首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large areas of natural coastal wetlands have suffered severely from human-driven damages or conversions (e.g., land reclamations), but coastal carbon flux responses in reclaimed wetlands are largely unknown. The lack of knowledge of the environmental control mechanisms of carbon fluxes also limits the carbon budget management of reclaimed wetlands. The net ecosystem exchange (NEE) in a coastal wetland at Dongtan of Chongming Island in the Yangtze estuary was monitored throughout 2012 using the eddy covariance technique more than 14 years after this wetland was reclaimed using dykes to stop tidal flooding. The driving biophysical variables of NEE were also examined. The results showed that NEE displayed marked diurnal and seasonal variations. The monthly mean NEE showed that this ecosystem functioned as a CO2 sink during 9 months of the year, with a maximum value in September (?101.2 g C m?2) and a minimum value in November (?8.2 g C m?2). The annual CO2 balance of the reclaimed coastal wetland was ?558.4 g C m?2 year?1. The ratio of ecosystem respiration (ER) to gross primary production (GPP) was 0.57, which suggests that 57 % of the organic carbon assimilated by wetland plants was consumed by plant respiration and soil heterotrophic respiration. Stepwise multiple linear regressions suggested that temperature and photosynthetically active radiation (PAR) were the two dominant micrometeorological variables driving seasonal variations in NEE, while soil moisture (M s) and soil salinity (PSs) played minor roles. For the entire year, PAR and daytime NEE were significantly correlated, as well as temperature and nighttime NEE. These nonlinear relationships varied seasonally: the maximum ecosystem photosynthetic rate (A max), apparent quantum yield (?), and Q 10 reached their peak values during summer (17.09 μmol CO2?m?2 s?1), autumn (0.13 μmol CO2?μmol?1 photon), and spring (2.16), respectively. Exceptionally high M s or PSs values indirectly restricted ecosystem CO2 fixation capacity by reducing the PAR sensitivity of the NEE. The leaf area index (LAI) and live aboveground biomass (AGBL) were significantly correlated with NEE during the growing season. Although the annual net CO2 fixation rate of the coastal reclaimed wetland was distinctly lower than the unreclaimed coastal wetland in the same region, it was quite high relative to many inland freshwater wetlands and estuarine/coastal wetlands located at latitudes higher than this site. Thus, it is concluded that although the net CO2 fixation capacity of the coastal wetland was reduced by land reclamation, it can still perform as an important CO2 sink.  相似文献   

2.
In semiarid Sahelian region, the dynamics of soil organic carbon (SOC) and water are key to sustainable land management. This work focuses on the behaviour of carbon. A total of 33 soil profiles in four polders, ranging from 10 to 65 years in age, were sampled, analysed (0–1 m), and matched with marsh soil profiles in recent sediments considered as reference (t0) for carbon stocks determination. SOC and soil inorganic carbon (SIC) stocks show a spatial variability between polders. SOC stocks were t0 200 ± 0.8; t60 183 ± 34; and t65 189 ± 1.1 MgC·ha?1, whereas the SIC stocks were negligible. These results show the highest stocks of soil carbon observed for this climatic region. The SOC stocks were also calculated for the equivalent soil mass at a defined depth (0–0.3 m); the corrected calculation of SOC stocks (Scorr) for 2450 Mg·ha?1 of equivalent soil mass is t0 64 ± 1.9, t60 59 ± 9.8, and t65 53 ± 2.2 MgC·ha?1; the stocks decrease by ?7.8% and ?17.2% from t0 to t60 and t65. Carbon was inherited from the pre-existing·marsh and the polders have conserved high stock values.  相似文献   

3.
During the formation and development of glacial meltwater runoff, hydrochemical erosion is abundant, especially the hydrolysis of K/Na feldspar and carbonates, which can consume H+ in the water, promote the formation of bicarbonate by dissolving atmospheric CO2, and affect the regional carbon cycle. From July 21, 2015, to July 18, 2017, the CO2 concentration and flux were observed by the eddy covariance (EC) method in the relatively flat and open moraine cover area of Koxkar Glacier in western Mt. Tianshan, China. We found that: (1) atmospheric CO2 fluxes ranged from ??408.95 to 81.58 mmol m?2 day?1 (average ? 58.68 mmol m?2 day?1), suggesting that the study area is a significant carbon sink, (2) the CO2 flux footprint contribution areas were primarily within 150 m of the EC station, averaging total contribution rates of 93.30%, 91.39%, and 90.17% of the CO2 flux in the snow accumulation, snow melting, and glacial melting periods, respectively. Therefore, the contribution areas with significant influences on CO2 flux observed at EC stations were concentrated, demonstrating that grassland CO2 flux around the glaciers had little effect at the EC stations, (3) in the predominant wind direction, under stable daytime atmospheric stratification, the measurement of CO2 flux, as interpreted by the Agroscope Reckenholz Tanikon footprint tool, was 79.09% ± 1.84% in the contribution area. This was slightly more than seen at night, but significantly lower than the average under unstable atmospheric stratification across the three periods of interest (89%). The average distance of the farthest point of the flux footprint under steady state atmospheric conditions was 202.61?±?69.33 m, markedly greater than that under non-steady state conditions (68.55?±?10.34 m). This also indicates that the CO2 flux observed using EC was affected primarily by hydrochemical erosion reactions in the glacier area, (4) a good negative correlation was found between net glacier exchange (NGE) of CO2 and air temperature on precipitation-free days. Strong ice and snow ablation could promote hydrochemical reactions of soluble substances in the debris area and accelerated sinking of atmospheric CO2. Precipitation events might reduce snow and ice melting, driven by reduced regional temperatures. However, a connection between NGE and precipitation, when less than 8.8 mm per day, was not obvious. When precipitation was greater than 8.8 mm per day, NGE decreased with increasing precipitation, (5) graphically, the slope of NGE, related to daily runoff, followed a trend: snow melting period?>?snow accumulation period?>?early glacial ablation period?>?late glacier ablation period?>?dramatic glacier ablation period. The slope was relatively large during snow melting, likely because of CO2 sinking caused by water–rock interactions. The chemical reaction during elution in the snow layer might also promote atmospheric CO2 drawdown. At the same time, the damping effect of snow cover and the almost-closed glacier hydrographic channel inhibited the formation of regional runoff, possibly providing sufficient time for the chemical reaction, thus promoting further CO2 drawdown.  相似文献   

4.
Intensive soil tillage is a significant factor in soil organic matter decline in cultivated soils. Both cultivation abandonment and foregoing tillage have been encouraged in the past 30 years to reduce greenhouse gas emissions and soil erosion. However, the dynamic processes of soil organic carbon (SOC) in areas of either continuous cultivation or abandonment remain unclear and inconsistent. Our aims were to assess and model the dynamic processes of SOC under continuous tillage and after cultivation abandonment in the black soil of Northeast China. Soil profiles were collected of cultivated or abandoned land with cultivation history of 0–100 years. An isotope mass balance equation was used to calculate the proportion of SOC derived from corn debris (C4) and from natural vegetation (C3) to deduce the dynamic process. Approximately 40% of SOC in the natural surface soil (0–10 cm) was eroded in the first 5 years of cultivation, increasing to about 75% within 40 years, before a slow recovery. C4 above 30 cm soil depth increased by 4.5%–5% or 0.11–0.12 g·kg?1 on average per year under continuous cultivation, while it decreased by approximately 0.34% annually in the surface soil after cultivation abandonment. The increase in the percentage of C4 was fitted to a linear equation with given intercepts in the upper 30 cm of soil in cultivated land. A significant relationship between the change of C4 and time was found only in the surface soil after abandonment of cultivation. These results demonstrate the loss and accumulation of corn-derived SOC in surface black soil of Northeast China under continuous tillage or cultivation abandonment.  相似文献   

5.
With adoption of appropriate reclamation strategies, minesoils can sequester significant amount of soil organic carbon (SOC). The objective of this study was to isolate different SOC fractions and coal-C in a reclaimed minesoil chronosequence and assess effects of increasing time since reclamation on each SOC fraction and selected soil properties. The chronosequence was comprised of four minesoils with time since reclamation ranging between 2 and 22 years. Total SOC (TSOC, summation of all SOC fractions), ranged between 20 and 8 g kg?1, respectively, at the oldest (Mylan Park) and youngest (WVO1) minesite, indicating increasing SOC sequestration along the chronosequence. The humin fraction accounted for about 43 and 7 % of TSOC, respectively, at Mylan Park and WVO1, indicating increasing humification and biochemical stabilization of SOC with increasing time since reclamation. At WVO1, >60 % of TSOC was apportioned among the acid-hydrolysable (labile) and mineral-bound SOC fractions. Total soil carbon (TSC, TSOC + coal-C) were significantly (p < 0.05) related to the humin fraction in older minesoils, whereas with the acid-hydrolysable (labile) fraction in the younger minesoils indicating that C stabilization mechanisms differed substantially along the chronosequence. Coal-C was unrelated to any SOC fraction at all minesites indicating that SOC sequestration estimations in this chronosequence was unaffected by coal-C. Soil cation exchange capacity and electrical conductivity were significantly (p < 0.05) related to the humin fraction at Mylan Park while to the acid-hydrolysable and mineral-bound SOC fractions at WVO1 indicating that the relative influences of different SOC fractions on soil quality indicators differed substantially along the chronosequence.  相似文献   

6.
The present analysis adjusts previous estimates of global ocean CaCO3 production rates substantially upward, to 133 × 1012 mol yr?1 plankton production and 42 × 1012 mol yr?1 shelf benthos production. The plankton adjustment is consistent with recent satellite-based estimates; the benthos adjustment includes primarily an upward adjustment of CaCO3 production on so-called carbonate-poor sedimentary shelves and secondarily pays greater attention to high CaCO3 mass (calcimass) and turnover of shelf communities on temperate and polar shelves. Estimated CaCO3 sediment accumulation rates remain about the same as they have been for some years: ~20 × 1012 mol yr?1 on shelves and 11 × 1012 mol yr?1 in the deep ocean. The differences between production and accumulation of calcareous materials call for dissolution of ~22 × 1012 mol yr?1 (~50 %) of shelf benthonic carbonate production and 122 × 1012 mol yr?1 (>90 %) of planktonic production. Most CaCO3 production, whether planktonic or benthonic, is assumed to take place in water depths of <100 m, while most dissolution is assumed to occur below this depth. The molar ratio of CO2 release to CaCO3 precipitation (CO2↑/CaCO3↓) is <1.0 and varies with depth. This ratio, Ψ, is presently about 0.66 in surface seawater and 0.85 in ocean waters deeper than about 1000 m. The net flux of CO2 associated with CaCO3 reactions in the global ocean in late preindustrial time is estimated to be an apparent influx from the atmosphere to the ocean, of +7 × 1012 mol C yr?1, at a time scale of 102–103 years. The CaCO3-mediated influx of CO2 is approximately offset by CO2 release from organic C oxidation in the water column. Continuing ocean acidification will have effects on CaCO3 and organic C metabolic responses to the oceanic inorganic C cycle, although those responses remain poorly quantified.  相似文献   

7.
With few available soil organic carbon (SOC) profiles and the heterogeneity of those that do exist, the estimation of SOC pools in karst areas is highly uncertain. Based on the spatial heterogeneity of SOC content of 23,536 samples in a karst watershed, a modified estimation method was determined for SOC storage that exclusively applies to karst areas. The method is a “soil-type method” based on revised calculation indexes for SOC storage. In the present study, the organic carbon contents of different soil types varied greatly, but generally decreased with increasing soil depth. The organic carbon content decreased nearly linearly to a depth of 0–50 cm and then varied at depths of 50–100 cm. Because of the large spatial variability in the karst area, we were able to determine that influences of the different indexes on the estimation of SOC storage decreased as follows: soil thickness > boulder content > rock fragment content > SOC content > bulk density. Using the modified formula, the SOC content in the Houzhai watershed in Puding was estimated to range from 3.53 to 5.44 kg m?2, with an average value of 1.24 kg m?2 to a depth of 20 cm, and from 4.44 to 14.50 kg m?2, with an average value of 12.12 kg m?2 to a depth of 100 cm. The total SOC content was estimated at 5.39 × 105 t.  相似文献   

8.
Karst poljes in the Dinaric Mountains have a complex hydrological regime and high potential for crop production. Little information is available about soil organic carbon (SOC), total nitrogen (TN), carbon stocks (SOCS), and nitrogen stocks (TNS) in karst poljes located in the Dinaric area. The objective of this paper was to study the spatial distribution of SOC and TN in topsoil (ranged from 9 to 53 cm depth) and whole profile SOCS and TNS (ranged from 15 to 160 cm depth) in the Livno karst polje depression (Bosnia and Herzegovina) using kriging and co-kriging approaches. We used the following properties as co-variates: distance from hills (DFH), distance from the lake (DFL), sand, silt, and clay content, TN, SOC, SOCS, and TNS. We only used the properties that had a significant correlation with the estimated properties as co-variates. The results showed that soils in the study area had high average SOC (7.92%), TN (0.79%), SOCS (191.05 t ha?1), and TNS (17.91 t ha?1) values. Histosols had the highest SOCS and TNS and Arenosols the lowest. The experimental variogram of LogSOC and LogTN was best-fitted by the spherical model, while the exponential model was the most accurate for LogSOCS and LogTNS. The spatial dependence was moderate for all studied soil properties. The incorporation of auxiliary variables increased the precision of the estimations from 35.7% (SOC?×?TN) to 49.2% (TNS?×?SOCS).  相似文献   

9.
Conversion of native desert to irrigation cropland often results in the changes of soil processes and properties. The objective of this study was to investigate the changes of soil nutrients and their spatial distribution characteristics of a newly reclaimed cropland at the initial stage of the conversion using statistical and geo-statistical methods. Soil samples were collected at regular intervals from a cropland of 0.24 ha, and their nutrient indicators determined. The mean contents of soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), available potassium (AK), and pH value in this newly reclaimed sandy cropland were averaged at 4.45 g kg?1, 0.49 g kg?1, 19.99 mg kg?1, 21.08 mg kg?1, 121.60 mg kg?1, and 8.98, respectively. The ranges were less than 20 m for the semivariogram of SOC, TN, and pH, but exceeded 20 m for AN, AP, and AK. The ratios of nugget-to-sill were less than 10 % for the semivariogram of SOC, TN, and pH, but exceeded 25 % for AN, AP, and AK. There were similar distribution characteristics for SOC, AN, and pH, with different sizes of patches present; such distribution patterns were related to the regular planting of orchard and the interval application of manures. There were big-sized patches in the distributions of AN, AP, and AK. Topography was the main factor causing the spatial heterogeneity of available N, P, K, and the 4 years (2001–2004) of cropping affected the distribution patterns of these nutrient variables. The conversion of native desert to irrigation cropland caused significant increases in soil nutrients, but their spatial distributions had large variations. This study identified the main factors affecting the spatial distribution of each soil nutrient variable, including the environment factors and anthropogenic management practices. There is a great potential to improve the productivity and soil fertility for the newly reclaimed sandy cropland, only if the appropriate and sustainable soil management practices are adopted.  相似文献   

10.
Field experiments on the CO2 flux of alpine meadow soil in the Qilian Mountain were conducted along the elevation gradient during the growing season of 2004 and 2005. The soil CO2 flux was measured using the Li-6400-09 soil respiration chamber attached to the Li-6400 portable photosynthesis system. The effects of water and heat and roots on the soil CO2 flux were statistically analyzed. The results show that soil CO2 flux along the elevation gradient gradually decreases. The soil CO2 flux was low at night, with lowest value occurring between 0200 and 0600 hours, started to rise rapidly during 0700–0830 hours, and then descend during 1600–1830 hours. The peak CO2 efflux appears during 1100–1600 hours. The diurnal average of soil CO2 efflux was between 0.56 ± 0.32 and 2.53 ± 0.76 μmol m−2 s−1. Seasonally, soil CO2 fluxes are relatively high in summer and autumn and low in spring and winter. The soil CO2 efflux, from the highest to the lowest in the ranking order, occurred in July and August (4.736 μmol m−2 s−1), June and September, and May and October, respectively. The soil CO2 efflux during the growing season is positively correlated with soil temperature, root biomass and soil water content.  相似文献   

11.
Increased nitrogen (N) input to ecosystems could alter soil organic carbon (C) dynamics, but the effect still remains uncertain. To better understand the effect of N addition on soil organic C in wetland ecosystems, a field experiment was conducted in a seasonally inundated freshwater marsh, the Sanjiang Plain, Northeast China. In this study, litter production, soil total organic C (TOC) concentration, microbial biomass C (MBC), organic C mineralization, metabolic quotient (qCO2) and mineralization quotient (qmC) in 0–15 cm depth were investigated after four consecutive years of N addition at four rates (CK, 0 g N m?2 year?1; low, 6 g N m?2 year?1; moderate, 12 g N m?2 year?1; high, 24 g N m?2 year?1). Four-year N addition increased litter production, and decreased soil organic C mineralization. In addition, soil TOC concentration and MBC generally increased at low and moderate N addition levels, but declined at high N addition level, whereas soil qCO2 and qmC showed a reverse trend. These results suggest that short-term N addition alters soil organic C dynamics in seasonally inundated freshwater marshes of Northeast China, and the effects vary with N fertilization rates.  相似文献   

12.
Soils of the Chinese Loess Plateau(CLP)contain substantial amounts of soil inorganic carbon(SIC),as well as recent and ancient soil organic carbon(SOC).With the advent of the Anthropocene,human perturbation,including excavation,has increased soil CO2 emission from the huge loess carbon pool.This study aims to determine the potential of loess CO2 emission induced by excavation.Soil CO2 were continuously monitored for seven years on a newly-excavated profile in the central CLP and the stable C isotope compositions of soil CO2 and SOC were used to identify their sources.The results showed that the soil CO2 concentrations ranged from 830μL·L-1 to 11190μL·L-1 with an annually reducing trend after excavation,indicating that the human excavation can induce CO2 production in loess profile.Theδ13 C of CO2 ranged from–21.27‰to–19.22‰(mean:–20.11‰),with positive deviation from top to bottom.The range of δ13CSOC was–24.0‰to–21.1‰with an average of–23.1‰.Theδ13 C-CO2 in this study has a positive relationship with the reversed CO2 concentration,and it is calculated that 80.22%of the soil CO2 in this profile is from the microbial decomposition of SOC and 19.78%from the degasification during carbonate precipitation.We conclude that the human excavation can significantly enhance the decomposition of the ancient OC in loess during the first two years after perturbation,producing and releasing soil CO2 to atmosphere.  相似文献   

13.
Soil inorganic carbon (SIC) and organic carbon (SOC) levels can change with forest development, however, concurrent changes in soil carbon balance and their functional differences in regulating soil properties are unclear. Here, SIC, SOC, and other physicochemical properties of soil (N, alkali-hydrolyzed N, effective Si, electrical conductivity, pH, and bulk density) in 49 chronosequence plots of larch plantation forests were evaluated, by analyzing the concurrent changes in SIC and SOC storage during growth of plantation and the functional difference of these levels in maintaining soil sustainability. These soils had characteristically high SOC (15.34 kg m?2) and low SIC storage (83.38 g m?2 on average). Further, 28 of 30 linear regressions between SIC and SOC storage and larch growth parameters (age, tree size, and biomass density) were not statistically significant (p > 0.05). However, significant changes were observed in ratios of SIC and SOC with these growth parameters (between 0–40 cm and 40–80 cm, respectively; p < 0.05). These results were more useful for determining the changes in SIC and SOC vertical distribution than changes in storage. Moreover, larch growth generally decreased SIC and increased SOC. Linear correlation and multiple-regression analysis showed that the SIC influences soil acidity, whereas SOC affects soil nitrogen. This clearly indicates that larch growth could result in divergent changes in SIC and SOC levels, particularly in their vertical distribution; further, changes in SIC and SOC may variably affect soil physicochemical properties.  相似文献   

14.
We have performed experiments to determine the effects of pressure, temperature and oxygen fugacity on the CO2 contents in nominally anhydrous andesitic melts at graphite saturation. The andesite composition was specifically chosen to match a low-degree partial melt composition that is generated from MORB-like eclogite in the convective, oceanic upper mantle. Experiments were performed at 1–3 GPa, 1375–1550?°C, and fO2 of FMQ ?3.2 to FMQ ?2.3 and the resulting experimental glasses were analyzed for CO2 and H2O contents using FTIR and SIMS. Experimental results were used to develop a thermodynamic model to predict CO2 content of nominally anhydrous andesitic melts at graphite saturation. Fitting of experimental data returned thermodynamic parameters for dissolution of CO2 as molecular CO2: ln(K 0) = ?21.79?±?0.04, ΔV 0?=?32.91?±?0.65 cm3mol?1, ΔH 0?=?107?±?21 kJ mol?1, and dissolution of CO2 as CO3 2?: ln(K 0 ) = ?21.38?±?0.08, ΔV 0?=?30.66?±?1.33 cm3 mol?1, ΔH 0?=?42?±?37 kJ mol?1, where K 0 is the equilibrium constant at some reference pressure and temperature, ΔV 0 is the volume change of reaction, and ΔH 0 is the enthalpy change of reaction. The thermodynamic model was used along with trace element partition coefficients to calculate the CO2 contents and CO2/Nb ratios resulting from the mixing of a depleted MORB and the partial melt of a graphite-saturated eclogite. Comparison with natural MORB and OIB data suggests that the CO2 contents and CO2/Nb ratios of CO2-enriched oceanic basalts cannot be produced by mixing with partial melts of graphite-saturated eclogite. Instead, they must be produced by melting of a source containing carbonate. This result places a lower bound on the oxygen fugacity for the source region of these CO2-enriched basalts, and suggests that fO2 measurements made on cratonic xenoliths may not be applicable to the convecting upper mantle. CO2-depleted basalts, on the other hand, are consistent with mixing between depleted MORB and partial melts of a graphite-saturated eclogite. Furthermore, calculations suggest that eclogite can remain saturated in graphite in the convecting upper mantle, acting as a reservoir for C.  相似文献   

15.
Soil organic carbon (SOC) storage and erosion in South China at the regional scale in the past decades remains far from being understood. This paper calculated the SOC density, storage and erosion in 14 soil classes in Guangdong Province, South China, based on statistical data from the soil survey and soil erosion survey of Guangdong, which was performed in the 1990s. The purpose of this study is to understand the relationships between soil classes and SOC erosion at the regional scale. The results indicated that the SOC density in the soils of Guangdong varied from 12.7 to 144.9 Mg ha?1 over the entire profile and from 12.6 to 68.4 Mg ha?1 in the top 20-cm soil layer. The average area-weighted SOC density in the topsoil (0–20 cm) and the entire profile was 32 ± 3 and 86 ± 4 Mg ha?1, respectively. The total SOC storage was 1.27 ± 0.06 Pg, with 35.6 % (0.46 ± 0.04 Pg) located in the topsoil. The average area-weighted strength of the SOC erosion in the 1990s was 20.6 ± 0.8 Mg km?2 year?1. The results indicated that SOC erosion was strongly related to soil class.  相似文献   

16.
Incidents of hazardous accumulations of CO2 in homes built on or near reclaimed mine land, in the last decade, have been shown to be linked to neutralization reactions between acidic mine drainage and carbonate material. Recent research has shown that CO2 fluxes on reclaimed mine land with this hazard are, sometimes, spatially autocorrelated (i.e., the spatial variability is not random). This result implies geostatistics can be used to delineate hazardous areas where fluxes are likely to exceed established thresholds. This study applies sequential Gaussian simulation to delineate this emerging hazard on a site in southwestern Indiana, USA. Due to lack of regulatory threshold limits for CO2 flux at the current time, the authors conduct a sensitivity analysis of the threshold limit using the 75th, 90th and 95th percentiles of the measured fluxes for the first day of monitoring. These limits are used to produce hazard maps, which are validated with the known hazard at the site. This work further shows the potential of surface CO2 flux monitoring as a cheap and effective strategy to monitor and delineate such hazards to avoid residential and commercial real estate development in high risk zones.  相似文献   

17.
This study focused on the target injection layers of deep saline aquifers in the Shiqianfeng Fm. in the Carbon Capture and Sequestration (CCS) Demonstration Projects in the Ordos Basin, northwestern China. The study employed a combination method of experiments and numerical simulation to investigate the dissolution mechanism and impact factors of CO2 in these saline aquifers. The results showed (1) CO2 solubility in different types of water chemistry were shown in ascending order: MgCl2-type water < CaCl2-type water < Na2SO4-type water < NaCl-type water < Na2CO3-type water < distilled water. These results were consistent with the calculated results undertaken by TOUGHREACT with about 5% margin of error. CO2 solubility of Shiqianfeng Fm. saline was 1.05 mol/L; (2) compared with distilled water, the more complex the water’s chemical composition, the greater the increase in HCO3 ?concentration. While the water’s composition was relatively simple, the tested water’s HCO3 ?concentrations were in close accord with the calculated value undertaken by the TOUGHREACT code, and the more complex the water’s composition, the poorer the agreement was, probably due to the complex and unstable HCO3 ? complicating matters when in an aqueous solution system including both tested HCO3 ?concentration and calculated HCO3 ?concentration; (3) the CO2 solubility in the saline at the temperature conditions of 55 °C and 70 °C were 1.17 and 1.02 mol/L. When compared with the calculated value of 1.20 and 1.05 mol/L, they were almost the same with only 1 and 3% margin of error; concentrations of HCO3 ? were 402.73 mg/L (0.007 mol/L) and 385.65 mg/L (0.006 mol/L), while the simulation results were 132.16 mg/L (0.002 mol/L) and 128.52 mg/L (0.002 mol/L). From the contrast between the tested data and the calculated data undertaken by the TOUGHREACT code, it was shown that TOUGHRACT code could better simulate the interaction between saline and CO2 in the dissolution sequestration capacity. Therefore, TOUGHREACT code could be used for the inter-process prediction of CO2 long-term geological storage of CO2; (4) The Ca2+ concentration and SO4 2?concentration in saline water had less effect on the solubility of CO2 and HCO3 ?concentration. In addition, TDS and pH values of saline affected not only the solubility of CO2, but also the conversion of CO2 to HCO3 ? due to that they can affect the activity and acid-base balance. So in fact, we just need to consider that the TDS and pH values are main impact factors in the dissolution sequestration capacity of CO2 geological sequestration in deep saline aquifers.  相似文献   

18.
Large variations of the CO2 flux through the soil were observed between November 2002 and January 2006 at Mt. Etna volcano. In many cases, the CO2 flux was strongly influenced by changes in air temperature and atmospheric pressure. A new filtering method was then developed to remove the atmospheric influences on soil CO2 flux and, at the same time, to highlight the variations strictly related to volcanic activity. Successively, the CO2 corrected data were quantitatively compared with the spectral amplitude of the volcanic tremor by cross correlation function, cross-wavelet spectrum and wavelet coherence. These analyses suggested that the soil CO2 flux variations preceded those of volcanic tremor by about 50 days. Given that volcanic tremor is linked to the shallow (a few kilometer) magma dynamics and soil CO2 flux related to the deeper (~12 km b.s.l.) magma dynamics, the “delayed similarity” between the CO2 flux and the volcanic tremor amplitude was used to assess the average speed in the magma uprising into the crust, as about 170–260 m per day. Finally, the large amount of CO2 released before the onset of the 2004–2005 eruption indicated a deep ingression of new magma, which might have triggered such an eruption.  相似文献   

19.
The objective of this study was to examine the variation of time and space and the effects of alpine meadow desertification, and the study area was selected at the Qinghai–Tibet Plateau of China. The sampling locations were categorized as the top, middle, bottom of the slope and flat in front of the slope, and the sites were classified as alpine meadow, light desertified land, moderate desertified land, serious desertified land, and very serious desertified land according to the level of alpine meadow desertification. This study examined spatial and temporal variability in soil organic carbon (SOC), total nitrogen (TN), pH, and soil bulk density due to wind erosion and documents the relationship between soil properties and desertification of alpine meadows. Desertification caused decreases to soil organic carbon and total nitrogen and increases to pH and soil bulk density. Soil properties were greatly affected by the level of alpine meadow desertification with the changes being attributed to overgrazing. The middle portion of slopes was identified as being the most susceptible to desertification. Carbon and nitrogen stocks were found to decrease as desertification progressed, the SOC stocks were 274.70, 273.81, 285.26, 196.20, and 144.36 g m?2 in the alpine meadow, light desertified land, moderate desertified land, serious desertified land and very serious desertified land, respectively; and the TN stocks were 27.23, 27.11, 28.35, 20.97, and 17.09 g m?2 at the top 30 cm soil layer, respectively. To alleviate desertification of alpine meadow, conservative grazing practices should be implemented.  相似文献   

20.
CO2 is a greenhouse gas, whose emissions threaten the existence of human beings. Its inherently safe sequestration can be performed via CO2 mineralization, which is relatively slow under natural conditions. In this work, an energy-saving membrane electrolysis technique was proposed for accelerating the CO2 mineralization of wollastonite into SiO2 and CaCO3 products. The electrolysis process involved splitting NH4Cl into HCl and NH3·H2O via hydrogen oxidation and water reduction at the anode and cathode of the electrolytic system, respectively. In contrast to the chlor-alkali electrolysis, this method did not involve Cl? oxidation and the standard potential of the anode was reduced. Additionally, NH4Cl was used as the electrolyte instead of NaCl; as a result, the generation of NH3·H2O instead of NaOH occurred in the catholyte and the cathodic pH dramatically decreased, thus reducing the cathodic potential for hydrogen evolution. The observed changes led to a 73.5% decrease in the energy consumption. Moreover, after the process of CO2 mineralization was optimized, SiO2 with a specific surface area of 221.8 m2 g?1 and CaCO3 with a purity of 99.9% were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号