首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we have considered the flat FRW model of the universe in (n+2)-dimensions filled with the dark matter and the magnetic field. We present the Hubble parameter in terms of the observable parameters Ω m0 and H 0 with the redshift z and the other parameters like B 0, ω, μ 0, δ, n, w m . The natures of magnetic field B, deceleration parameter q and $\operatorname{Om}$ diagnostic have also been analyzed for accelerating expansion of the universe. From Stern data set (12 points), we have obtained the bounds of the arbitrary parameters by minimizing the χ 2 test. The best-fit values of the parameters are obtained by 66 %, 90 % and 99 % confidence levels. Now to find the bounds of the parameters (B 0,ω) and to draw the statistical confidence contour, we fixed four parameters μ 0, δ, n, w m . Here the parameter n determines the higher dimensions and we perform comparative study between three cases: 4D (n=2), 5D (n=3) and 6D (n=4) respectively. Next due to joint analysis with BAO observation, we have also obtained the bounds of the parameters (B 0,ω) by fixing other parameters μ 0, δ, n, w m for 4D, 5D and 6D. The best fit of distance modulus for our theoretical model and the Supernova Type Ia Union2 sample are drawn for different dimensions.  相似文献   

2.
Under the assumption that the photospheric quiet Sun magnetic field is turbulent, the cancellation function has previously been used to estimate the true, resolution-independent mean, unsigned vertical flux 〈|B z |〉true. We show that the presence of network elements, noise, and seeing complicate the measurement of accurate cancellation functions and their power law exponents κ. Failure to exclude network elements previously led to estimates that were too low for both the cancellation exponent κ and 〈|B z |〉true. However, both κ and 〈|B z |〉true are overestimated due to noise in magnetograms. While no conclusive value can be derived with data from current instruments, our Hinode/SP results of κ?0.38 and 〈|B z |〉true?270 gauss can be taken as upper bounds.  相似文献   

3.
By the test particle method, we have investigated the kinematic characteristics of the electrons in the reconnecting current sheet with a guiding magnetic field Bz after they are accelerated by the supper-Dreicer electric field Ez. Firstly, the influence of the guiding magnetic field Bz on the particle acceleration is discussed under the assumption that Bz is constant in magnitude but different in orientation with respect to the electric field. In this case, the variation of the Bz direction directly leads to the variation of electron trajectories and makes electrons leave the current sheet along different paths. If Bz is parallel to Ez, the pitch angles of the accelerated electrons are close to 180°. If Bz is anti-parallel to Ez, the pitch angles of the accelerated electrons are close to 0°. The orientation of the guiding magnetic field just makes the electric field accelerate selectively the electrons in different regions, but does not change the energy distribution of electrons, and the finally derived energy spectrum is the common power-law spectrum E. In typical coronal conditions, γ is about 2.9. The further study indicates that the magnitude of γ depends on the strengths of the guiding magnetic field and reconnecting electric field, as well as the scale of the current sheet. Then, the kinematic characteristics of the accelerated electrons in the current sheet with multiple X-points and O-points are also studied. The result indicates that the existences of the X-points and O-points have the particles constrained in the accelerating region to obtain the maximum acceleration, and the final energy spectrum has the characteristics of multi-power law spectra.  相似文献   

4.
Auroral boundary variations and the interplanetary magnetic field   总被引:1,自引:0,他引:1  
This paper describes a DMSP data set of 150 auroral images during magnetically quiet times which have been analyzed in corrected geomagnetic local time and latitudinal coordinates and fit to offset circles. The fit parameters R (circle radius) and (X, Y) (center location) have been compared to the hourly interplanetary magnetic field (IMF) prior to the time of the satellite scan of the aurora. The results for variation of R with Bz, agree with previous works and generally show about a 1° increase of R with increase of southward Bz by 1 nT. The location of the circle center also has a clear statistical shift in the Southern Hemisphere with IMF By such that the southern polar cap moves towards dusk (dawn) with By > (By < 0).  相似文献   

5.
We study the interplanetary features and concomitant geomagnetic activity of the two high-speed streams (HSSs) selected by the Whole Heliosphere Interval (WHI) campaign participants: 20 March to 16 April 2008 in Carrington rotation (CR) 2068. This interval was chosen to perform a comprehensive study of HSSs and their geoeffectiveness during this ??deep?? solar minimum. The two HSSs within the interval were characterized by fast solar-wind speeds (peak values >?600 km?s?1) containing large-amplitude Alfvénic fluctuations, as is typical of HSSs during normal solar minima. However, the interplanetary magnetic field (IMF) magnitude [B o] was exceptionally low (??3??C?5 nT) during these HSSs, leading to lower than usual IMF B z values. The first HSS (HSS1) had favorable IMF polarity for geomagnetic activity (negative during northern Spring). The average AE and Dst for the HSS1 proper (HSS1P) were +?258 nT and ??21 nT, respectively. The second HSS (HSS2) had a positive sector IMF polarity, one that is less favorable for geomagnetic activity. The AE and Dst index averages were +?188 nT and ??7 nT, both lower than corresponding numbers for the first event, as expected. The HSS1P geomagnetic activity is comparable to, and the HSS2P geomagnetic activity lower than, corresponding observations for the previous minimum (1996). Both events?? geomagnetic activities are lower than HSS events previously studied in the declining phase (in 2003). In general, V sw was faster for the HSSs in 2008 compared to 1996. The southward IMF B z was lower in the former. The product of these two parameters [V sw and IMF B z ] comprises the solar-wind electric field, which is most directly associated with the energy input into the magnetosphere during the HSS intervals. Thus the combined effects led to the solar wind energy input in 2008 being slightly less than that in 1996. A detailed analysis of magnetic-field variances and Alfvénicity is performed to explore the characteristics of Alfvén waves (a central element in the geoeffectiveness of HSSs) during the WHI. The B z variances in the proto-CIR (PCIR) were ???30 nT2 and <?10 nT2 in the high speed streams proper.  相似文献   

6.
We present a systematic investigation of the parametric evolution of both retrograde and direct families of periodic motions as well as their stability in the inner region of the peripheral primaries of the planar N-body regular polygonal configuration (ring model). In particular, we study the change of the bifurcation points as well as the change of the size and dynamical structure of the rings of stability for different values of the parameters ν = N?1 (number of peripheral primaries) and β (mass ratio). We find some types of bifurcations of families of periodic motions, namely period doubling pitchfork bifurcations, as well as bifurcations of symmetric and non-symmetric periodic orbits of the same period. For a given value of N ? 1, the intervals Δx and ΔC of the rings of stability (where the periodic orbits are stable) of both retrograde and direct families increase with β increasing, while for a given value of β, the interval ΔC decreases with increasing N ? 1. In general, it seems that the dynamical properties of the system depend on the ratio (N ? 1)/β. The size of each ring of stability tends to zero as the ratio (N ? 1)/β → ∞, that is, if N ? 1→∞ or β → 0, the size of each ring of stability tends to zero (Δx → 0 and ΔC → 0) and, in general, the retrograde and direct families tend to disappear. This study gives us interesting information about the evolution of these two families and the changes of the bifurcation patterns since, for example, in some cases the stability index A oscillates between ?1 ≤ Α ≤ + 1. Each time the family becomes critically stable a new dynamical structure appears. The ratios of the Jacobian constant C between the successive critical points, C i /C i+1, tend to 1. All the above depend on the parameters N ? 1, β and show changes in the topology of the phase space and in the dynamical properties of the system.  相似文献   

7.
J. J. Aly 《Solar physics》1992,138(1):133-162
Some useful properties of a finite energy, constant-α, force-free magnetic field B α occupying a half-space D are presented. In particular:
  1. Fourier and Green representations of B α are obtained and used to derive conditions for the existence and uniqueness of a B α having a given normal component B z on the boundary ?D.
  2. The asymptotic behaviour of B α at infinity as well as stability results against changes in the boundary condition on ?D and in the value of α are established.
  3. The energy of B α is shown to be smaller than the energy of the open field having the same B z on ?D, thus confirming an earlier conjecture (Aly, 1984).
  4. B α is proved to not be a Taylor-Heyvaerts-Priest state, in spite of the fact that its relative helicity H is finite and that it is the only solution of the Lagrange-Euler equation associated with the problem of minimizing the energy among all the fields having the same value of H and the same B z on ?D.
  相似文献   

8.
The cosmographic expansion history of the universe is investigated by using the 557 type Ia supernovae from the Union2 Compilation set along with the current estimates involving the product of the CMB acoustic scale ?A and the BAO peak at two different redshifts. Using a well-behaved parameterization for the deceleration parameter, q(z) = q0 + q1z/(1 + z), we estimate the accelerating redshift zacc = −q0/(q0 + q1) (at which the universe switches from deceleration to acceleration) and investigate the influence of a non-vanishing spatial curvature on these estimates. We also use the asymptotic value of q(z) at high-z to place more restrictive bounds on the model parameters q0 and q1, which results in a more precise determination of the epoch of cosmic acceleration.  相似文献   

9.
We consider a late closed universe of which scale factor is a power function of time using observational data from combined WMAP5+BAO+SN Ia dataset and WMAP5 dataset. The WMAP5 data give power-law exponent, α=1.01 agreeing with the previous study of H(z) data while combined data gives α=0.985. Considering a scalar field dark energy and dust fluid evolving in the power-law universe, we find field potential, field solution and equation of state parameters. Decaying from dark matter into dark energy is allowed in addition to the non-interaction case. Time scale characterizing domination of the kinematic expansion terms over the dust and curvature terms in the scalar field potential are found to be approximately 5.3 to 5.5 Gyr. The interaction affects in slightly lowering the height of scalar potential and slightly shifting potential curves rightwards to later time. Mass potential function of the interacting Lagrangian term is found to be exponentially decay function.  相似文献   

10.
The geomagnetic activity is the result of the solar wind–magnetosphere interaction. It varies following the basic 11-year solar cycle; yet shorter time-scale variations appear intermittently. We study the quasi-periodic behavior of the characteristics of solar wind (speed, temperature, pressure, density) and the interplanetary magnetic field (B x , B y , B z , β, Alfvén Mach number) and the variations of the geomagnetic activity indices (D ST, AE, A p and K p). In the analysis of the corresponding 14 time series, which span four solar cycles (1966?–?2010), we use both a wavelet expansion and the Lomb/Scargle periodograms. Our results verify intermittent periodicities in our time-series data, which correspond to already known solar activity variations on timescales shorter than the sunspot cycle; some of these are shared between the solar wind parameters and geomagnetic indices.  相似文献   

11.
The results of longitudinal magnetic field measurements B z in the hot accretion spot in three classical T Tauri stars (CTTS) are reported. In all three stars the magnetic field is detected at a level above 2σ in the formation region of the narrow component of the He I 5876 Å emission line. In the case of DS Tau the longitudinal field B z in the hot spot was also measured from the narrow emission components of the Na I D lines, implying +0.8 ± 0.3 kG, which is equal to the B z field component measured from the He I 5876 Å line. Our results suggest that the 6-m telescope of the Special Astrophysical Observatory can be used to study magnetic fields in the hot spots of CTTS with magnitudes down to 13m, making it possible to double the number of stars of this type with measured B z values in the accretion zone.  相似文献   

12.
Using the explicit form of the functions to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, and pressure in the finite range of frequencies v 1vv 2 are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60–600 GHz frequency interval at the temperature T=2.72548 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant σ are calculated. In the case of the dipole spectrum, the constants a and σ, and the radiative and thermodynamic properties of the CMB radiation are obtained using the mean amplitude T amp=3.358 mK. It is shown that the Doppler shift leads to a renormalization of the radiation density constant a, the Stefan-Boltzmann constant σ, and the corresponding constants for the thermodynamic functions. The expressions for new astrophysical parameters, such as the entropy density/Boltzmann constant, and number density of CMB photons are obtained. The radiative and thermodynamic properties of the Cosmic Microwave Background radiation for the monopole and dipole spectra at redshift z≈1089 are calculated.  相似文献   

13.
The photometric properties of local areas on Mars are studied using Minnaert's rule of surface scattering to analyze Mariner 6 and 7 Infrared Spectrometer data. Several bright deserts, Hellas, and the south polar cap are found to obey Minnaert's function well. The coefficients B0(α, λ) and k(α, λ) are obtained at α = 39, 48, 56, 84° and λ = 1.85, 2.23, 3.50 μm. Observed bright regions all have similar values of k, except for Hellas and the south polar cap. The lower k of Hellas is apparently caused by microscopic effects rather than by large-scale roughness due to cratering. The higher k of the cap is similar to terrestrial snows in the visual at the same phase angle. Using existing Earth-based observations, at smaller α and λ, a bolometric Bond albedo of A1 = 0.24 ± 0.05 is calculated.  相似文献   

14.
RX J1856.5–3754 is one of the brightest nearby isolated neutron stars, and considerable observational resources have been devoted to it. However, current models are unable to satisfactorily explain the data. We show that our latest models of a thin, magnetic, partially ionized hydrogen atmosphere on top of a condensed surface can fit the entire spectrum, from X-rays to optical, of RX J1856.5–3754, within the uncertainties. In our simplest model, the best-fit parameters are an interstellar column density N H≈1×1020 cm?2 and an emitting area with R ≈17 km (assuming a distance to RX J1856.5–3754 of 140 pc), temperature T ≈4.3×105 K, gravitational redshift z g ~0.22, atmospheric hydrogen column y H≈1 g cm?2, and magnetic field B≈(3–4)×1012 G; the values for the temperature and magnetic field indicate an effective average over the surface.  相似文献   

15.
I. Sabbah 《Solar physics》2007,245(1):207-217
Neutron monitor data observed at Climax (CL) and Huancayo/Haleakala (HU/HAL) have been used to calculate the amplitude A of the 27-day variation of galactic cosmic rays (CRs). The median primary rigidity of response, R m, for these detectors encompasses the range 18 ≤R m≤46 GV and the threshold rigidity R 0 covers the range 2.97≤R 0≤12.9 GV. The daily average values of CR counts have been harmonically analyzed for each Bartels solar rotation (SR) during the period 1953 – 2001. The amplitude of the 27-day CR variation is cross-correlated to solar activity as measured by the sunspot number R, the interplanetary magnetic field (IMF) strength B, the z-component B z of the IMF vector, and the tilt angle ψ of the heliospheric current sheet (HCS). It is anticorrelated to the solar coronal hole area (CHA) index as well as to the solar wind speed V. The wind speed V leads the amplitude by 24 SRs. The amplitude of the 27-day CR variation is better correlated to each of the these parameters during positive solar polarity (A>0) than during negative solar polarity (A<0) periods. The CR modulation differs during A>0 from that during A<0 owing to the contribution of the z-component of the IMF. It differs during A 1>0 (1971 – 1980) from that during A 2>0 (1992 – 2001) owing to solar wind speed.  相似文献   

16.
We studied the relationship between the power-law exponent γ on the rigidity R of the spectrum of galactic cosmic-ray (GCR) intensity variation (δD(R)/D(R)∝R ?γ ) and the exponents ν y and ν z of the power spectral density (PSD) of the B y and B z components of the interplanetary magnetic field (IMF) turbulence (PSD~f ?ν , where f is the frequency). We used the data from neutron monitors and IMF for the period of 1968?–?2002. The exponents ν y and ν z were calculated in the frequency interval Δf=f 2?f 1=3×10?6 Hz of the resonant frequencies (f 1=1×10?6 Hz, f 2=4×10?6 Hz) that are responsible for the scattering of GCR particles with the rigidity range detected by neutron monitors. We found clear inverse correlations between γ and ν y or ν z when the time variations of the resonant frequencies were derived from in situ measurements of the solar wind velocity U sw and IMF strength B during 1968?–?2002. We argue that these inverse relations are a fundamental feature in the GCR modulation that is not restricted to the analyzed years of 1968?–?2002.  相似文献   

17.
18.
The present paper reports a class of new solutions of charged fluid spheres expressed by a space time with its hypersurfaces t=const. as spheroid for the case 0<K<1 with surface density 2×1014 gm/cm3. When the Buchdahl’s type fluid spheres are electrified with generalized charged intensity and it is utilized to construct a super-dense star and found that star satisfies all reality conditions except the casual condition for 0<K≤0.05. The maximum mass occupied and the corresponding radius have been obtained 8.130871 M Θ and 24.60916 km respectively. Further, the redshift at the centre and on the surface are noted by z 0=0.933729 and z a =0.383808 respectively.  相似文献   

19.
Wavelet Analysis of solar,solar wind and geomagnetic parameters   总被引:3,自引:0,他引:3  
Prabhakaran Nayar  S.R.  Radhika  V.N.  Revathy  K.  Ramadas  V. 《Solar physics》2002,208(2):359-373
The sunspot number, solar wind plasma, interplanetary magnetic field, and geomagnetic activity index A p have been analyzed using a wavelet technique to look for the presence of periods and the temporal evolution of these periods. The global wavelet spectra of these parameters, which provide information about the temporal average strength of quasi periods, exhibit the presence of a variety of prominent quasi periods around 16 years, 10.6 years, 9.6 years, 5.5 years, 1.3 years, 180 days, 154 days, 27 days, and 14 days. The wavelet spectra of sunspot number during 1873–2000, geomagnetic activity index A p during 1932–2000, and solar wind velocity and interplanetary magnetic field during 1964–2000 indicate that their spectral power evolves with time. In general, the power of the oscillations with a period of less than one year evolves rapidly with the phase of the solar cycle with their peak values changing from one cycle to the next. The temporal evolution of wavelet power in R z, v sw, n, B y, B z, |B|, and A p for each of the prominent quasi periods is studied in detail.  相似文献   

20.
We present our B, V, Rc, and Ic observations of a \(3'.6 \times 3'\) field centered on the host galaxy of GRB 000926 (α2000.0=17h04m11s, \(\delta _{2000.0} = + 51^ \circ 47'9\mathop .\limits^{''} 8\)). The observations were carried out on the 6-m Special Astrophysical Observatory telescope using the SCORPIO instrument. The catalog of galaxies detected in this field includes 264 objects for which the signal-to-noise ratio is larger than 5 in each photometric band. The following limiting magnitudes in the catalog correspond to this limitation: 26.6 (B), 25.7 (V), 25.8 (R), and 24.5 (I). The differential galaxy counts are in good agreement with previously published CCD observations of deep fields. We estimated the photometric redshifts for all of the cataloged objects and studied the color variations of the galaxies with z. For luminous spiral galaxies with M(B)z~1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号