首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
This paper investigates the hydrological interactions in the atmosphere-evegetation-soil system by using the bucket model and several new simplified intermediately complex models. The results of mathematical analysis and numerical simulations show that these models, despite their simplicity, can very clearly reveal the essential features of the rather complex hydrological system of atmosphere-ecosystem-soil. For given atmospheric variables, these models clearly demonstrate multiple timescales, the “red shift” of response spectra, multi-equilibria and limit cycles, bifurcation, abrupt change, self-organization, recovery, “desertification”, and chaos. Most of these agree with observations. Especially, the weakening of “shading effect” of living canopy and the wilted biomass might be a major mechanism leading to the desertification in a relatively short period due to overgrazing, and the desertification in a relatively long period or in climate of change might be due to both Charney’s mechanism and the shading effect. These ideas could be validated with further numerical simulations. In the paper, some methods for improving the estimation of timescales in the soil water evolution responding to the forcing are also proposed.  相似文献   

2.
对1952—1980年我国连续的月地面气温用时间序列ARMA(p、q)模型进行随机建模。月温度由60个站组成,用经验正交函数加以展开,取不同的样本长度即348,336和300月,以便考察经验正交展开的稳定性。前四个主成分,即z1,z2,z3,z4取为多维时间序列的变数,因为它们的总方差贡献达99.26%。在这四个主成分序列中的决定性周期用周期图和最大熵方法加以揭露。对一维变量zi,(i=1,2,3,4)的ARMA(p,q)的模型识别用Pandit-Wu方法进行,这样就可求得实验模型。用zi模型的外推值来预报月温度场。距平预报的命中率评分为78.3%,高于目前的业务长期天气预报。  相似文献   

3.
Guiling Wang 《Climate Dynamics》2005,25(7-8):739-753
This study examines the impact of greenhouse gas warming on soil moisture based on predictions of 15 global climate models by comparing the after-stabilization climate in the SRESA1b experiment with the pre-industrial control climate. The models are consistent in predicting summer dryness and winter wetness in only part of the northern middle and high latitudes. Slightly over half of the models predict year-round wetness in central Eurasia and/or year-round dryness in Siberia and mid-latitude Northeast Asia. One explanation is offered that relates such lack of seasonality to the carryover effect of soil moisture storage from season to season. In the tropics and subtropics, a decrease of soil moisture is the dominant response. The models are especially consistent in predicting drier soil over the southwest North America, Central America, the Mediterranean, Australia, and the South Africa in all seasons, and over much of the Amazon and West Africa in the June–July–August (JJA) season and the Asian monsoon region in the December–January–February (DJF) season. Since the only major areas of future wetness predicted with a high level of model consistency are part of the northern middle and high latitudes during the non-growing season, it is suggested that greenhouse gas warming will cause a worldwide agricultural drought. Over regions where there is considerable consistency among the analyzed models in predicting the sign of soil moisture changes, there is a wide range of magnitudes of the soil moisture response, indicating a high degree of model dependency in terrestrial hydrological sensitivity. A major part of the inter-model differences in the sensitivity of soil moisture response are attributable to differences in land surface parameterization.  相似文献   

4.
基于NDVI的西藏不同草地类型生物量回归建模分析   总被引:1,自引:0,他引:1  
旨在建立西藏地区不同草地类型的NDVI遥感估测模型,利用多元线性回归建立了不同草地类型的鲜草生物量与SPOT/VEGETATION多年平均年最大归一化植被指数(NDVI)、年降水量和年积温等变量的回归估测模型。并分析了所有草地类型的平均鲜草生物量与平均年最大NDVI、平均年降水量等因子的相关关系。结果表明:年降水量是鲜草长势最重要的影响因子,基于NDVI的鲜草生物量多元线性回归模型能很好的拟合草地(R=0.964)、高寒草甸(R=0.959)、高寒荒漠草原(R=0.772)、温性草原(R=0.892)和高寒草原(R=0.797)等草地类型。   相似文献   

5.
In almost all frozen soil models used currently, three variables of temperature, ice content and moisture content are used as prognostic variables and the rate term, accounting for the contribution of the phase change between water and ice, is shown explicitly in both the energy and mass balance equations. The models must be solved by a numerical method with an iterative process, and the rate term of the phase change needs to be pre-estimated at the beginning in each iteration step. Since the rate term of the phase change in the energy equation is closely related to the release or absorption of the great amount of fusion heat, a small error in the rate term estimation will introduce greater error in the energy balance, which will amplify the error in the temperature calculation and in turn, cause problems for the numerical solution convergence. In this work, in order to first reduce the trouble, the methodology of the variable transformation is applied to a simplified frozen soil model used currently, which leads to new frozen soil scheme used in this work. In the new scheme, the enthalpy and the total water equivalent are used as predictive variables in the governing equations to replace temperature, volumetric soil moisture and ice content used in many current models. By doing so, the rate terms of the phase change are not shown explicitly in both the mass and energy equations and its pre-estimation is avoided. Secondly, in order to solve this new scheme more functionally, the development of the numerical scheme to the new scheme is described and a numerical algorithm appropriate to the numerical scheme is developed. In order to evaluate the new scheme of the frozen soil model and its relevant algorithm, a series of model evaluations are conducted by comparing numerical results from the new model scheme with three observational data sets. The comparisons show that the results from the model are in good agreement with these data sets in both the change trend of variables and their magnitude values, and the new scheme, together with the algorithm, is more efficient and saves more computer time.  相似文献   

6.
The need for a well-defined lower boundary condition for atmospheric numerical models is well documented. This paper describes the formulation of a land surface parameterization, which will be used in atmospheric boundary-layer and mesoscale numerical models. The land surface model has three soil layers for the prediction of soil moisture and soil temperature. Model soil properties depend on soil texture and moisture content. A homogeneous distribution of vegetation is also included, so that transpiration may be included, as well as the interception of precipitation by vegetation elements. The simulated vegetation also affects the mean surface albedo and roughness characteristics.First ISLSCP Field Experiment (FIFE) data are used to verify the model. Three cases during the growing season were chosen, each case having different amounts of vegetation cover. Stand alone simulations, where observations of atmospheric and radiation variables are input to the land surface model, were performed. These simulations show that the model is able to reproduce observed surface energy budgets and surface temperatures reasonably well. The RMS differences between modeled and obsered turbulent fluxes of heat and moisture are quite comparable to those reported by more detailed land surface models.  相似文献   

7.
Soil temperature data are critical for understanding land–atmosphere interactions. However, in many cases, they are limited at both spatial and temporal scales. In the current study, an attempt was made to predict monthly mean soil temperature at a depth of 10 cm using artificial neural networks (ANNs) over a large region with complex terrain. Gridded independent variables, including latitude, longitude, elevation, topographic wetness index, and normalized difference vegetation index, were derived from a digital elevation model and remote sensing images with a resolution of 1 km. The good performance and robustness of the proposed ANNs were demonstrated by comparisons with multiple linear regressions. On average, the developed ANNs presented a relative improvement of about 44 % in root mean square error, 70 % in mean absolute percentage error, and 18 % in coefficient of determination over classical linear models. The proposed ANN models were then applied to predict soil temperatures at unsampled locations across the study area. Spatiotemporal variability of soil temperature was investigated based on the obtained database. Future work will be needed to test the applicability of ANNs for estimating soil temperature at finer scales.  相似文献   

8.
The temporal variability of soil wetness and its impact on climate   总被引:1,自引:0,他引:1  
The temporal variability of soil wetness and its interactions with the atmosphere were studied using a general circulation model of the atmosphere. It was found that time series of soil wetness computed by the model contain substantial amounts of variance at low frequencies. Long time-scale anomalies of soil moisture resemble the red noise response of the soil layer to white noise rainfall forcing. The dependence of the temporal variability of soil moisture on potential evaporation and precipitation is discussed.  相似文献   

9.
 Global soil moisture data of high quality and resolution are not available by direct observation, but are useful as boundary and initial conditions in comprehensive climate models. In the framework of the GSWP (Global Soil Wetness Project), the ISBA land-surface scheme of Météo-France has been forced with meteorological observations and analyses in order to study the feasibility of producing a global soil wetness climatology at a 1°×1° horizontal resolution. A control experiment has been performed from January 1987 to December 1988, using the ISLSCP Initiative I boundary conditions. The annual mean, the standard deviation and the normalised annual harmonic of the hydrologic fields have been computed from the 1987 monthly results. The global maps which are presented summarise the surface hydrologic budget and its annual cycle. The soil wetness index and snow cover distributions have been compared respectively to the results of the ECMWF reanalysis and to satellite and in situ observations. The simulated runoff has been validated against a river flow climatology, suggesting a possible underestimation over some large river basins. Besides the control run, other simulations have been performed in order to study the sensitivity of the hydrologic budget to changes in the surface parameters, the precipitation forcing and the runoff scheme. Such modifications have a significant impact on the partition of total precipitation into evaporation and runoff. The sensitivity of the results suggests that soil moisture remains one of the most difficult climatological parameters to model and that any computed soil wetness climatology must be considered with great caution. Received: 3 January 1997 / Accepted: 19 August 1987  相似文献   

10.
水稻不同生长期稻田能量收支、CO2通量模拟研究   总被引:11,自引:1,他引:11       下载免费PDF全文
利用国家自然科学基金重大项目“长江三角洲低层大气物理化学过程与生态系统的相互作用”野外观测资料,将1999年常熟稻田水稻四个不同生长期(插秧、拔节、抽穗和成熟)的太阳辐射、水汽压、气温和水平风速及降水作为简化生物圈(SiB2)模式的5个强迫变量,在合理设计模式参数的前提下,分别模拟了上述四个阶段的能量收支、CO2通量。模拟结果表明:在水稻不同生长阶段的感热、潜热和下垫面热通量占净辐射的比例不同;CO2通量的模拟结果与1996年国际稻田试验结果相似。该研究为利用自动气象站网的资料估计各站能量收支、CO2通量、土壤水分平衡、以及土壤温度廓线提供了新证据。  相似文献   

11.
半干旱区陆面模式参数对水分循环的敏感性研究   总被引:2,自引:0,他引:2  
植被覆盖对陆气之间物质和能量交换过程具有极其重要的影响,但植被覆盖对于交换过程的影响因子很多,关系复杂.作者研究了各种植被因子对陆气之间水分循环的作用和相对重要性.首先通过单点NO-AH模式对吉林通榆农田下垫面2004年土壤和边界层各物理量进行模拟,并与观测结果比较和评价,肯定了单点NOAH模式模拟能力.使用这一模式进行敏感试验,将与植被有关的参数分别在其取值范围取较大与较小值,比较水分循环各物理量如土壤湿度、土壤蒸发、植被蒸腾等的变化情况.试验表明在各参数中植被气孔阻抗、根系深度、土壤湿度初值和反照率对水分循环的影响较大,而叶面积指数、粗糙度和冠层阻抗则影响较小.  相似文献   

12.
The influence of vegetation and environmental conditions on the lake breeze and associated boundary-layer turbulence structure has been studied using a two-dimensional nonhydrostatic, compressible mesoscale model coupled with the SiB2 land-surface scheme. The results show that the impacts of vegetation on the lake effects are dependent on the environmental conditions, such as soil wetness and background wind, as well as vegetation characteristics. Both soil wetness and background wind play important roles in modifying lake effects on boundary-layer turbulence and the lake breeze, while the effects of vegetation type are secondary compared to the other factors. Without background wind, and under the same soil wetness, the maximum horizontal windspeed of the lake breeze is insensitive to the type of vegetation. Soil wetness can greatly affect both the maximum horizontal windspeed and the maximum vertical velocities of the lake breeze. With background wind, the lake-breeze circulations, upward motion regions, and boundary-layer turbulence structure all change markedly. A weaker background wind can strengthen the lake breeze, while stronger background wind suppresses the lake breeze circulations. The distribution of sensible and latent heat fluxes is also very sensitive to the soil wetness and background wind. However, for the same soil wetness (0.25 and 0.4 were chosen), there is only a small difference in the distribution of sensible and latent heat fluxes between the bare soil and vegetated soil or between the types of vegetated soils.  相似文献   

13.
Large-scale conversion of tropical forests into pastures or annual crops will likely lead to changes in the local microclimate of those regions. Larger diurnal fluctuations of surface temperature and humidity deficit, increased surface runoff during rainy periods and decreased runoff during the dry season, and decreased soil moistrue are to be expected.It is likely that evapotranspiration will be reduced because of less available radiative energy at the canopy level since grass presents a higher albedo than forests, also because of the reduced availability of soil moisture at the rooting zone primarily during the dry season. Recent results from general circulation model (GCM) simulations of Amazonian deforestation seem to suggest that the equilibrium climate for a grassy vegetation in Amazonia would be one in which regional precipitation would be significantly reduced.Global climate changes probably will occur if there is a marked change in rainfall patterns in tropical forest regions as a result of deforestation. Besides that, biomass burning of tropical forests is likely adding CO2 into the atmosphere, thus contributing to the enhanced greenhouse warming.  相似文献   

14.
A model of the ground surface temperature for micrometeorological analysis   总被引:1,自引:0,他引:1  
Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.  相似文献   

15.
一个简单的陆面过程模式   总被引:5,自引:0,他引:5       下载免费PDF全文
戴永久  曾庆存  王斌 《大气科学》1997,21(6):705-716
本模式为针对大气环流模式所发展的一个简单的陆面过程模式,它包含:(1)地表温度计算,(2)冠层叶面贮水量和土壤湿度计算,(3)陆面与大气之间的水分和能量交换。对于表面温度和含水量的计算,采用的是联立求解计算方案,即耦合计算。植被冠层叶面的辐射特性和冠层形态对冠层中的辐射交换的影响得到有效和尽可能简单的模拟。另外,植被的气孔阻抗、表面与大气之间的水热交换通量和土壤中的水热输导作了较为细致的描写。利用此模式开展了对两个不同覆盖类型的陆面过程的模拟,模拟和观测的表面通量、温度和湿度较为相近。  相似文献   

16.
17.
A Similarity Theory for Saltation and Application to Aeolian Mass Flux   总被引:7,自引:0,他引:7  
A similarity theory for saltation is presented. To derive the theory, a saltation model is developed and applied to simulating particle motion in turbulent flows. The numerical results are then fitted to simple universal expressions, or similarity functions. This approach allows the determination of saltation mass flux and other quantities. While the theory can be general, we focus on studying the saltation mass flux profile q(z). It is shown that q(z) is determined by friction velocity, aerodynamic roughness length and soil particle size distribution. There are two limiting situations, i.e., the saltation of large particles in weak turbulence and that of small particles in strong turbulence, for these two cases, q(z) is respectively exponential and Gaussian. Modified saltation has an intermediate saltation mass flux profile. For multi-sized particles, q(z) is a weighted superposition of many different profiles. The theory is compared with wind-tunnel observations, and uncertainties of the theory are discussed.  相似文献   

18.
 Soil wetness, in both its global distribution and the seasonal change, has been mainly estimated by the water balance approach using the bucket model which regards the soil wetness as soil moisture. The soil moisture data of Mintz and Serafini is one of the representatives examples, however, this method has problems since it does not incorporate the effects of flooding, snow accumulation on the ground, and so on. In this study, we use the Amazon and Volga river basin to carry out a case study to evaluate these problems. In the Amazon river basin, the annual range of the entire terrestrial water storage, about 400 mm, can be mainly explained by the rising and falling of the water level, and flooding around river channels, although soil moisture data of Mintz and Serafini is almost constant throughout the year. In the Volga river basin, snow accumulates on the ground producing 80 mm of water equivalent during winter, however the soil moisture data of Mintz and Serafini is almost saturated in winter. Received: 30 October 1996 / Accepted: 4 June 1997  相似文献   

19.
Principles for incorporating the upstream effects of deep sills into numerical ocean circulation models using nonlinear analytical hydraulic models are discussed within the context of reduced gravity flow. A method is developed allowing the upstream influence of a numerically unresolvable deep sill or width contraction to be reproduced. The method consists of placing an artificial boundary in the numerical model's overflowing layer at some distance upstream of the actual sill or width contraction of the deep strait. Given the model state at time t, the dependent flow variables are then predicted at the artificial boundary at time t + Δt by using the method of characteristics in combination with quasi-steady hydraulic laws. The calculation requires the use of Riemann invariants and examples are given for a simple nonrotating flow and for rotating channel flow with uniform potential vorticity. The computation is considerably simplified by linearizing the relevant equations in the vicinity of the artificial boundary, resulting in a linear wave reflection problem. The reflection coefficients for the two cases are calculated and these can be used directly to numerically satisfy the boundary condition in a straightforward way.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号