首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Spills of heavy oil (HO) have an adverse effect on marine life. We have demonstrated previously that exposure to HO by fertilized eggs of the pufferfish (Takifugu rubripes) induces neural disruption and behavioral abnormality in early-hatched larvae. Here, two kinds of polycyclic aromatic hydrocarbons, pyrene and phenanthrene, were selected to examine their toxic effects on larval behavior of another pufferfish species (T. niphobles). Larvae exposed to pyrene or phenanthrene exhibited no abnormalities in morphology. However, those exposed to pyrene but not phenanthrene swam in an uncoordinated manner, although their swimming distance and speed were normal. The optic tectum, a part of the midbrain, of pyrene-exposed larvae did not grow to full size. Thus, these findings are indicated that pyrene might be a contributor to the behavioral and neuro-developmental toxicity, although there is no indication that it is the only compound participating in the toxicity of the heavy oil mixture.  相似文献   

2.
《Marine pollution bulletin》2009,58(6-12):493-502
The toxicity of polycyclic aromatic hydrocarbons (PAHs) was determined using mussel, sea-urchin and ascidian embryo–larval bioassays. Fluorescent light exposure enhanced phenanthrene, fluoranthene, pyrene and hydroxypyrene toxicity in comparison with dark conditions, but not naphthalene and fluorene toxicity. The toxicity of PAHs was inversely related to their KOW values following QSAR models derived for baseline toxicity of general narcotics, whereas the obtained regression using toxicity data from photoactivated PAHs significantly departed from the general narcosis model. Also, the mixture toxicity of five PAHs to the larval growth of the sea-urchin was compared with predictions derived from the concentration addition concept, indicating less than additive effects. Finally, we compared our toxicity data with worst-case environmental concentrations in order to provide a preliminary estimate of the risk to the marine environment. Naphthalene, fluorene and pyrene are not considered to pose a risk to sea-urchin, mussel or ascidian larvae, whilst phenanthrene and fluoranthene may pose a risk for mussel and sea-urchin. Moreover, a higher risk for those species is expected when we consider the photoactivation of the PAHs.  相似文献   

3.
The toxicity of polycyclic aromatic hydrocarbons (PAHs) was determined using mussel, sea-urchin and ascidian embryo–larval bioassays. Fluorescent light exposure enhanced phenanthrene, fluoranthene, pyrene and hydroxypyrene toxicity in comparison with dark conditions, but not naphthalene and fluorene toxicity. The toxicity of PAHs was inversely related to their KOW values following QSAR models derived for baseline toxicity of general narcotics, whereas the obtained regression using toxicity data from photoactivated PAHs significantly departed from the general narcosis model. Also, the mixture toxicity of five PAHs to the larval growth of the sea-urchin was compared with predictions derived from the concentration addition concept, indicating less than additive effects. Finally, we compared our toxicity data with worst-case environmental concentrations in order to provide a preliminary estimate of the risk to the marine environment. Naphthalene, fluorene and pyrene are not considered to pose a risk to sea-urchin, mussel or ascidian larvae, whilst phenanthrene and fluoranthene may pose a risk for mussel and sea-urchin. Moreover, a higher risk for those species is expected when we consider the photoactivation of the PAHs.  相似文献   

4.
The toxicity of polycyclic aromatic hydrocarbons (PAHs) was determined using mussel, sea-urchin and ascidian embryo-larval bioassays. Fluorescent light exposure enhanced phenanthrene, fluoranthene, pyrene and hydroxypyrene toxicity in comparison with dark conditions, but not naphthalene and fluorene toxicity. The toxicity of PAHs was inversely related to their K(OW) values following QSAR models derived for baseline toxicity of general narcotics, whereas the obtained regression using toxicity data from photoactivated PAHs significantly departed from the general narcosis model. Also, the mixture toxicity of five PAHs to the larval growth of the sea-urchin was compared with predictions derived from the concentration addition concept, indicating less than additive effects. Finally, we compared our toxicity data with worst-case environmental concentrations in order to provide a preliminary estimate of the risk to the marine environment. Naphthalene, fluorene and pyrene are not considered to pose a risk to sea-urchin, mussel or ascidian larvae, whilst phenanthrene and fluoranthene may pose a risk for mussel and sea-urchin. Moreover, a higher risk for those species is expected when we consider the photoactivation of the PAHs.  相似文献   

5.
The mode of action of PAHs that causes fish developmental malformations is unclear. The embryotoxicity of marine medaka (Oryzias melastigma) was investigated after individual exposure to three- to five-ring PAHs Phe, Py, and BaP or co-exposure with α-ANF for 18 days. We found that the relationships between EROD induction and developmental deformities of embryos showed a various pattern under different exposure scenarios of Phe, Py, and BaP, which suggested possibly different modes of action in determining the developmental toxicities. As for co-exposure scenarios of each PAH combined with ANF, it showed potentially synergistic effects. The inhibited CYP1A mediated enzyme activity by ANF after co-exposure did not effectively alleviate developmental toxicity of embryo. It showed potentially synergistic effects after co-exposure of marine fish embryos to CYP1A inhibitors and PAH-type CYP1A inducers. Heart deformities in the early life stages of marine medaka were recommended as a biomarker for indicating the extent of PAH pollution.  相似文献   

6.
《Marine pollution bulletin》2014,85(1-2):391-400
A comparative study of 23 PAH congeners in sediment of the Caspian Sea coast and Anzali Wetland was conducted in 2010. Surface sediment was analyzed using chromatography and mass spectrometry. Total PAH concentrations ranged between 212 and 9009 ng g1 dw. Spatial distribution maps revealed that PAH levels were higher in the coastal areas of the Caspian Sea where oil related activities have been common since 1800’s. Diagnostic ratios analysis indicated that PAHs largely originated from petrogenic processes. PAH toxicity level was assessed using sediment quality guidelines and toxic equivalent concentrations to determine toxic effects on marine organism. Based on these investigations, in our study areas, the probability of toxicity for benthic organisms is “low to medium”. The toxic equivalent concentrations of carcinogenic PAHs varied between 11 and 231 ng TEQ/g; higher total toxic equivalent concentrations values were found in the coastal areas of the Caspian Sea.  相似文献   

7.
Polycyclic aromatic hydrocarbons are ubiquitous pollutants in the environment, and most high molecular weight PAHs cause mutagenic, teratogenic and potentially carcinogenic effects. While several strains have been identified that degrade PAHs, the present study is focused on the degradation of PAHs in a marine environment by a moderately halophilic bacterial consortium. The bacterial consortium was isolated from a mixture of marine water samples collected from seven different sites in Chennai, India. The low molecular weight (LMW) PAHs phenanthrene and fluorine, and the high molecular weight (HMW) PAHs pyrene and benzo(e)pyrene were selected for the degradation study. The consortium metabolized both LMW and HMW PAHs. The consortium was also able to degrade PAHs present in crude oil-contaminated saline wastewater. The bacterial consortium was able to degrade 80% of HMW PAHs and 100% of LMW PAHs in the saline wastewater. The strains present in the consortium were identified as Ochrobactrum sp., Enterobacter cloacae and Stenotrophomonas maltophilia. This study reveals that these bacteria have the potential to degrade different PAHs in saline wastewater.  相似文献   

8.
Polychlorinated biphenyls (PCBs) and 17 parent polycyclic aromatic hydrocarbons (PAHs) were determined in surface sediments from nine stations in the Mar Piccolo of Taranto (Ionian Sea, Southern Italy). Total PAH concentrations ranged from 380 to 12,750 microg/kg d.w., while total PCB levels ranged from 2 to 1684 microg/kg d.w.; this values were higher than those found in others marine coastal areas of the Mediterranean Sea. For PAHs, low molecular weight/high molecular weight, phenanthrene/anthracene and fluoranthene/pyrene ratio were used for discriminating between pyrolitic and petroleum origin. Results showed that PAHs were mainly of pyrolitic origin. PCB and PAH levels in sediments were compared with Sediments Quality Guidelines (ERM-ERL, TEL-PEL indexes) for evaluation probable toxic effects on marine organism. Finally, ERM and PEL quotients were used to evaluate the degree to which chemicals exceed guidelines. Results suggest an ecotoxicological risk for benthic organisms mainly in the first inlet, where high concentrations of PCBs were found in sediments influenced by harbour activities.  相似文献   

9.
《Marine pollution bulletin》2008,56(10-12):451-458
Polychlorinated biphenyls (PCBs) and 17 parent polycyclic aromatic hydrocarbons (PAHs) were determined in surface sediments from nine stations in the Mar Piccolo of Taranto (Ionian Sea, Southern Italy). Total PAH concentrations ranged from 380 to 12,750 μg/kg d.w., while total PCB levels ranged from 2 to 1684 μg/kg d.w.; this values were higher than those found in others marine coastal areas of the Mediterranean Sea. For PAHs, low molecular weight/high molecular weight, phenanthrene/anthracene and fluoranthene/pyrene ratio were used for discriminating between pyrolitic and petroleum origin. Results showed that PAHs were mainly of pyrolitic origin. PCB and PAH levels in sediments were compared with Sediments Quality Guidelines (ERM–ERL, TEL–PEL indexes) for evaluation probable toxic effects on marine organism. Finally, ERM and PEL quotients were used to evaluate the degree to which chemicals exceed guidelines. Results suggest an ecotoxicological risk for benthic organisms mainly in the first inlet, where high concentrations of PCBs were found in sediments influenced by harbour activities.  相似文献   

10.
Microorganisms play an important role in the biodegradation of petroleum contaminants, which have attracted great concern due to their persistent toxicity and difficult biodegradation. In this paper, a novel hydrocarbon-degrading bacterium HZ01 was isolated from the crude oil-contaminated seawater at the Daya Bay, South China Sea, and identified as Achromobacter sp. Under the conditions of pH 7.0, NaCl 3% (w/v), temperature 28 °C and rotary speed 150 rpm, its degradability of the total n-alkanes reached up to 96.6% after 10 days of incubation for the evaporated diesel oil. Furthermore, Achromobacter sp. HZ01 could effectively utilize polycyclic aromatic hydrocarbons (PAHs) as its sole carbon source, and could remove anthracene, phenanthrene and pyrence about 29.8%, 50.6% and 38.4% respectively after 30 days of incubation. Therefore, Achromobacter sp. HZ01 may employed as an excellent degrader to develop one cost-effective and eco-friendly method for the bioremediation of marine environments polluted by crude oil.  相似文献   

11.
To document the historical input the PAH-profiles of sediment cores in two different basins of the Baltic Sea, the Gotland Basin (GB) and Arkona Basin (AB), were analysed by means of GC-MS. 35 PAHs were quantified in all samples, and additionally, several marker PAHs, like Cyclopenta[cd]phenanthrene (CCP) for combustion processes and retene for terrigenous input, were quantified in selected samples. The preindustrial sediments (older than 200-250 years) in the GB core illustrate concentrations <100 ng PAH15 g(-1) d.w. Calculated PAH-ratios indicated combustion processes as the main sources for both basins. The Perylene concentrations within the sediment cores decrease with increasing depth, along with an increase in relative percentage, indicating slow diagenetic processes. The preservation and enrichment of the introduced PAHs was more pronounced in the GB core.  相似文献   

12.
《Marine pollution bulletin》2012,64(5-12):309-317
Oryzias melastigma, also called O. dancena, is becoming a very useful model for estuarine and marine ecotoxicity studies. With O. melastigma being adopted by ILSI Health and Environmental Science Institute (HESI) for embryo toxicity testing, improved knowledge of biomarker based embryonic development becomes especially important for mechanism-based toxicity evaluations. Using whole mount in situ hybridization and immunostaining techniques together with widely used molecular markers, this study describes the molecular development of marine medaka embryos, focusing on the brain, eye, heart, pectoral fin, pancreas, liver, muscle and neuron system. These organs are targets of environmental pollutants that disrupt normal embryonic development in medaka and other fish.  相似文献   

13.
To determine the impact of genetic toxicity caused by the Hebei Spirit oil spill on December 7, 2007, we measured DNA damage in the blood cells of striped beakperch in vitro after exposure to extracts from sediments in the Taean area. The objective of this study was to investigate temporal changes of toxic effects caused by residual PAHs in the sediments up to 18 months after an oil spill. In conclusion, DNA damage had reduced over this 18-month period; that is, the sediments recovered quickly from the oil pollution. In addition, statistically significant correlations between PAHs and DNA damage were observed. Because the comet assay is sensitive to DNA damage induced by genotoxic substances from the polluted sediments, the comet assay can be considered a useful tool as a biomarker in investigating genetic toxicity in environmental monitoring and elucidating the recovery of oil pollution after oil spill as well.  相似文献   

14.
《Marine pollution bulletin》2012,64(5-12):339-346
Iron-based nanotechnologies are increasingly used for environmental remediation; however, toxicologic impacts of iron nanoparticles on the aquatic ecosystem remain poorly understood. We treated larvae of medaka fish (Oryzias latipes) with thoroughly characterized solutions containing carboxymethyl cellulose (CMC)-stabilized nanoscale zerovalent iron (nZVI), aged nanoscale iron oxides (nFe-oxides) or ferrous ion (Fe[II]) for 12–14 days’ aqueous exposure to assess the causal toxic effect(s) of iron NPs on the fish. With the CMC-nZVI solution, the dissolved oxygen level decreased, and a burst of reactive oxygen species (ROS) was generated as Fe(II) oxidized to ferric ion (Fe[III]); with the other two iron solutions, these parameters did not significantly change. CMC-nZVI and Fe(II) solutions caused acute lethally and sublethally toxic effects in medaka larvae, with nFe-oxide-containing solutions causing the least toxic effects. We discuss modes of toxic action of iron NPs and chronic toxic effects in terms of hypoxia, Fe(II) toxicity and ROS-mediated oxidative damage.  相似文献   

15.
Polycyclic aromatic hydrocarbons (PAHs) are widespread persistent pollutants that readily undergo biotic and abiotic conversion to numerous transformation products in rivers, lakes and estuarine sediments. Here we characterize the developmental toxicity of four PAH transformation products each structural isomers of hydroxynaphthoic acid: 1H2NA, 2H1NA, 2H3NA, and 6H2NA. Medaka fish (Oryzias latipes) embryos and eleutheroembryos were used to determine toxicity. A 96-well micro-plate format was used to establish a robust, statistically significant platform for assessment of early life stages. Individual naphthoic acid isomers demonstrated a rank order of toxicity with 1H2NA>2H1NA>2H3NA>6H2NA being more toxic. Abnormalities of circulatory system were most pronounced including pericardial edema and tube heart. To determine if HNA isomers were AhR ligands, spatial-temporal expression and activity of CYP1A was measured via in vivo EROD assessments. qPCR measurement of CYP1A induction proved different between isomers dosed at respective concentrations affecting 50% of exposed individuals (EC50s). In vitro, all ANH isomers transactivated mouse AhR using a medaka CYP1A promoter specific reporter assay. Circulatory abnormalities followed P450 induction and response was consistent with PAH toxicity. A 96-well micro-plates proved suitable as exposure chambers and provided statistically sound evaluations as well as efficient toxicity screens. Our results demonstrate the use of medaka embryos for toxicity analysis thereby achieving REACH objectives for the reduction of adult animal testing in toxicity evaluations.  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAHs) are widespread persistent pollutants that readily undergo biotic and abiotic conversion to numerous transformation products in rivers, lakes and estuarine sediments. Here we characterize the developmental toxicity of four PAH transformation products each structural isomers of hydroxynaphthoic acid: 1H2NA, 2H1NA, 2H3NA, and 6H2NA. Medaka fish (Oryzias latipes) embryos and eleutheroembryos were used to determine toxicity. A 96-well micro-plate format was used to establish a robust, statistically significant platform for assessment of early life stages. Individual naphthoic acid isomers demonstrated a rank order of toxicity with 1H2NA > 2H1NA > 2H3NA > 6H2NA being more toxic. Abnormalities of circulatory system were most pronounced including pericardial edema and tube heart. To determine if HNA isomers were AhR ligands, spatial-temporal expression and activity of CYP1A was measured via in vivo EROD assessments. qPCR measurement of CYP1A induction proved different between isomers dosed at respective concentrations affecting 50% of exposed individuals (EC50s). In vitro, all ANH isomers transactivated mouse AhR using a medaka CYP1A promoter specific reporter assay. Circulatory abnormalities followed P450 induction and response was consistent with PAH toxicity. A 96-well micro-plates proved suitable as exposure chambers and provided statistically sound evaluations as well as efficient toxicity screens. Our results demonstrate the use of medaka embryos for toxicity analysis thereby achieving REACH objectives for the reduction of adult animal testing in toxicity evaluations.  相似文献   

17.
Our study examined the effects of Corexit 9500 and sediment on microbial mineralization of specific aliphatic and aromatic hydrocarbons found in crude oil. We also measured gross mineralization of crude oil, dispersed crude oil and dispersant by a marine microbial consortium in the absence of sediment. When provided as carbon sources, our consortium mineralized Corexit 9500 the most rapidly, followed by fresh oil, and finally weathered oil or dispersed oil. However, mineralization in short term assays favored particular components of crude oil (2-methyl-naphthalene > dodecane > phenanthrene > hexadecane > pyrene) and was not affected by addition of nutrients or sediment (high sand, low organic carbon). Adding dispersant inhibited hexadecane and phenanthrene mineralization but did not affect dodecane and 2-methyl-naphthalene mineralization. Thus, the effect of dispersant on biodegradation of a specific hydrocarbon was not predictable by class. The results were consistent for both high and low oiling experiments and for both fresh and weathered oil. Overall, our results indicate that environmental use of Corexit 9500 could result in either increases or decreases in the toxicity of residual oil through selective microbial mineralization of hydrocarbons.  相似文献   

18.
To assess risks of chemically-dispersed oil to marine organisms, oil concentrations in the water were simulated using a hypothetical spill accident in Tokyo Bay. Simulated oil concentrations were then compared with the short-term no-observed effect concentration (NOEC), 0.01 mg/L, obtained through toxicity tests using marine diatoms, amphipod and fish. Area of oil concentrations higher than the NOEC were compared with respect to use and non-use of dispersant. Results of the simulation show relatively faster dispersion near the mouth of the bay compared to its inner sections which is basically related to its stronger water currents. Interestingly, in the inner bay, a large area of chemically-dispersed oil has concentrations higher than the NOEC. It seems emulsifying oil by dispersant increases oil concentrations, which could lead to higher toxicity to aquatic organisms. When stronger winds occur, however, the difference in toxic areas between use and non-use of dispersant is quite small.  相似文献   

19.
《Marine pollution bulletin》2012,64(5-12):370-375
In Korea, the new permission criteria for industrial effluents based on Daphnia magna acute toxicity tests will be gradually implemented starting from 2011. Thus, in this study, toxicity assessment and identification using a marine species (Tigriopus japonicus) and the freshwater species (D. magna) was comparatively investigated. Effluent from an acid mine drainage treatment plant showed acute toxicity toward both organisms due to low pH, which was removed by neutralization of the effluent. Additionally, evaluation of the effluent of an electronics company revealed that Cu was attributable to the observed toxicity, and the effluent was more toxic toward T. japonicus than D. magna. Moreover, effluents from a metal plating factory were acutely toxic toward D. magna (6.50 TU), while they were not toxic against T. japonicus. Toxicity identification revealed that the high level of Cl (12,841 mg L−1) was the cause of toxicity. Thus, the effluents had no effect on the marine species, T. japonicus. These findings suggest that a marine species rather than a freshwater species is more desirable for toxicity assessment of industrial effluent discharged into the saltwater, and thus should be considered in the legislation of toxicity-based discharge limits in Korea.  相似文献   

20.
The fate of polycyclic aromatic hydrocarbon (PAH) contamination in a mangrove swamp (Yi O) in Hong Kong after an oil spill accident was investigated. The concentrations and profiles of PAHs in surface sediments collected from five quadrats (each of 10 m×10 m) covering different degrees of oil contamination and the most contaminated mangrove leaves were examined in December 2000 (30 days after the accident) and March 2001 (126 days later). The concentrations of total PAHs in surface sediments ranged from 138 to 2135 ng g−1, and PAHs concentrations decreased with time. In the most contaminated sediments, total PAHs dropped from 2135 (30 days) to 1196 ng g−1 (120 days), and the decrease was smaller in less contaminated sediments. The percentage reduction in sediment PAHs over three months (44%) was less significant than that in contaminated leaves (85%), indicating PAH in or on leaves disappeared more rapidly. The PAH profiles were very similar in sediments collected from quadrats Q1 and Q2 with benzo[a]anthracene and pyrene being the most abundant PAH compounds, but were different in the other three quadrats. The proportion of the light molecular weight PAHs to total PAHs increased after three months, especially phenanthrene. Results suggest that physical and photo-chemical weathering (tidal washing and photo-oxidation) of crude oil in surface sediments and on plant leaves were important processes in the first few months after the oil spill. The PAH contamination in Yi O swamp came from both petrogenic and pyrolytic sources. The petrogenic characteristic in the most contaminated sediment was confirmed with high values of phenanthrene to anthracene ratio (>10) and low values of fluoranthene to pyrene ratio (0.3–0.4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号