also influences the relationship between habitat availability and river discharge, leading to non-stationary habitat-discharge rating curves. When habitat areas are predicted by applying these curves to daily flow series spanning annual dry seasons, over 50% of the variance in cumulative seasonal habitat area can be explained by year-to-year changes in channel morphology and wood loading, indicating that changing morphology is an important factor for driving temporal habitat variability. This variance is related to the morphological variability of a channel segment, which in turn is associated with the segment position relative to zones of colluvial input. Collectively, these results suggest that variability in habitat is impacted by channel morphology, and can be evaluated partly on the basis of a channel's sediment supply regime. © 2019 John Wiley & Sons, Ltd.  相似文献   

11.
Stream mesoscale habitats have systematic topographic relationships to hyporheic flow patterns, which may create predictable temperature variation between mesoscale habitat types. We investigated whether systematic differences in temperature metrics occurred between mesoscale habitats within reaches of small streams tributary to the upper Little Tennessee River, southern Appalachians. Surface water temperature was recorded over three or four mid‐summer days in four mesoscale habitat types: riffle, main riffle, pool and alcove in 44 stream segments (sites). Temperature metrics were calculated for each mesoscale habitat relative to the mean value of the metric over the stream: Δ maximum temperature, Δ average maximum temperature and Δ maximum daily variation and also for each site: standard deviation of the maximum temperature and average diurnal variation (ADV). Sites were categorized as fully or partially forested. Pool tailouts had statistically significantly lower Δ maximum temperature and Δ average maximum temperature than riffle tailouts in partially forested sites, although differences were small. This was the opposite of what was expected in the presence of hyporheic exchange, indicating hyporheic exchange is not a dominant driver of mesoscale habitat temperatures at these sites. Temperature differences between mesoscale habitat units were small and unlikely to have ecological significance. We also evaluated relationships between stream temperature and riparian condition, watershed % impervious surfaces, watershed % non‐forested and elevation. ADV and standard deviation of the maximum temperature were significantly higher in partially forested sites, indicating that partially forested sites have greater temperature ranges and spatial variation of maximum temperatures. ADV decreased with elevation and increased with % impervious surfaces. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Key processes in stream ecosystems are linked to hydraulic retention, which is the departure of stream flow from ideal ‘plug flow’, and reflects fluid movement through surface and hyporheic storage zones. Most existing information about hyporheic exchange is based on flume studies or field measurements in relatively steep streams with beds coarser than sand. Stream tracer studies may be used to quantify overall hydraulic retention, but disaggregation of surface and hyporheic retention remains difficult. A stream tracer approach was used to compute the rates at which stream water is exchanged with water in storage zones (total storage) in short reaches of two small, sand‐bed streams under free and obstructed flow conditions. Tracer curves were fit to the one‐dimensional transport with inflow storage model OTIS‐P. Networks of piezometers were used to measure specific discharge between the stream and the groundwater. In the sand‐bed streams studied, parameters describing total retention were in the upper 50% of data compiled from the literature, most of which represented streams with beds coarser than sand. However, hyporheic storage was an insignificant component of total hydraulic retention, representing only 0·01–0·49% of total exchange, and this fraction did not increase after installation of flow obstructions. Total retention did not vary systematically with bed material size, but increased 50–100% following flow obstruction. Removal of roughness elements, such as large wood and debris dams, is detrimental to processes dependent upon transient storage in small, sand‐bed streams. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
This article has been retracted and replaced. See Retraction and Replacement Notice DOI: 10.1002/hyp.6350 Studies of hyporheic exchange flows have identified physical features of channels that control exchange flow at the channel unit scale, namely slope breaks in the longitudinal profile of streams that generate subsurface head distributions. We recently completed a field study that suggested channel unit spacing in stream longitudinal profiles can be used to predict the spacing between zones of upwelling (flux of hyporheic water into the stream) and downwelling (flux of stream water into the hyporheic zone) in the beds of mountain streams. Here, we use two‐dimensional groundwater flow and particle tracking models to simulate vertical and longitudinal hyporheic exchange along the longitudinal axis of stream flow in second‐, third‐, and fourth‐order mountain stream reaches. Modelling allowed us to (1) represent visually the effect that the shape of the longitudinal profile has on the flow net beneath streambeds; (2) isolate channel unit sequence and spacing as individual factors controlling the depth that stream water penetrates the hyporheic zone and the length of upwelling and downwelling zones; (3) evaluate the degree to which the effects of regular patterns in bedform size and sequence are masked by irregularities in real streams. We simulated hyporheic exchange in two sets of idealized stream reaches and one set of observed stream reaches. Idealized profiles were constructed using regression equations relating channel form to basin area. The size and length of channel units (step size, pool length, etc.) increased with increasing stream order. Simulations of hyporheic exchange flows in these reaches suggested that upwelling lengths increased (from 2·7 m to 7·6 m), and downwelling lengths increased (from 2·9 m to 6·0 m) with increase in stream order from second to fourth order. Step spacing in the idealized reaches increased from 5·3 m to 13·7 m as stream size increased from second to fourth order. Simulated upwelling lengths increased from 4·3 m in second‐order streams to 9·7 m in fourth‐order streams with a POOL–RIFFLE–STEP channel unit sequence, and increased from 2·5 m to 6·1 m from second‐ to fourth‐order streams with a POOL–STEP–RIFFLE channel unit sequence. Downwelling lengths also increased with stream order in these idealized channels. Our results suggest that channel unit spacing, size, and sequence are all important in determining hyporheic exchange patterns of upwelling and downwelling. Though irregularities in the size and spacing of bedforms caused flow nets to be much more complex in surveyed stream reaches than in idealized stream reaches, similar trends emerged relating the average geomorphic wavelength to the average hyporheic wavelength in both surveyed and idealized reaches. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Studies of hyporheic exchange flows have identified physical features of channels that control exchange flow at the channel unit scale, namely slope breaks in the longitudinal profile of streams that generate subsurface head distributions. We recently completed a field study that suggested channel unit spacing in stream longitudinal profiles can be used to predict the spacing between zones of upwelling (flux of hyporheic water into the stream) and downwelling (flux of stream water into the hyporheic zone) in the beds of mountain streams. Here, we use two‐dimensional groundwater flow and particle tracking models to simulate vertical and longitudinal hyporheic exchange along the longitudinal axis of stream flow in second‐, third‐, and fourth‐order mountain stream reaches. Modelling allowed us to (1) represent visually the effect that the shape of the longitudinal profile has on the flow net beneath streambeds; (2) isolate channel unit sequence and spacing as individual factors controlling the depth that stream water penetrates the hyporheic zone and the length of upwelling and downwelling zones; (3) evaluate the degree to which the effects of regular patterns in bedform size and sequence are masked by irregularities in real streams. We simulated hyporheic exchange in two sets of idealized stream reaches and one set of observed stream reaches. Idealized profiles were constructed using regression equations relating channel form to basin area. The size and length of channel units (step size, pool length, etc.) increased with increasing stream order. Simulations of hyporheic exchange flows in these reaches suggested that upwelling lengths increased (from 2·7 m to 7·6 m), and downwelling lengths increased (from 2·9 m to 6·0 m) with increase in stream order from second to fourth order. Step spacing in the idealized reaches increased from 5·3 m to 13·7 m as stream size increased from second to fourth order. Simulated downwelling lengths increased from 4·3 m in second‐order streams to 9·7 m in fourth‐order streams with a POOL–RIFFLE–STEP channel unit sequence, and increased from 2·5 m to 6·1 m from second‐ to fourth‐order streams with a POOL–STEP–RIFFLE channel unit sequence. Upwelling lengths also increased with stream order in these idealized channels. Our results suggest that channel unit spacing, size, and sequence are all important in determining hyporheic exchange patterns of upwelling and downwelling. Though irregularities in the size and spacing of bedforms caused flow nets to be much more complex in surveyed stream reaches than in idealized stream reaches, similar trends emerged relating the average geomorphic wavelength to the average hyporheic wavelength in both surveyed and idealized reaches. This article replaces a previously published version (Hydrological Processes, 19 (17), 2915–2929 (2005) [ DOI:10.1002/hyp.5790 ]. See also retraction notice DOI:10.1002/hyp.6350 Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Stream biophysical processes are commonly studied using multi-dimensional numerical modelling that quantifies flow hydraulics from which parameters such as habitat suitability, stream carrying capacity, and bed mobility are derived. These analyses would benefit from accurate high-resolution stream bathymetries spanning tens of kilometres of channel, especially in small streams or where navigation is difficult. Traditional ground-based survey methods are limited by survey time, dense vegetation and stream access, and are usually only feasible for short reaches. Conversely, airborne topobathymetric LiDAR surveys may overcome these limitations, although limited research is available on how errors in LiDAR-derived digital elevation models (DEMs) might propagate through flow models. This study investigated the performance of LiDAR-derived topobathymetry in support of multi-dimensional flow modelling and ecohydraulics calculations in two gravel-bedded reaches (approximately 200 m long), one morphologically complex and one morphologically simple, and at the segment scale (32 km-long stream segment) along a 15 m-wide river in central Idaho, USA. We compared metre and sub-metre-resolution DEMs generated from RTK-GPS ground and Experimental Advanced Airborne Research LiDAR-B (EAARL-B) surveys and water depths, velocities, shear stresses, habitat suitability, and bed mobility modelled with two-dimensional (2D) hydraulic models supported by LiDAR and ground-surveyed DEMs. Residual statistics, bias (B), and standard deviation (SD) of the residuals between depth and velocity predicted from the model supported by LiDAR and ground-survey topobathymetries were up to −0.04 (B) and 0.09 m (SD) for depth and −0.09 (B) and 0.20 m s−1 (SD) for velocity. The accuracy (B = 0.05 m), precision (SD = 0.09 m), and point density (1 point m−2) of the LiDAR topobathymetric survey (regardless of reach complexity) were sufficient to support 2D hydrodynamic modelling and derivative stream habitat and process analyses, because these statistics were comparable to those of model calibration with B = 0 m and SD = 0.04 m for water surface elevation and B = 0.05 m s−1 and SD = 0.22 m s−1 for velocity in our investigation. © 2020 John Wiley & Sons, Ltd.  相似文献   

16.
This paper, the first of two, hypothesizes that: (1) the temporal variation of stream power of a river channel at a given station with varying discharge is accomplished by the temporal variation in channel form (flow depth and channel width) and hydraulic variables, including energy slope, flow velocity and friction; (2) the change in stream power is distributed among the changes in flow depth, channel width, flow velocity, slope, and friction, depending on the boundary conditions that the channels has to satisfy. The second hypothesis is a result of the principle of maximum entropy and the theory of minimum energy dissipation or its simplified minimum stream power. These two hypotheses lead to families of at‐a‐station hydraulic geometry relations. The conditions under which these families of relations can occur in the field are discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Data from a flume experiment were used to explore the modified hydraulic conditions and habitat suitability in streams where feeding of large woody debris (LWD) is present. Feeding of LWD was simulated by insertion of wood dowels with varying diameter and length. Two processes were mimicked, namely (i) lumped LWD load, and (ii) distributed LWD load. Lumped load may occur for wood coming either from upstream or from a tributary, and entering the stream of interest in one only section. Distributed load occurs for wood entering along the considered stream, in several sections. Distributed wood income resulted in homogeneously increased bed roughness, leading to increased flow depth and decreased velocity, whereas lumped input of wood from upstream resulted in larger local clustering and change of the flow properties, but with less influence on the distributed hydraulic properties. A method is proposed to predict bulk flow properties in presence of LWD. Then, a simple approach is used based upon the concept of wetter usable area WUA to investigate modified habitat conditions for fish species in presence of woody debris. An application to a real world case study from the literature is then shown, where increasing density of wood increases habitat availability for colonization by fish guilds.  相似文献   

18.
Analysis of the bankfull cross-sections of headwater streams in Ado-Ekiti region of Southwestern Nigeria and their comparison with data from other tropical environments and temperate latitudes reveal that the channel capacities of streams in the humid tropics are relatively smaller than those of temperate regions, averaging 1.51 m2 with a coefficient of variation of 87 per cent. This is attributed to the small stream discharge, the predominantly low and highly seasonal flows of the streams, the low shear stress of stream load, and the stabilizing and protective influence of riparian vegetation and surface incrustations. The chanel capacities of the urban streams (mean = 1.13m2) are about 47 per cent smaller than those of the natural streams (mean = 2.12 m2) in the same ecological zone. In terms of hydraulic efficiency, the urban streams also have relatively inefficient cross-sections and larger width/depth ratios than their rural or natural counterparts. Resurveys of seventeen monumented cross-sections reveal that while channel shoulder width increased by only 6 per cent over a one-year period, channel depth and capacity decreased by 16 per cent and 4 per cent respectively; the observed decrease in channel size occurs entirely in the channel depth dimension. Thus the response of stream channels to the urbanization of small headwater catchments in the humid tropics is probably more of vertical accretion of channel bed and reduction in channel capacity rather than the widely-reported anomalous enlargement of urban streams through channel widening. The rapid rate of channel aggradation is attributed to excessive rates of sediment production and delivery to streams in urbanized catchments in the humid tropics, rapid deposition of sediments during small runoff events and on the falling stage of storm hydrographs, and the inability of the streams to evacuate the sediments delivered to them despite the increased discharge and peak flow associated with urbanization. The low competence of the urban streams is attributed to the predominance of low flows, very gentle bed slopes, and most importantly the widespread dumping of refuse into the channels thereby reducing flow velocity and promoting backwater flooding, ponding, and sedimentation. The correlations between drainage basin area, a surrogate for stream discharge, and channel capacity are very strong for the rural watersheds, and the regression analysis indicates a tendency towards a steady-state isometric relationship. Urban channels are, to a large extent, in disequilibrium with the urban hydrological state. However, spatial variations in the degree of urbanization of the catchments, and, therefore in runoff volume and velocity, exercise strong control on channel width, depth, and size. A model of the sequence of stream channel adjustment to the urbanization of small headwater catchments in the humid tropics is presented.  相似文献   

19.
Urbanization through the addition of impervious cover can alter catchment hydrology, often resulting in increased peak flows during floods. This phenomenon and the resulting impact on stream channel morphology is well documented in temperate climatic regions, but not well documented in the humid tropics where urbanization is rapidly occurring. This study investigates the long‐term effects of urbanization on channel morphology in the humid sub‐tropical region of Puerto Rico, an area characterized by frequent high‐magnitude flows, and steep coarse‐grained rivers. Grain size, low‐flow channel roughness, and the hydraulic geometry of streams across a land‐use gradient that ranges from pristine forest to high density urbanized catchments are compared. In areas that have been urbanized for several decades changes in channel features were measurable, but were smaller than those reported for comparable temperate streams. Decades of development has resulted in increased fine sediment and anthropogenic debris in urbanized catchments. Materials of anthropogenic origin comprise an average of 6% of the bed material in streams with catchments with 15% or greater impervious cover. At‐a‐station hydraulic geometry shows that velocity makes up a larger component of discharge for rural channels, while depth contributes a larger component of discharge in urban catchments. The average bank‐full cross‐sectional area of urbanized reaches was 1.5 times larger than comparable forested reaches, and less than the world average increase of 2.5. On average, stream width at bank‐full height did not change with urbanization while the world average increase is 1.5 times. Overall, this study indicates that the morphologic changes that occur in response to urban runoff are less in channels that are already subject to frequent large magnitude storms. Furthermore, this study suggests that developing regions in the humid tropics shouldn't rely on temperate analogues to determine the magnitude of impact of urbanization on stream morphology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Interfacial instability of sand patterns induced by turbulent shear flow   总被引:1,自引:0,他引:1  
When a turbulent shear flow above a plane sand surface entrains sand grains,it generates a variety of sand patterns.Fluvial sand forms two major interfacial patterns:meso-scale dunes and antidunes,and large-scale bars.Measurements have evidenced that under erosive conditions,meso-scale patterns either change to or coexist with large-scale patterns.However,it remains elusive what exactly drives the switching of interfacial patterns and how the switching occurs.Here,we showdcombing a flow model with a grain transport model,allowing for both the surface and suspended sand fluxes dthat the switching of patterns emerges from the shear-driven complex feedback between grain transport and topographic perturbations.The switching predominantly depends on the magnitudes of the Rouse number and the grain size to undisturbed flow depth ratio.The model offers quantitative predictions of the maximum amplification of sand patterns and unveils a new attraction erepulsion phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号