首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Four different implementations of Stokes' formula are employed for the estimation of geoid heights over Sweden: the Vincent and Marsh (1974) model with the high-degree reference gravity field but no kernel modifications; modified Wong and Gore (1969) and Molodenskii et al. (1962) models, which use a high-degree reference gravity field and modification of Stokes' kernel; and a least-squares (LS) spectral weighting proposed by Sj?berg (1991). Classical topographic correction formulae are improved to consider long-wavelength contributions. The effect of a Bouguer shell is also included in the formulae, which is neglected in classical formulae due to planar approximation. The gravimetric geoid is compared with global positioning system (GPS)-levelling-derived geoid heights at 23 Swedish Permanent GPS Network SWEPOS stations distributed over Sweden. The LS method is in best agreement, with a 10.1-cm mean and ±5.5-cm standard deviation in the differences between gravimetric and GPS geoid heights. The gravimetric geoid was also fitted to the GPS-levelling-derived geoid using a four-parameter transformation model. The results after fitting also show the best consistency for the LS method, with the standard deviation of differences reduced to ±1.1 cm. For comparison, the NKG96 geoid yields a 17-cm mean and ±8-cm standard deviation of agreement with the same SWEPOS stations. After four-parameter fitting to the GPS stations, the standard deviation reduces to ±6.1 cm for the NKG96 geoid. It is concluded that the new corrections in this study improve the accuracy of the geoid. The final geoid heights range from 17.22 to 43.62 m with a mean value of 29.01 m. The standard errors of the computed geoid heights, through a simple error propagation of standard errors of mean anomalies, are also computed. They range from ±7.02 to ±13.05 cm. The global root-mean-square error of the LS model is the other estimation of the accuracy of the final geoid, and is computed to be ±28.6 cm. Received: 15 September 1999 / Accepted: 6 November 2000  相似文献   

2.
The GEOID96 high-resolution geoid height model for the United States   总被引:4,自引:0,他引:4  
The 2 arc-minute × 2 arc-minute geoid model (GEOID96) for the United States supports the conversion between North American Datum 1983 (NAD 83) ellipsoid heights and North American Vertical Datum 1988 (NAVD 88) Helmert heights. GEOID96 includes information from global positioning system (GPS) height measurements at optically leveled benchmarks. A separate geocentric gravimetric geoid, G96SSS, was first calculated, then datum transformations and least-squares collocation were used to convert from G96SSS to GEOID96. Fits of 2951 GPS/level (ITRF94/NAVD 88) benchmarks to G96SSS show a 15.1-cm root mean square (RMS) around a tilted plane (0.06 ppm, 178 azimuth), with a mean value of −31.4 cm (15.6-cm RMS without plane). This mean represents a bias in NAVD 88 from global mean sea level, remaining nearly constant when computed from subsets of benchmarks. Fits of 2951 GPS/level (NAD 83/NAVD 88) benchmarks to GEOID96 show a 5.5-cm RMS (no tilts, zero average), due primarily to GPS error. The correlated error was 2.5 cm, decorrelating at 40 km, and is due to gravity, geoid and GPS errors. Differences between GEOID96 and GEOID93 range from −122 to +374 cm due primarily to the non-geocentricity of NAD 83. Received: 28 July 1997 / Accepted: 2 September 1998  相似文献   

3.
A new computational procedure for derivation of marine geoid on a 2.5′×2.5′grid in a non-tidal system over the South China Sea and the Philippine Sea from multi-satellite altimeter sea surface heights is discussed. Single-and dual-satellite crossovers were performed, and components of deflections of the vertical were determined at the crossover positions using Sand-well's computational theory, and gridded onto a 2.5′×2.5′resolution grid by employing the Shepard's interpolation procedure. 2.5′×2.5′grid of EGM96-derived components of deflections of the vertical and geoid heights were then used as reference global geopotential model quantities in a remove-restore procedure to implement the Molodensky-like formula via 1D-FFT technique to predict the geoid heights over the South China Sea and the Philippine Sea from the gridded altimeter-derived components of deflec-tions of the vertical. Statistical comparisons between the altimeter-and the EGM96- derived geoid heights showed that there was a root-mean-square agreement of ±0.35 m between them in a region of less tectonically active geological structures. However, over areas of tectonically active structures such as the Philippine trench, differences of about -19.9 m were obtained.  相似文献   

4.
1 IntroductionDifferentgeoidsolutionswerecarriedoutforE gyptusingheterogeneousdataanddifferentmethodologies (El_Tokhey ,1 993) .ThemaingoalofthispaperistodetermineamostaccuratenewgeoidforEgypttakingadvantageofanewupdatedgravitydatabase,theinformationgivenby…  相似文献   

5.
The AUSGeoid09 model of the Australian Height Datum   总被引:8,自引:6,他引:2  
AUSGeoid09 is the new Australia-wide gravimetric quasigeoid model that has been a posteriori fitted to the Australian Height Datum (AHD) so as to provide a product that is practically useful for the more direct determination of AHD heights from Global Navigation Satellite Systems (GNSS). This approach is necessary because the AHD is predominantly a third-order vertical datum that contains a ~1 m north-south tilt and ~0.5 m regional distortions with respect to the quasigeoid, meaning that GNSS-gravimetric-quasigeoid and AHD heights are inconsistent. Because the AHD remains the official vertical datum in Australia, it is necessary to provide GNSS users with effective means of recovering AHD heights. The gravimetric component of the quasigeoid model was computed using a hybrid of the remove-compute-restore technique with a degree-40 deterministically modified kernel over a one-degree spherical cap, which is superior to the remove-compute-restore technique alone in Australia (with or without a cap). This is because the modified kernel and cap combine to filter long-wavelength errors from the terrestrial gravity anomalies. The zero-tide EGM2008 global gravitational model to degree 2,190 was used as the reference field. Other input data are ~1.4 million land gravity anomalies from Geoscience Australia, 1′ × 1′ DNSC2008GRA altimeter-derived gravity anomalies offshore, the 9′′ × 9′′ GEODATA-DEM9S Australian digital elevation model, and a readjustment of Australian National Levelling Network (ANLN) constrained to the CARS2006 mean dynamic ocean topography model. To determine the numerical integration parameters for the modified kernel, the gravimetric component of AUSGeoid09 was compared with 911 GNSS-observed ellipsoidal heights at benchmarks. The standard deviation of fit to the GNSS-AHD heights is ±222 mm, which dropped to ±134 mm for the readjusted GNSS-ANLN heights showing that careful consideration now needs to be given to the quality of the levelling data used to assess gravimetric quasigeoid models. The publicly released version of AUSGeoid09 also includes a geometric component that models the difference between the gravimetric quasigeoid and the zero surface of the AHD at 6,794 benchmarks. This a posteriori fitting used least-squares collocation (LSC) in cross-validation mode to determine a correlation length of 75 km for the analytical covariance function, whereas the noise was taken from the estimated standard deviation of the GNSS ellipsoidal heights. After this LSC surface fitting, the standard deviation of fit reduced to ±30 mm, one-third of which is attributable to the uncertainty in the GNSS ellipsoidal heights.  相似文献   

6.
The theoretical differences between the Helmert deflection of the vertical and that computed from a truncated spherical harmonic series of the gravity field, aside from the limited spectral content in the latter, include the curvature of the normal plumb line, the permanent tidal effect, and datum origin and orientation offsets. A numerical comparison between deflections derived from spherical harmonic model EGM96 and astronomic deflections in the conterminous United States (CONUS) shows that correcting these systematic effects reduces the mean differences in some areas. Overall, the mean difference in CONUS is reduced from −0.219 arcsec to −0.058 arcsec for the south–north deflection, and from +0.016 arcsec to +0.004 arcsec for the west–east deflection. Further analysis of the root-mean-square differences indicates that the high-degree spectrum of the EGM96 model has significantly less power than implied by the deflection data. Received: 9 December 1997 / Accepted: 21 August 1998  相似文献   

7.
Separation between reference surfaces of selected vertical datums   总被引:7,自引:1,他引:7  
This paper discusses the separation between the reference surface of several vertical datums and the geoid. The data used includes a set of Doppler positioned stations, transformation parameters to convert the Doppler positions to ITRF90, and a potential coefficient model composed of the JGM-2 (NASA model) from degree 2 to 70 plus the OSU91A model from degree 71 to 360. The basic method of analysis is the comparison of a geometric geoid undulation derived from an ellipsoidal height and an orthometric height with the undulation computed from the potential coefficient model The mean difference can imply a bias of the datum reference surface with respect to the geoid. Vertical datums in the following countries were considered: England, Germany, United States, and Australia. The following numbers represent the bias values of each datum after adopting an equatorial radius of 6378136.3m: England (-87 cm), Germany (4 cm), United States (NGVD29 (-26 cm)), NAVD88 (-72 cm), Australia AHD (mainland, -68 cm); AHD (Tasmania, -98 cm). A negative sign indicates the datum reference surface is below the geoid. The 91 cm difference between the datums in England and Germany has been independently estimated as 80 cm. The 30 cm difference between AHD (mainland) and AHD (Tasmania) has been independently estimated as 40 cm. These bias values have been estimated from data where the geometric/ gravimetric geoid undulation difference standard deviation, at one station, is typically ±100 cm, although the mean difference is determined more accurately.The results of this paper can be improved and expanded with more accurate geocentric station positions, more accurate and consistent heights with respect to the local vertical datum, and a more accurate gravity field for the Earth. The ideas developed here provide insight on the determination of a world height system.  相似文献   

8.
The short wavelength geoid undulations, caused by topography, amount to several decimeters in mountainous areas. Up to now these effects are computed by means of digital terrain models in a grid of 100–500m. However, for many countries these data are not yet available or their collection is too expensive. This problem can be overcome by considering the special behaviour of the gravity potential along mountain slopes. It is shown that 90 per cent of the topographic effects are represented by a simple summation formula, based on the average height differences and distances between valleys and ridges along the geoid profiles, δN=[30.H.D.+16.(H−H′).D] in mm/km, (error<10%), whereH, H′, D are estimated in a map to the nearest 0.2km. The formula is valid for asymmetric sides of valleys (H, H′) and can easily be corrected for special shapes. It can be used for topographic refinement of low resolution geoids and for astrogeodetic projects. The “slope method” was tested in two alpine areas (heights up to 3800m, astrogeodetic deflection points every 170km 2) and resulted in a geoid accuracy of ±3cm. In first order triangulation networks (astro points every 1000km 2) or for gravimetric deflections the accuracy is about 10cm per 30km. Since a map scale of 1∶500.000 is sufficient, the method is suitable for developing countries, too.  相似文献   

9.
为解决世界各国高程基准差异的问题,提出联合卫星重力场模型、地面重力数据、GNSS大地高、局部高程基准的正高或正常高,按大地边值问题法确定局部高程基准重力位差的方法。首先推导了利用传统地面"有偏"重力异常确定高程基准重力位差的方法;接着利用改化Stokes核函数削弱"有偏"重力异常的影响,并联合卫星重力场模型和地面"有偏"重力数据,得到独立于任何局部高程基准的重力水准面,以此来确定局部高程基准重力位差;最后利用GNSS+水准数据和重力大地水准面确定了美国高程基准与全球高程基准W0的重力位差为-4.82±0.05 m2s-2。  相似文献   

10.
 Two numerical techniques are used in recent regional high-frequency geoid computations in Canada: discrete numerical integration and fast Fourier transform. These two techniques have been tested for their numerical accuracy using a synthetic gravity field. The synthetic field was generated by artificially extending the EGM96 spherical harmonic coefficients to degree 2160, which is commensurate with the regular 5 geographical grid used in Canada. This field was used to generate self-consistent sets of synthetic gravity anomalies and synthetic geoid heights with different degree variance spectra, which were used as control on the numerical geoid computation techniques. Both the discrete integration and the fast Fourier transform were applied within a 6 spherical cap centered at each computation point. The effect of the gravity data outside the spherical cap was computed using the spheroidal Molodenskij approach. Comparisons of these geoid solutions with the synthetic geoid heights over western Canada indicate that the high-frequency geoid can be computed with an accuracy of approximately 1 cm using the modified Stokes technique, with discrete numerical integration giving a slightly, though not significantly, better result than fast Fourier transform. Received: 2 November 1999 / Accepted: 11 July 2000  相似文献   

11.
A 2×2 arc-minute resolution geoid model, CARIB97, has been computed covering the Caribbean Sea. The geoid undulations refer to the GRS-80 ellipsoid, centered at the ITRF94 (1996.0) origin. The geoid level is defined by adopting the gravity potential on the geoid as W 0=62 636 856.88 m2/s2 and a gravity-mass constant of GM=3.986 004 418×1014 m3/s2. The geoid model was computed by applying high-frequency corrections to the Earth Gravity Model 1996 global geopotential model in a remove-compute-restore procedure. The permanent tide system of CARIB97 is non-tidal. Comparison of CARIB97 geoid heights to 31 GPS/tidal (ITRF94/local) benchmarks shows an average offset (hHN) of 51 cm, with an Root Mean Square (RMS) of 62 cm about the average. This represents an improvement over the use of a global geoid model for the region. However, because the measured orthometric heights (H) refer to many differing tidal datums, these comparisons are biased by localized permanent ocean dynamic topography (PODT). Therefore, we interpret the 51 cm as partially an estimate of the average PODT in the vicinity of the 31 island benchmarks. On an island-by-island basis, CARIB97 now offers the ability to analyze local datum problems which were previously unrecognized due to a lack of high-resolution geoid information in the area. Received: 2 January 1998 / Accepted: 18 August 1998  相似文献   

12.
The separation between the reference surfaces for orthometric heights and normal heights—the geoid and the quasigeoid—is typically in the order of a few decimeters but can reach nearly 3 m in extreme cases. The knowledge of the geoid–quasigeoid separation with centimeter accuracy or better, is essential for the realization of national and international height reference frames, and for precision height determination in geodetic engineering. The largest contribution to the geoid–quasigeoid separation is due to the distribution of topographic masses. We develop a compact formulation for the rigorous treatment of topographic masses and apply it to determine the geoid–quasigeoid separation for two test areas in the Alps with very rough topography, using a very fine grid resolution of 100 m. The magnitude of the geoid–quasigeoid separation and its accuracy, its slopes, roughness, and correlation with height are analyzed. Results show that rigorous treatment of topographic masses leads to a rather small geoid–quasigeoid separation—only 30 cm at the highest summit—while results based on approximations are often larger by several decimeters. The accuracy of the topographic contribution to the geoid–quasigeoid separation is estimated to be 2–3 cm for areas with extreme topography. Analysis of roughness of the geoid–quasigeoid separation shows that a resolution of the modeling grid of 200 m or less is required to achieve these accuracies. Gravity and the vertical gravity gradient inside of topographic masses and the mean gravity along the plumbline are modeled which are important intermediate quantities for the determination of the geoid–quasigeoid separation. We conclude that a consistent determination of the geoid and quasigeoid height reference surfaces within an accuracy of few centimeters is feasible even for areas with extreme topography, and that the concepts of orthometric height and normal height can be consistently realized and used within this level of accuracy.  相似文献   

13.
For computing the geodetic coordinates ϕ and γ on the ellipsoid one needs information of the gravity field, thus making it possible to reduce the terrestrial observations to the reference surface. Neglect of gravity field data, such as deflections of the vertical and geoid heights, results in misclosure effects, which can be described using the object of anholonomity.  相似文献   

14.
In order to study the Baltic Sea Level change and to unify national height systems a two week GPS campaign was performed in the region in Autumn 1990. Parties from Denmark, Finland, Germany, Poland and Sweden carried out GPS measurements at 26 tide gauges along the Baltic sea and 8 VLBI and SLR fiducial stations with baseline lengths ranging from 230 km to 1600 km. The observations were processed in the network mode with the Bernese version 3.3 software using orbit improvement techniques. To get rid of the scale error introduced by the ionospheric refraction from single-frequency data, the local models of the ionosphere were estimated using L4 observations. The tropospheric zenith corrections were also considered. The preliminary results show average root mean square (RMS) errors of about ±3 cm in the horizontal position and ±7 cm in the vertical position relative to the Potsdam SLR station in ITRF89 system. After transformation of the GPS results to geoid heights using the levelled heights, an absolute comparison with gravimetric geoid heights using the least squares modification of Stokes' formula (LSMS), the modified Molodensky and the NKG Scandinavian geoid 1989 (NGK-89) models gives a standard deviation of the difference of ±7cm to ±9cm for the NKG-89 model and of ±9cm to ±30cm for the LSMS and the modified Molodensky model. The Swedish height system is found to be about 8-37cm higher than those of the other Baltic countries for NKG-89 model.  相似文献   

15.
A detailed gravimetric geoid in the North Atlantic Ocean, named DGGNA-77, has been computed, based on a satellite and gravimetry derived earth potential model (consisting in spherical harmonic coefficients up to degree and order 30) and mean free air surface gravity anomalies (35180 1°×1° mean values and 245000 4′×4′ mean values). The long wavelength undulations were computed from the spherical harmonics of the reference potential model and the details were obtained by integrating the residual gravity anomalies through the Stokes formula: from 0 to 5° with the 4′×4′ data, and from 5° to 20° with the 1°×1° data. For computer time reasons the final grid was computed with half a degree spacing only. This grid extends from the Gulf of Mexico to the European and African coasts. Comparisons have been made with Geos 3 altimetry derived geoid heights and with the 5′×5′ gravimetric geoid derived byMarsh andChang [8] in the northwestern part of the Atlantic Ocean, which show a good agreement in most places apart from some tilts which porbably come from the satellite orbit recovery.  相似文献   

16.
The main objective of this study is to improve the geoid by GPS/leveling data in Egypt. Comparisons of the gravimetric geoid with GPS/leveling data have been performed. On the basis of a gravimetric geoid fitted to GPS/leveling by the least square method, a smoothed geoid was obtained. A high-resolution geoid in Egypt was computed with a 2.5′×2.5′ grid by combining the data set of 2600 original point gravity values, 20″×30″ resolution Digital Terrain Model (DTM) grid and the spherical harmonic model EGM96. The method of computation involved the strict evaluation of the Stokes integral with 1D-FFT. The standard deviation of the difference between the gravimetric and the GPS/leveling geoid heights is ±0.47 m. The standard deviation after fitting of the gravimetric geoid to the GPS/leveling points is better than ±13 cm. In the future we will try to improve our geoid results in Egypt by increasing the density of gravimetric coverage.  相似文献   

17.
Following our earlier definition of the rigorous orthometric height [J Geod 79(1-3):82–92 (2005)] we present the derivation and calculation of the differences between this and the Helmert orthometric height, which is embedded in the vertical datums used in numerous countries. By way of comparison, we also consider Mader and Niethammer’s refinements to the Helmert orthometric height. For a profile across the Canadian Rocky Mountains (maximum height of ~2,800 m), the rigorous correction to Helmert’s height reaches ~13 cm, whereas the Mader and Niethammer corrections only reach ~3 cm. The discrepancy is due mostly to the rigorous correction’s consideration of the geoid-generated gravity disturbance. We also point out that several of the terms derived here are the same as those used in regional gravimetric geoid models, thus simplifying their implementation. This will enable those who currently use Helmert orthometric heights to upgrade them to a more rigorous height system based on the Earth’s gravity field and one that is more compatible with a regional geoid model.  相似文献   

18.
Improvements in height datum transfer expected from the GOCE mission   总被引:1,自引:1,他引:1  
 One of the aims of the Earth Explorer Gravity Field and Steady-State Ocean Circulation (GOCE) mission is to provide global and regional models of the Earth's gravity field and of the geoid with high spatial resolution and accuracy. Using the GOCE error model, simulation studies were performed in order to estimate the accuracy of datum transfer in different areas of the Earth. The results showed that with the GOCE error model, the standard deviation of the height anomaly differences is about one order of magnitude better than the corresponding value with the EGM96 error model. As an example, the accuracy of the vertical datum transfer from the tide gauge of Amsterdam to New York was estimated equal to 57 cm when the EGM96 error model was used, while in the case of GOCE error model this accuracy was increased to 6 cm. The geoid undulation difference between the two places is about 76.5 m. Scaling the GOCE errors to the local gravity variance, the estimated accuracy varied between 3 and 7 cm, depending on the scaling model. Received: 1 March 2000 / Accepted: 21 February 2001  相似文献   

19.
 This paper suggests that potential coefficient models of the Earth's gravitational potential be used to calculate height anomalies which are then reduced to geoid undulations where such quantities are needed for orthometric height determination and vertical datum definition through a potential coefficient realization of the geoid. The process of the conversion of the height anomaly into a geoid undulation is represented by a height anomaly gradient term and the usual N–ζ term that is dependent on elevation and the Bouguer anomaly. Using a degree 360 expansion of 30′ elevations and the OSU91A potential coefficient model, a degree 360 representation of the correction terms was computed. The magnitude of N–ζ reached –3.4 m in the Himalaya Mountains with smaller, but still significant, magnitudes in other mountainous regions. Received: 6 May 1996; Accepted: 30 October 1996  相似文献   

20.
In the analyses of 2D real arrays, fast Hartley (FHT), fast T (FTT) and real-valued fast Fourier transforms are generally preferred in lieu of a complex fast Fourier transform due to the advantages of the former with respect to disk storage and computation time. Although the FHT and the FTT in one dimension are identical, they are different in two or more dimensions. Therefore, first, definitions and some properties of both transforms and the related 2D FHT and FTT algorithms are stated. After reviewing the 2D FHT and FTT solutions of Stokes' formula in planar approximation, 2D FHT and FTT methods are developed for geoid updating to incorporate additional gravity anomalies. The methods are applied for a test area which includes a 64×64 grid of 3×3 point gravity anomalies and geoid heights calculated from point masses. The geoids computed by 2D FHT and FTT are found to be identical. However, the RMS value of the differences between the computed and test geoid is ±15 mm. The numerical simulations indicate that the new methods of geoid updating are practical and accurate with considerable savings on storage requirements. Received: 15 February 1996; Accepted: 22 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号