首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of the electric currents distributed over the volume of an active region on the Sun is considered from the standpoint of solar flare physics. We suggest including the electric currents in a topological model of the magnetic field in an active region. Typical values of the mutual inductance and the interaction energy of the coronal electric currents flowing along magnetic loops have been estimated for the M7/1N flare on April 27, 2006. We show that if these currents actually make a significant contribution to the flare energetics, then they must manifest themselves in the photosphericmagnetic fields. Depending on their orientation, the distributed currents can both help and hinder reconnection in the current layer at the separator during the flare. Asymmetric reconnection of the currents is accompanied by their interruption and an inductive change in energy. The reconnection of currents in flares differs significantly from the ordinary coalescence instability of magnetic islands in current layers. Highly accurate measurements of the magnetic fields in active regions are needed for a quantitative analysis of the role of distributed currents in solar flares.  相似文献   

2.
Wang  Haimin 《Solar physics》1997,174(1-2):163-173
This paper reviews studies of the relationship between the evolution of vector magnetic fields and the occurrence of major solar flares. Most of the data were obtained by the video magnetograph systems at Big Bear Solar Observatory (BBSO) and Huairou Solar Observatory (HSO). Due to the favorable weather and seeing conditions at both stations, high-resolution vector magnetograph sequences of many active regions that produced major flares during last solar maximum (1989–1993) have been recorded. We have analyzed several sequences of magnetograms to study the evolution of vector magnetic fields of flare productive active regions. The studies have focused on the following three aspects: (1) processes which build up magnetic shear in active regions; (2) the pre-flare magnetic structure of active regions; and (3) changes of magnetic shear immediately preceding and following major flares. We obtained the following results based on above studies: (1) Emerging flux regions (EFRs) play very important roles in the production of complicated photospheric flow patterns, magnetic shear and flares. (2) Although the majority of flares prefer to occur in magnetically sheared regions, many flares occurred in regions without strong photospheric magnetic shear. (3) We found that photospheric magnetic shear increased after all the 6 X-class flares studied by us. We want to emphasize that this discovery is not contradictory to the energy conservation principle, because a flare is a three-dimensional process, and the photosphere only provides a two-dimensional boundary condition. This argument is supported by the fact that if two initial ribbons of a flare are widely separated (which may correspond to a higher-altitude flare), the correlation of the flare with strong magnetic shear is weak; if the two ribbons of a flare are close (which may correspond to a lower-altitude flare), its correlation with the strong shear is strong. (4) We have analyzed 18 additional M-class flares observed by HSO in 1989 and 1990. No detectable shear change was found for all the cases. It is likely that only the most energetic flares can affect the photospheric magnetic topology.  相似文献   

3.
The presently prevailing theories of solar flares rely on the hypothetical presence of magnetic flux tubes beneath the photosphere and the two subsequent hypotheses, their emergence above the photosphere and explosive magnetic reconnection, converting magnetic energy carried by the flux tubes to solar flare energy. In this paper, we discuss solar flares from an entirely different point of view, namely in terms of power supply by a dynamo process in the photosphere. By this process, electric currents flowing along the magnetic field lines are generated and the familiar ‘force-free’ fields or the ‘sheared’ magnetic fields are produced. Upward field-aligned currents thus generated are carried by downward streaming electrons; these electrons can excite hydrogen atoms in the chromosphere, causing the optical Hα flares or ‘low temperature flares’. It is thus argued that as the ‘force-free’ fields are being built up for the magnetic energy storage, a flare must already be in progress.  相似文献   

4.
The high-resolution vector magnetograms obtained with the solar telescope magnetograph of the Beijing Astronomical Observatory of the active region AR 4862 on 7 October, 1987, close before and after a solar flare, were used to calculate the electric current densities in the region. Then the relations between the flare and the magnetic fields as well as the electric currents were studied. The results are: (i) the transverse magnetic fields, and hence the longitudinal electric currents in the region before and after the flare, are evidently different, while the longitudinal magnetic fields remain unchanged; (ii) this confirms the result obtained previously that the flare kernels coincide with the peaks of longitudinal electric density in active regions; (iii) the close relation between the flare kernels and the electric currents indicates that the variations of the transverse magnetic fields and the longitudinal electric currents arise not from the general global evolution of the active region, but from the flare. These results tend to the conclusion that the triggering of a solar flare might be related with the plasma instability caused by the surplus longitudinal electric currents at some local regions in the solar atmosphere.  相似文献   

5.
Observations of radio emission at 3.3 mm wavelength associated with magnetic fields in active regions are reported. Results of more than 200 regions during the years 1967–1968 show a strong correlation between peak enhanced millimeter emission, total flux of the longitudinal component of photospheric magnetic fields and the number of flares produced during transit of active regions. For magnetic flux greater than 1021 maxwells flares will occur and for flux of 1023 maxwells the sum of the H flare importance numbers is about 40. The peak millimeter enhancement increases with magnetic flux for regions which subsequently flared. Estimates of the magnetic energy available and the correlation with flare production indicate that the photospheric fields and probably chromospheric currents are responsible for the observed pre-flare heating and provide the energy of flares.This work was supported in part by NASA Contract No. NAS2-7868 and in part by Company funds of The Aerospace Corporation.  相似文献   

6.
Using one-minute cadence vector magnetograms from Big Bear Solar Observatory (BBSO), we analyze the temporal behavior of derived longitudinal electric currents associated with two flares on July 26, 2002. One of the events is an M1.0 flare which occurred in active region NOAA 10044, while the other is an M8.7 flare in the adjacent region 10039. Rapid changes of magnetic fields in the form of flux emergence are found to be associated with both of these events. However, the temporal behavior of electric currents are very different. For the M1.0 flare, the longitudinal electric current density drops rapidly near the flaring neutral line; while for the M8.7 flare, the current density rapidly increases, confirming the picture of the current-carrying flux emergence. We offer a possible explanation for such a difference: magnetic reconnection at different heights for the two events, near the photosphere for the M1.0 flare, and higher up for the M8.7 flare.  相似文献   

7.
The presently prevailing theories of sunspots and solar flares rely on the hypothetical presence of magnetic flux tubes beneath the photosphere and the two subsequent hypotheses, their emergence above the photosphere and explosive magnetic reconnection, converting magnetic energy carried by the flux tubes for solar flare energy.In this paper, we pay attention to the fact that there are large-scale magnetic fields which divide the photosphere into positive and negative (line-of-sight) polarity regions and that they are likely to be more fundamental than sunspot fields, as emphasized most recently by McIntosh (1981). A new phenomenological model of the sunspot pair formation is then constructed by considering an amplification process of these largescale fields near their boundaries by shear flows, including localized vortex motions. The amplification results from a dynamo process associated with such vortex flows and the associated convergence flow in the largescale fields.This dynamo process generates also some of the familiar “force-free” fields or the “sheared” magnetic fields in which the magnetic field-aligned currents are essential. Upward field-aligned currents generated by the dynamo process are carried by downward streaming electrons which are expected to be accelerated by an electric potential structure; a similar structure is responsible for accelerating auroral electrons in the magnetosphere. Depending on the magnetic field configuration and the shear flows, the current-carrying electrons precipitate into different geometrical patterns, causing circular flares, umbral flares, two-ribbon flares, etc. Thus, it is suggested that “low temperature flares” are directly driven by the photospheric dynamo process.  相似文献   

8.
We compare large-scale filtergrams of a hitherto neglected class 1B flare with previously published vector magnetograms and maps of photospheric longitudinal electric current density (Hagyard et al., 1985). The vector magnetic fields were mapped simultaneously with the eruption of this flare. We find a coincidence, to within the ±2″ registration accuracy of the data, between the flare kernels and the locations of maximum shear and of peak values in the longitudinal electric current density. The kernels brighten in a way which implies that the preflare heating and the main release of flare energy are spatially coincident within the limits of resolution (≈2″). A pronounced magnetic shear exists in the vertical direction at the location of the strongest flare kernels. We provide evidence that the electric currents could be maintained by the energy stored in the sheared transverse magnetic field and that the amount of energy released is proportional to the amount stored. These circumstances are consistent with theories in which flares are triggered by plasma instabilities due to surplus electric currents.  相似文献   

9.
F. Axisa 《Solar physics》1974,35(1):207-224
This paper investigates the possibility that the particular location of flare production sites in an active region is intimately connected to the production of type III radio bursts as well as centimetric and hard X-ray events. For the few active regions analysed (viz. McMath 8863, 8905, 8907 and 8921) it is shown that even a crude statistical test is sufficient in revealing significant differences concerning the emissions of these radiations by flares located in various flare production sites. In particular, flares located outside the general bipolar pattern of the active region are characterized by a higher type III flare association rate (? 50 %) than those taking place inside of it (? 20 %). Centimetric and hard X-ray events are more likely to be expected in connection with flares located inside strong magnetic fields arising from well developed sunspots. Such results are pointing out that the concept of ‘flare production sites’ is important not only in relation with the Hα flare activity but also in relation with the non-thermal emissions accompanying the flares. Probably this is due to changing magnetic configuration from one flare site to the other.  相似文献   

10.
The energy source of a flare is the magnetic field in the corona. A topological model of the magnetic field is used here for interpreting the recently discovered drastic changes in magnetic field associated with solar flares. The following observational results are self‐consistently explained: (1) the transverse field strength decreases at outer part of active regions and increases significantly in their centers; (2) the center‐of‐mass positions of opposite magnetic polarities converge towards the magnetic neutral line just after flares onset; (3) the magnetic flux of active regions decreases steadily during the course of flares. For X‐class flares, almost 50% events show such changes. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
NOAA active region 6659, during its June 1991 transit across the solar disk, showed highly sheared vector magnetic field structures and produced numerous powerful flares, including five white-light flares. Photospheric vector magnetograms of this active region were obtained at the Huairou Solar Observing Station of the Beijing Astronomical Observatory. After the resolution of the 180° ambiguity of the transverse magnetic field and transformation of off-center vector magnetograms to the heliographic plane, we have determined the photospheric vertical current density and discussed the relationship with powerful flares. The following results were obtained: (a) The powerful 3B/X12 flare on June 9, 1991 was triggered by the interaction between the large-scale electric current system and magnetic flux of opposite polarity. (b) The kernels of the powerful Hβ flare (sites of the white-light flare) were close to the peaks of the vertical electric current density. (c) Some small-scale structures of the vertical current relative to the magnetic islands of opposite polarity have not been found. This probably implies that the electric current is not always parallel to the magnetic field in solar active regions.  相似文献   

12.
陈协珍 《天文学报》1996,37(1):51-59,T001
本文利用紫金山天文台太阳光谱仪缝前附属Daystar滤光器拍摄的,发生在NOAA5395活动区中的三个耀斑的Hα单色光资料,对比北京天文台怀柔观测站取得的光球磁场资料,研究耀斑产生位置与光球磁场演化的关系,结果表明:(1)在所研究的50个耀斑亮核中,有38个位于新浮磁流区附近,另有少数亮核出现在磁对消区;(2)耀斑亮核多集中在横场方向交叉,剪切角大的复杂磁区,耀斑后多数区域磁场结构简化;(3)耀斑  相似文献   

13.
An investigation of 531 active regions was made to determine the correlation between energy released by flares and the available energy in magnetic fields of the regions. Regions with magnetic flux greater than 1021 maxwell during the years 1967–1969, which included sunspot maximum, were selected for the investigation. A linear regression analysis of flare production on magnetic flux showed that the flare energy is correlated with magnetic energy with a coeificient of correlation of 0.78. Magnetic classification and field configuration also significantly affect the production of flares.This work was supported by the Aerospace Sponsored Research Program.  相似文献   

14.
Lines of magnetic force, computed under the assumption that the solar corona is free of electric currents, have been compared with loop prominence systems associated with three flares in August, 1972. The computed fields closely match the observations of loops at a height of 40000 km at times 3–4 h after onset of the associated flares. Inferred magnetic field intensities in the loops range from 1300 G where the loops converge into a sunspot to 50–80 G at 40 000 km above the photosphere. The first-seen and lowest-lying loops are sheared with respect to the calculated fields. Higher loops conform more closely to the current-free fieldlines. A model of Barnes and Sturrock is used to relate the degree of shear to the excess magnetic energy available during the flare of August 7. On various lines of evidence, it is suggested that magnetic energy was available to accelerate particles not only during the impulsive phase of the flare, but also during the following 2–3 h. The particle acceleration region seems to be in the magnetic fields just above the visible loops. The bright outer edges of the flare ribbons are identified as particle impact regions. The dense knots of loop prominence material fall to the ribbons' inner edges.On leave from Tel Aviv University, Tel Aviv, Israel.  相似文献   

15.
Using a newly developed Aerospace digital videomagnetograph, three solar active regions are studied as to their magnetic configurations and their flare productivity. These three regions have very different types of magnetic configurations and different types of flare productivity. We review previous theoretical and experimental research on flares and magnetic energy storage, and discuss various ways to observe magnetic energy release due to flares. Results for six subflares are presented. Five showed no measurable magnetic energy change and one result is questionable.We show three counterexamples to Zirin's (1972) contention that as a rule H plage brightness is proportional to magnetic field strength. Each of these three cases involved two plage regions of the same polarity and equal field strengths with one of the plages adjacent to a neutral line. In all three cases the plage region nearer the neutral line was much brighter.  相似文献   

16.
Relationship between the geoefficiency of the solar flares as well as of the active regions passing the central meridian of the Sun and the configuration of the large scale solar magnetic field is studied.It is shown that if the tangential component of the large scale magnetic field at the active region or at the flare region is directed southwards, that region and that flare produce geomagnetic storm. In case when the tangential magnetic field is directed northward, the active region and the flares occurring at that region do not cause any geomagnetic disturbance.An index of the geoefficiency of the solar flares and of the active regions is proposed.  相似文献   

17.
Through coordinated observations made during the Max'91 campaign in June 1989 in Potsdam (magnetograms), Debrecen (white light and H), and Meudon (MSDP), we follow the evolution of the sunspot group in active region NOAA 5555 for 6 days. The topology of the coronal magnetic field is investigated by using a method based on the concept of separatrices - applied previously (Mandriniet al., 1991) to a magnetic region slightly distorted by field-aligned currents. The present active region differs by having significant magnetic shear. We find that the H flare kernels and the main photospheric electric current cells are located close to the intersection of the separatrices with the chromosphere, in a linear force-free field configuration adapted to the observed shear. Sunspot motions, strong currents, isolated polarities, or intersecting separatrices are not in themselves sufficient to produce a flare. A combination of them all is required. This supports the idea that flares are due to magnetic reconnection, when flux tubes with field-aligned currents move towards the separatrix locations.  相似文献   

18.
A topological model with magnetic reconnection at two separators in the corona is used to account for the recently discovered changes of the photospheric magnetic field in the active region NOAA 9077 during the July 14, 2000 flare. The model self-consistently explains the following observed effects: (1) the magnetic field strength decreases on the periphery of the active region but increases in its inner part near the neutral line of the photospheric magnetic field; (2) the center-of-mass positions of the fields of opposite (northern and southern) polarities converge; and (3) the magnetic flux of the active region decreases after the flare. The topological model gives not only a qualitative interpretation of the flare phenomena (the structure of the interacting magnetic fluxes in the corona, the location of the energy sources, the shape of the flare ribbons and kernels in the chromosphere and photosphere), but also correct quantitative estimates of the large-scale processes that form the basis for solar flares. The electric field emerging in the flare during large-scale reconnection is calculated. The electric field strength correlates with the observed intensity of the hard X-ray bremsstrahlung, suggesting an electron acceleration as a result of reconnection.  相似文献   

19.
Sequences of line-of-sight (LOS) magnetograms recorded by the Michelson Doppler Imager are used to quantitatively characterize photospheric magnetic structure and evolution in three active regions that rotated across the Sun??s disk during the Whole Heliosphere Interval (WHI), in an attempt to relate the photospheric magnetic properties of these active regions to flares and coronal mass ejections (CMEs). Several approaches are used in our analysis, on scales ranging from whole active regions, to magnetic features, to supergranular scales, and, finally, to individual pixels. We calculated several parameterizations of magnetic structure and evolution that have previously been associated with flare and CME activity, including total unsigned magnetic flux, magnetic flux near polarity-inversion lines, amount of canceled flux, the ??proxy Poynting flux,?? and helicity flux. To catalog flare events, we used flare lists derived from both GOES and RHESSI observations. By most such measures, AR 10988 should have been the most flare- and CME-productive active region, and AR 10989 the least. Observations, however, were not consistent with this expectation: ARs 10988 and 10989 produced similar numbers of flares, and AR 10989 also produced a few CMEs. These results highlight present limitations of statistics-based flare and CME forecasting tools that rely upon line-of-sight photospheric magnetic data alone.  相似文献   

20.
We investigated the structure of magnetic field and vertical electric currents in two active regions through a comparison of the observed transverse field with the potential field, which was computed according to Neumann boundary-value problem for the Laplace equation using the observed H z -value. Electric currents were calculated from the observations of the transverse magnetic field.There exist two systems of vertical electric currents in active regions: a system of local currents and a global one. The global current is about 2 × 1012 A. In the leading part of the active regions it is directed upward, and in the tail downward.Flare activity is closely connected with the value and direction of both local and global currents: the flares tend to apear in places with upward currents. The luminosity of H flocculi is also connected with vertical electric currents; the brighter the flocculi, the more frequently they appear in places of upward electric currents.The sensitivity of H emission to the sign of the current suggests that charged particles accelerated in the upper parts of magnetic loops may be responsible for these formations. Joule heating might be important for flocculi, if plasma conductivity is about 5 × 108 c.g.s.e.A model of a flare is suggested based on current redistribution in a system of emerging loops due to changes of loop inductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号