首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Sensitivity of Australian Fire Danger to Climate Change   总被引:14,自引:2,他引:12  
Global climate change, such as that due to the proposed enhanced greenhouseeffect, is likely tohave a significant effect on biosphere-atmosphere interactions, includingbushfire regimes. Thisstudy quantifies the possible impact of climate change on fire regimes byestimating changes infire weather and the McArthur Forest Fire Danger Index (FDI), an index thatis used throughoutAustralia to estimate fire danger. The CSIRO 9-level general circulation model(CSIRO9 GCM)is used to simulate daily and seasonal fire danger for the present Australianclimate and for adoubled-CO2 climate. The impact assessment includes validation ofthe GCMs daily controlsimulation and the derivation of correction factors which improve theaccuracy of the firedanger simulation. In summary, the general impact of doubled-CO2is to increase firedanger at all sites by increasing the number of days of very high and extremefire danger.Seasonal fire danger responds most to the large CO2-induced changesin maximumtemperature.  相似文献   

2.
林志强  马艳鲜  德庆  边多 《气象科技》2014,42(6):1147-1153
基于遥感技术(RS)和地理信息系统(GIS),利用由基于DEM演算的地面最高温度、最小相对湿度和最大风速等格点化气象要素,FY2静止气象卫星逐日降水反演产品和AVHRR积雪监测产品计算网格森林火险天气等级,结合由植被类型、NDVI、地形要素和公路、人口聚居地等要素评估的森林火险风险等级,综合计算得到网格化的西藏森林火险等级。该项业务程序基于MeteoInfo组件建立,能够实现全自动化业务运行。对于森林火灾事件,通过与基于气象站的森林火险天气等级相比,该方法的准确性更高,能为西藏林区森林防火工作提供有效参考。  相似文献   

3.
重庆市森林火险变化特征及气象条件分析   总被引:1,自引:0,他引:1  
利用重庆市34个气象站1961-2007年逐日气象观测资料以及同期NECP/NCAR逐月再分析数据,根据森林火险环境气象指数的定义,研究了重庆市森林火灾变化特征,并对春季和盛夏高森林火险等级下的典型年份的大气环流特征进行了分析。结果表明:重庆林火次数具有明显的年、季、月、日变化特征,盛夏(7-9月)和春季(2-4月)为2个高峰期,其林火次数占全年林火总数的78%,其中8月最多(占全年林火总数的18%),午后是森林火灾多发时段;春季重庆市高森林火险的大气环流特征表现为:乌拉尔山、贝加尔湖和鄂霍茨克海地区500 hPa位势高度偏低,四川盆地高度场偏高,冷空气在中高纬地区堆积,天气活动主锋区偏北;盛夏重庆市高森林火险的环流特征为:巴尔喀什湖和鄂霍茨克海地区500 hPa位势高度显著偏低,朝鲜半岛位势高度显著偏高,西太平洋副热带高压位置偏北。  相似文献   

4.
Ruoyun Niu  Panmao Zhai 《Climatic change》2012,111(3-4):723-736
Daily meteorological data at 263 stations in northern China from 1956 to 2005 were used to calculate various forest fire danger weather (FFDW) indices, such as Nesterov Index (NI), Modified Nesterov Index (MNI), Keetch-Byram Drought Index (KBDI), and Forest Fire Danger Index (FFDI), at different time scales. The relationship between each index and forest fire was analyzed. MNI and FFDI were then selected to study the impact on forest fire danger due to climatic change in northern China in the recent 50?years. Results show that forest fire danger has significantly increased in Northeast China where there is the richest forest resource in China, and also increased in North China. However, it has not changed much in eastern part of Northwest China, and the forest fire danger has even significantly decreased in northern Xinjiang. Significant rise of forest fire danger in Northeast China mainly results from the co-effect of increase of temperature, and decreases of humidity and precipitation. Relative humidity change dominants forest fire danger trends in the four forest regions in northern China.  相似文献   

5.
High-temporal resolution meteorological output from the Parallel Climate Model (PCM) is used to assess changes in wildland fire danger across the western United States due to climatic changes projected in the 21st century. A business-as-usual scenario incorporating changing greenhouse gas and aerosol concentrations until the year 2089 is compared to a 1975–1996 base period. Changes in relative humidity, especially dryingover much of the West, are projected to increase the number of days of high fire danger (based on the energy release component (ERC) index) at least through the year 2089 in comparison to the base period. The regions most affected are the northern Rockies, Great Basin and the Southwest –regions that have already experienced significant fire activity early this century. In these regions starting around the year 2070, when the model climate CO2 has doubled from present-day, the increase in the number ofdays that ERC (fuel model G) exceeds a value of 60 is as much as two to three weeks. The Front Range of the Rockies and the High Plains regions do not show a similar change. For regions where change is predicted, new fire and fuels management strategies and policies may be needed to address added climatic risks while also accommodating complex and changing ecosystems subject to human stresses on the region. These results, and their potential impact on fire and land management policy development, demonstrate the value of climate models for important management applications, as encouraged under the Department of Energy Accelerated Climate Prediction Initiative (ACPI), under whose auspices this work was performed.  相似文献   

6.
In this study, we analyze results from 47-year (1954?C2000) offline simulations using an Australian land-surface model CSIRO Atmosphere Biosphere Land Exchange. We focus on exploring its surface mean climatology, interannual and decadal variations in Australia and Amazonia basin in South America which are distinguished by dry and wet climates respectively. Its skill is assessed by using observational datasets and four model products from the Global Land-surface Data Assimilation System. Surface evaporation and runoff climatologies are satisfactorily simulated, including surface energy and water partitions in dry and wet climates. In the Australian continent dominated by dry climate, slowly varying soil moisture processes are simulated in the southeast during austral winter. The model is skilful in reproducing the nonlinear relationship between rainfall and runoff variations in the southwestern part of the Australia. It shows that the significant downward trend of river inflow in the region is associated with enhanced surface evaporation which is caused by increased surface radiation and wind speed. In its carbon-cycle modeling, the model simulates an upward trend of NPP by about 0.69%/year over the Amazonia forest region in the 47-year period. By comparing two sets of the model results with/without CO2 variations, it shows that 35% of such increases are caused by changes in climatic conditions, while 65% is due to the increase in atmospheric CO2 concentration. Given the close linkage between climate, water and vegetation (carbon cycle), this work promotes an integrated modeling and evaluation approach for better representation of land-surface processes in Earth system studies.  相似文献   

7.
8.
大兴安岭林区火灾特征及影响因子分析   总被引:1,自引:0,他引:1       下载免费PDF全文
对1970—2006年大兴安岭地区森林火灾过火次数与过火面积及其影响因子分析。结果表明:春季是大兴安岭地区火灾易发季节,4—6月易引发较大等级的森林火灾;雷击是引起该地区森林火灾的主要原因,雷击火灾多集中在春季和夏季, 6月份为雷击火多发月;年尺度上,降水量与过火次数显著相关,气温与过火面积显著相关;月尺度上,气温与过火次数显著相关,风速、相对湿度与过火面积显著相关;日尺度上,过火次数与最高气温显著相关,过火面积与相对湿度显著相关;但复相关系数较小,表明对森林火灾的预测不能仅仅选取气象因子,更要考虑火源及可燃物的影响。  相似文献   

9.
云南省森林火险气象等级区划研究   总被引:2,自引:0,他引:2  
以云南省为研究区,采用防火期内插值到每个格点的月平均降水量、月平均气温、月平均风速、月平均蒸发量、月平均相对湿度5个气象因子,以及栅格化的云南省树种和土地利用分布作为火险区划因子,通过将其标准化并赋予各因子不同的权重,利用ARCGIS的分析计算功能,对云南省防火期内进行森林火险气象等级划分,并以历史林火统计结果作为验证。从区划结果来看,12月至次年5月森林火险气象等级的发展趋势符合云南的实际情况。通过对照历史林火统计结果,该结果能反映云南省大部地区在防火期不同月份的森林火险气象等级分布规律  相似文献   

10.
贺芳芳 《高原气象》2007,26(3):641-648
对上海市郊林带附近与非林带冬、夏季典型天气下温、湿度、蒸发、辐射量的同步观测资料分析研究显示:林带附近气温日较差比非林带大,林带背风侧气温日较差比林带迎风侧大。林带附近日蒸发量比非林带小,日平均相对湿度比非林带大。林带附近散射辐射比非林带小,反射辐射比非林带大,总辐射差异与季节及林带树叶的茂密程度有关,白天净辐射差异主要取决于总辐射和反射辐射差异,夜间净辐射差异与林带及两地地温差有关。  相似文献   

11.
It is important to perform fire frequency analysis to obtain fire frequency curves (FFC) based on fire intensity at different parts of Victoria. In this paper fire frequency curves (FFCs) were derived based on forest fire danger index (FFDI). FFDI is a measure related to fire initiation, spreading speed and containment difficulty. The mean temperature (T), relative humidity (RH) and areal extent of open water (LC2) during summer months (Dec–Feb) were identified as the most important parameters for assessing the risk of occurrence of bushfire. Based on these parameters, Andrews’ curve equation was applied to 40 selected meteorological stations to identify homogenous stations to form unique clusters. A methodology using peak FFDI from cluster averaged FFDIs was developed by applying Log Pearson Type III (LPIII) distribution to generate FFCs. A total of nine homogeneous clusters across Victoria were identified, and subsequently their FFC’s were developed in order to estimate the regionalised fire occurrence characteristics.  相似文献   

12.
井冈山森林火灾与气象条件的相关分析   总被引:4,自引:0,他引:4  
根据江西井冈山森林火灾资料,利用一元回归和逐步回归分析方法,对井冈山1991—2000年森林火灾发生期间的连旱日数、降水量、相对湿度、气温、风速5个主要气象指标进行分析,将各指标分别与火灾发生次数、森林受害面积进行回归计算,建立了利用连旱日数和降水量预测森林火灾受灾面积及发生次数的数学模型。模式运算结果表明,当火灾发生前15 d连旱日数增加时,火灾次数增加;当火灾发生前15 d连旱日数增加、降水量减少时,火灾面积增加。  相似文献   

13.
采用数理统计的方法,增加了MODIS卫星遥感监测的土壤湿度和热源点预报因子,对河北省气象局原有的森林火险预报模式进行了改进,针对不同区域分别建立了森林火险预报模式,并对2012年河北省森林火灾实际发生情况进行了分析和应用效果检验。结果表明,2012年防火期,实况出现火灾,改进的火险模式预报森林火险气象等级5级为预报完全正确比率达66.3%;预报火险气象等级为4级(高度火险)及以上的正确率达83.1%;预报火险气象等级为3级(中度火险)及以上的正确率达98.8%;在所有的预报样本中,森林火险气象等级预报5级,但实况没有出现火灾的空报率为6.8%。检验结果显示,改进后的森林火险预报模式的应用效果更接近实际情况。  相似文献   

14.
Projected changes to the global climate system have great implications for the incidence of large infrequent fires in many regions. Here we examine the synoptic-scale and local-scale influences on the incidence of extreme fire weather days and consider projections of the large-scale mean climate to explore future fire weather projections. We focus on a case study region with periodic extreme fire dangers; southeast Tasmania, Australia. We compare the performance of a dynamically downscaled regional climate model with Global Climate Model outputs as a tool for examining the local-scale influences while accounting for high regional variability. Many of the worst fires in Tasmania and the southeast Australian region are associated with deep cold fronts and strong prefrontal winds. The downscaled simulations reproduce this synoptic type with greater fidelity than a typical global climate model. The incidence of systems in this category is projected to increase through the century under a high emission scenario, driven mainly by an increase in the temperature of air masses, with little change in the strength of the systems. The regional climate model projected increase in frequency is smaller than for the global climate models used as input, with a large model range and natural variability. We also demonstrate how a blocking Foehn effect and topographic channelling contributed to the extreme conditions during an extreme fire weather day in Tasmania in January 2013. Effects such as these are likely to contribute to high fire danger throughout the century. Regional climate models are useful tools that enable various meteorological drivers of fire danger to be considered in projections of future fire danger.  相似文献   

15.
森林火险气象指数及其构建方法回顾   总被引:14,自引:0,他引:14  
牛若芸  翟盘茂  孙明华 《气象》2006,32(12):3-9
森林火灾是威胁地球生态的主要灾害之一。为实现对林区起火可能性大小、火灾强度、火灾蔓延速度以及火灾扑救难易程度进行评估和预测,国内外专家学者利用森林火灾与气象条件之间的关系研制了诸多森林火险气象指数的构建方法。作者对近几十年来国内外森林火险气象指数的研究工作进行回顾和总结,得出广泛应用的火险指数可以归纳为指数查对法、综合指标法和统计回归法等3种类型,究其原理和使用效果,各有优缺点。在实际使用过程中,需要结合我国的气候和环境特点进行适用性修正和完善。  相似文献   

16.
森林火险气象指数的应用研究   总被引:14,自引:0,他引:14       下载免费PDF全文
利用全国575个国家级基本气象站1971年1月1日至2005年5月31日的气象观测资料, 选用了5种已得到国际普遍认可或我国国家级预警业务中使用的森林火险气象指数计算方法, 计算了我国长序列的历史逐日森林火险气象指数, 并对这些指数在我国的实际使用效果进行对比分析和应用研究。结果表明: IFFD, INMC, IN, IMN指数可在我国大范围推广使用 (除长江中下游及附近地区), 其中以IFFD指数总体应用效果最好, IMN指数次之。  相似文献   

17.
In this study outputs from four current General Circulation Models (GCMs) were used to project forest fire danger levels in Canada and Russia under a warmer climate. Temperature and precipitation anomalies between 1 × CO2 and 2 × CO2 runs were combined with baseline observed weather data for both countries for the 1980–1989 period. Forecast seasonal fire weather severity was similar for the four GCMs, indicating large increases in the areal extent of extreme fire danger in both countries under a 2 × CO2 climate scenario. A monthly analysis, using the Canadian GCM, showed an earlier start to the fire season, and significant increases in the area experiencing high to extreme fire danger in both Canada and Russia, particularly during June and July. Climate change as forecast has serious implications for forest fire management in both countries. More severe fire weather, coupled with continued economic constraints and downsizing, mean more fire activity in the future is a virtual certainty. The likely response will be a restructuring of protection priorities to support more intensive protection of smaller, high-value areas, and a return to natural fire regimes over larger areas of both Canada and Russia, with resultant significant impacts on the carbon budget.  相似文献   

18.
Climate projections over the next two to four decades indicate that most of Australia’s wheat-belt is likely to become warmer and drier. Here we used a shire scale, dynamic stress-index model that accounts for the impacts of rainfall and temperature on wheat yield, and a range of climate change projections from global circulation models to spatially estimate yield changes assuming no adaptation and no CO2 fertilisation effects. We modelled five scenarios, a baseline climate (climatology, 1901–2007), and two emission scenarios (“low” and “high” CO2) for two time horizons, namely 2020 and 2050. The potential benefits from CO2 fertilisation were analysed separately using a point level functional simulation model. Irrespective of the emissions scenario, the 2020 projection showed negligible changes in the modelled yield relative to baseline climate, both using the shire or functional point scale models. For the 2050-high emissions scenario, changes in modelled yield relative to the baseline ranged from ?5 % to +6 % across most of Western Australia, parts of Victoria and southern New South Wales, and from ?5 to ?30 % in northern NSW, Queensland and the drier environments of Victoria, South Australia and in-land Western Australia. Taking into account CO2 fertilisation effects across a North–south transect through eastern Australia cancelled most of the yield reductions associated with increased temperatures and reduced rainfall by 2020, and attenuated the expected yield reductions by 2050.  相似文献   

19.
地市级专业气象预报服务系统   总被引:3,自引:1,他引:2  
利用9210传输的气象资料,通过计算预报因子和预报对象间的相关系数,挑选预报因子,建立多因子权重回归方程,用于气象要素、森林火险气象等级、城镇火险气象等级、空气环境质量等级预报。此外,根据调查指标和实践经验,建立了医疗气象、储运气象、商业气象预报判据。  相似文献   

20.
The patterns of climate change in the Asia-Pacific region simulated by versions of the CSIRO Mk3.5 and Mk3.0 climate models are examined and compared with those from 23 CMIP3 models. Using fields standardized by global warming, it is seen that both CSIRO coupled models simulate larger surface warming in the tropical western Pacific Ocean, and smaller warming in the eastern Indian Ocean, than the CMIP3 average, and also model versions with a mixed-layer ocean. Corresponding differences in the changes in the pressure, winds, rainfall and other quantities were simulated. Introducing the coupled Mk3.5’s sea surface temperature field for the present climate, which has a warm bias, as the base climate for the MLO version had only a minor effect on the MLO version’s pattern of climate change. A Pacific-Indian Dipole index quantifying the amplitude of the warming pattern explains much of the variation in rainfall change simulated by the CMIP3 models over Australia and the Indonesian and Melanesian regions. It relates more strongly to Australian average rainfall than several other indices representing southern hemispheric circulation changes. The decline in Australian rainfall produced by the full ocean coupling is largest in summer, but occurs in each season, and extends across the continent. Further assessment of the importance of the dipole change pattern in new simulations is warranted. Analyses aimed at reducing the uncertainty in its potential amplitude could help narrow the range of projections for change in the Australasian region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号