首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enhancing the resolution and accuracy of surface ground-penetrating radar (GPR) reflection data by inverse filtering to recover a zero-phased band-limited reflectivity image requires a deconvolution technique that takes the mixed-phase character of the embedded wavelet into account. In contrast, standard stochastic deconvolution techniques assume that the wavelet is minimum phase and, hence, often meet with limited success when applied to GPR data. We present a new general-purpose blind deconvolution algorithm for mixed-phase wavelet estimation and deconvolution that (1) uses the parametrization of a mixed-phase wavelet as the convolution of the wavelet's minimum-phase equivalent with a dispersive all-pass filter, (2) includes prior information about the wavelet to be estimated in a Bayesian framework, and (3) relies on the assumption of a sparse reflectivity. Solving the normal equations using the data autocorrelation function provides an inverse filter that optimally removes the minimum-phase equivalent of the wavelet from the data, which leaves traces with a balanced amplitude spectrum but distorted phase. To compensate for the remaining phase errors, we invert in the frequency domain for an all-pass filter thereby taking advantage of the fact that the action of the all-pass filter is exclusively contained in its phase spectrum. A key element of our algorithm and a novelty in blind deconvolution is the inclusion of prior information that allows resolving ambiguities in polarity and timing that cannot be resolved using the sparseness measure alone. We employ a global inversion approach for non-linear optimization to find the all-pass filter phase values for each signal frequency. We tested the robustness and reliability of our algorithm on synthetic data with different wavelets, 1-D reflectivity models of different complexity, varying levels of added noise, and different types of prior information. When applied to realistic synthetic 2-D data and 2-D field data, we obtain images with increased temporal resolution compared to the results of standard processing.  相似文献   

2.
3.
A new approach to deconvolution has been developed to improve the attenuation of multiple energy. This approach to deconvolution is unique in that it not only eliminates the usual assumptions of a minimum phase lag wavelet and a random distribution of impulses, but also overcomes the noise limitation of the homomorphic deconvolution and its inherent instability to phase computation. We attempt to analyse the continuous alteration of the acoustic waveform during the propagation through a linear system. Based on the results of this analysis, the surface-related measurements are described as a convolution of the impulse response of the system with the non-stationary forward wavelet which includes all multiple terms generated within the system. The amplitude spectrum of the forward wavelet is recovered from the amplitude spectrum of the recorded signal, using the difference between the rate of decay of the source wavelet and the duration of the measurement. The phase spectrum of the forward wavelet is estimated using the Hilbert transform and the fact that the mixed phase lag wavelet can be presented as a convolution of the minimum and maximum phase lag wavelets. The multiples are discriminated from primaries by comparison of the phase spectrum of the seismic signal and the inverse of the forward wavelet. Therefore, the technique is called phase inversion deconvolution (PID). This approach requires no velocity information in order to recognize and attenuate multiple energy. Therefore, primary energy is recovered in the near-offset region where the velocity differential between primary and multiple energies is very small.  相似文献   

4.
A crucial step in the use of synthetic seismograms is the estimation of the filtering needed to convert the synthetic reflection spike sequence into a clearly recognizable approximation of a given seismic trace. In the past the filtering has been effected by a single wavelet, usually found by trial and error, and evaluated by eye. Matching can be made more precise than this by using spectral estimation procedures to determine the contribution of primaries and other reflection components to the seismic trace. The wavelet or wavelets that give the least squares best fit to the trace can be found, the errors of fit estimated, and statistics developed for testing whether a valid match can be made. If the composition of the seismogram is assumed to be known (e.g. that it consists solely of primaries and internal multiples) the frequency response of the best fit wavelet is simply the ratio of the cross spectrum between the synthetic spike sequence and the seismic trace to the power spectrum of the synthetic spike sequence, and the statistics of the match are related to the ordinary coherence function. Usually the composition cannot be assumed to be known (e.g. multiples of unknown relative amplitude may be present), and the synthetic sequence has to be split into components that contribute in different ways to the seismic trace. The matching problem is then to determine what filters should be applied to these components, regarded as inputs to a multichannel filter, in order to best fit the seismic trace, regarded as a noisy output. Partial coherence analysis is intended for just this problem. It provides fundamental statistics for the match, and it cannot be properly applied without interpreting these statistics. A useful and concise statistic is the ratio of the power in the total filtered synthetic trace to the power in the errors of fit. This measures the overall goodness-of-fit of the least squares match. It corresponds to a coherent (signal) to incoherent (noise) power ratio. Two limits can be set on it: an upper one equal to the signal-to-noise ratio estimated from the seismic data themselves, and a lower one defined from the distribution of the goodness-of-fit ratios yielded by matching with random noise of the same bandwidth and duration as the seismic trace segment. A match can be considered completely successful if its goodness-of-fit reaches the upper limit; it is rejected if the goodness-of-fit falls below the lower one.  相似文献   

5.
Convolution of a minimum‐phase wavelet with an all‐pass wavelet provides a means of varying the phase of the minimum‐phase wavelet without affecting its amplitude spectrum. This observation leads to a parametrization of a mixed‐phase wavelet being obtained in terms of a minimum‐phase wavelet and an all‐pass operator. The Wiener–Levinson algorithm allows the minimum‐phase wavelet to be estimated from the data. It is known that the fourth‐order cumulant preserves the phase information of the wavelet, provided that the underlying reflectivity sequence is a non‐Gaussian, independent and identically distributed process. This property is used to estimate the all‐pass operator from the data that have been whitened by the deconvolution of the estimated minimum‐phase wavelet. Wavelet estimation based on a cumulant‐matching technique is dependent on the bandwidth‐to‐central‐frequency ratio of the data. For the cumulants to be sensitive to the phase signatures, it is imperative that the ratio of bandwidth to central frequency is at least greater than one, and preferably close to two. Pre‐whitening of the data with the estimated minimum‐phase wavelet helps to increase the bandwidth, resulting in a more favourable bandwidth‐to‐central‐frequency ratio. The proposed technique makes use of this property to estimate the all‐pass wavelet from the prewhitened data. The paper also compares the results obtained from both prewhitened and non‐whitened data. The results show that the use of prewhitened data leads to a significant improvement in the estimation of the mixed‐phase wavelet when the data are severely band‐limited. The proposed algorithm was further tested on real data, followed by a test involving the introduction of a 90°‐phase‐rotated wavelet and then recovery of the wavelet. The test was successful.  相似文献   

6.
传统CSEM一般只提取主频信号,或以谐波与主频的振幅比为依据提取部分低阶谐波信号,但缺乏判断标准,实际操作中存在很大的不确定性.本文基于小波变换和希尔伯特解析包络提出一种新的CSEM信号噪声评价方法,首先在时间域中基于混合基快速傅里叶变换获得原始信号准确功率谱;其次在频率域中根据CSEM频率位置相邻频率幅值进行频谱预处理,基于离散小波变换将预处理后的频谱分成低频部分和高频部分,基于希尔伯特变换识别高频部分的上包络线,并与低频部分重构得到频谱的整体上包络线;最后根据包络线与对应CSEM频率振幅的比值估计噪声的影响幅度,根据阈值筛选出高信噪比的主频和谐波信号.本方法不需增加野外工作量即可提取大量的频率信号,特别是高阶谐波信号,实现频率加密,提高CSEM的纵向分辨能力和能源利用率.  相似文献   

7.
According to the features of spatial spectrum of the dynamic ocean topography (DOT),wavelet filter is proposed to reduce short-wavelength and noise signals in DOT. The surface geostrophic currents calculated from the DOT models filtered by wavelet filter in global and Kuroshio regions show more detailed information than those from the DOT models filtered by Gaussian filter. Based on a satellite gravity field model (CG01C) and a gravity field model (EGM96),combining an altimetry-derived mean sea surface height model (KMSS04),two mean DOT models are estimated. The short-wavelength and noise signals of these two DOT models are removed by using wavelet filter,and the DOT models asso-ciated global mean surface geostrophic current fields are calculated separately. Comparison of the surface geostrophic currents from CG01C and EGM96 model in global,Kuroshio and equatorial Pacific regions with that from oceanography,and comparison of influences of the two gravity models errors on the precision of the surface geostrophic currents velocity show that the accuracy of CG01C model has been greatly improved over pre-existing models at long wavelengths. At large and middle scale,the surface geostrophic current from satellite gravity and satellite altimetry agrees well with that from oceanography,which indicates that ocean currents detected by satellite measurement have reached relatively high precision.  相似文献   

8.
广义S变换及其在大地电磁测深数据处理中的应用   总被引:1,自引:0,他引:1  
广义S变换是一种优于短时窗傅立叶变换和小波变换的时频分析方法,利用广义S变换能够准确定位大地电磁资料中存在的噪声,通过定义时频窗对噪声进行滤除,从而明显提高阻抗视电阻率与相位的估算质量.本文基于S变换和大地电磁测深资料处理的基本原理,研究了基于广义S变换的大地电磁测深资料的处理流程和方法.对理论模拟信号及实测大地电磁场时间序列数据的处理,证实了方法的有效性.  相似文献   

9.
We investigate the influence of source wavelet errors on inversion‐based, surface‐related multiple attenuation, in order to address how the inverted primary impulse response, estimated primaries, and predicted multiples are affected by the estimated wavelet. In theory, errors in estimated wavelet can lead to errors in the upgoing waves. Because of smoothness and the band‐limitedness characteristics of the estimated wavelet, errors in the upgoing waves are usually not white and random. Theoretical analysis and two synthetic examples demonstrate that (i) when the overall amplitude scalar of the estimated wavelet is underestimated, the inversion of the primary impulse response suffers from instability, which will distort the estimation of primaries, and (ii) when the wavelet is overestimated, the estimated primaries will simply mimic the recorded upgoing waves. Nevertheless, the quality of the estimated primaries in the region above the first‐order, water‐bottom multiples is independent of the estimated wavelet. Synthetic results illustrate that inversion‐based, surface‐related multiple attenuation with a known wavelet is stable, since slight inaccuracy in amplitude spectrum and/or phase spectrum of the given wavelet or the corresponding upgoing waves will not lead to considerable deviation in the waveforms of the inverted results from those of the references. Furthermore, shot‐to‐shot wavelet variations, with maximum amplitude difference of 5% and maximum phase difference of 10°, create just slight artefacts in both the inverted primary impulse response and the estimated primaries. Moreover, the sensitivity test of estimation of primaries by sparse inversion method involving wavelet estimation shows that this method can stably and alternately update the wavelet and the primary impulse response; however, different choices of the initial wavelet can lead to different final inverted results.  相似文献   

10.
SASW method is a nondestructive in situ testing method that is used to determine the dynamic properties of soil sites and pavement systems. Phase information and dispersion characteristics of a wave propagating through these systems have a significant role in the processing of recorded data. Inversion of the dispersive phase data provides information on the variation of shear-wave velocity with depth. However, in the case of sanded residual soil, it is not easy to produce the reliable phase spectrum curve. Due to natural noises and other human intervention in surface wave date generation deal with to reliable phase spectrum curve for sanded residual soil turn into the complex issue for geological scientist. In this paper, a time–frequency analysis based on complex Gaussian Derivative wavelet was applied to detect and localize all the events that are not identifiable by conventional signal processing methods. Then, the performance of discrete wavelet transform (DWT) in noise reduction of these recorded seismic signals was evaluated. Furthermore, in particular the influence of the decomposition level choice was investigated on efficiency of this process. This method is developed by various wavelet thresholding techniques which provide many options for controllable de-noising at each level of signal decomposition. Also, it obviates the need for high computation time compare with continuous wavelet transform. According to the results, the proposed method is powerful to visualize the interested spectrum range of seismic signals and to de-noise at low level decomposition.  相似文献   

11.
宽频带地震观测数据中有效信号和干扰噪声经常发生混频效应,常规的频率域滤波方法很难将二者分离.地震波信号属于时变非平稳信号,时频分析方法能够同时得到地震波信号随着时间和频率变化的振幅和相位特征,S变换是其中较为高效的时频分析工具之一.本文以S变换为例,提出了基于相位叠加的时频域相位滤波方法.与传统叠加方法相比,相位叠加方法对强振幅不敏感,对波形一致性相当敏感,更加利于有效弱信号信息的检测.时频域相位滤波方法滤除与有效信号不相干的背景噪声,保留了相位一致的有效信号成分,显著提高了信噪比.运用理论合成的远震接收函数数据和实际的宽频带地震观测数据检验结果显示该方法较传统的带通滤波方法相比,即使在信噪较低且混频严重条件下,时频域相位滤波方法的滤波效果依然很明显,有助于识别能量较弱的有效信号.  相似文献   

12.
Spectral decomposition is a powerful tool that can provide geological details dependent upon discrete frequencies. Complex spectral decomposition using inversion strategies differs from conventional spectral decomposition methods in that it produces not only frequency information but also wavelet phase information. This method was applied to a time‐lapse three‐dimensional seismic dataset in order to test the feasibility of using wavelet phase changes to detect and map injected carbon dioxide within the reservoir at the Ketzin carbon dioxide storage site, Germany. Simplified zero‐offset forward modelling was used to help verify the effectiveness of this technique and to better understand the wavelet phase response from the highly heterogeneous storage reservoir and carbon dioxide plume. Ambient noise and signal‐to‐noise ratios were calculated from the raw data to determine the extracted wavelet phase. Strong noise caused by rainfall and the assumed spatial distribution of sandstone channels in the reservoir could be correlated with phase anomalies. Qualitative and quantitative results indicate that the wavelet phase extracted by the complex spectral decomposition technique has great potential as a practical and feasible tool for carbon dioxide detection at the Ketzin pilot site.  相似文献   

13.
The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and the noise level not changes with space, whereas the actual situation does not satisfy this assumption, so that results after resolution improvement processing is not up to the expected effect. To solve these problems, we propose a seismic resolution improvement method based on the secondary time–frequency spectrum. First, we propose the secondary time-frequency spectrum based on S transform (ST) and discuss the reflection coefficient sequence and time-dependent wavelet in the secondary time–frequency spectrum. Second, using the secondary time–frequency spectrum, we design a twodimensional filter to extract the amplitude spectrum of the time-dependent wavelet. Then, we discuss the improvement of the resolution operator in noisy environments and propose a novel approach for determining the broad frequency range of the resolution operator in the time–frequency–space domain. Finally, we apply the proposed method to synthetic and real data and compare the results of the traditional spectrum-modeling deconvolution and Q compensation method. The results suggest that the proposed method does not need to estimate the Q value and the resolution is not limited by the bandwidth of the source. Thus, the resolution of the seismic data is improved sufficiently based on the signal-to-noise ratio (SNR).  相似文献   

14.
A model of the seismic trace is generally given as a convolution between the propagating wavelet and the reflectivity series of the earth and normally it is assumed that a white noise is added to the trace. The knowledge of the propagating wavelet is the basic point to estimate the reflectivity series from the seismic trace. In this paper a statistical method of wavelet extraction from several seismic traces, assuming the wavelet to be unique, is discussed. This method allows one to obtain the propagating wavelet without any classical limitative assumptions on the phase spectrum. Furthermore, a phase unwrapping method is suggested and some statistical properties of the phase spectrum of the reflectivity traces are examined.  相似文献   

15.
本文首先分析了地震波在黏弹介质的传播规律,基于黏弹介质地震波动方程总结了时变子波振幅谱和相位谱的关系,从而得出结论,准确估计子波相位谱初值和不同时刻的子波振幅谱是实现时变子波准确提取的必要条件.在此基础上,针对传统方法限制子波振幅谱形态且受限于分段平稳假设的问题,提出了一种利用EMD(Empirical Mode Decomposition)和子波振幅谱与相位谱关系的时变子波提取方法,根据子波对数振幅谱光滑连续而反射系数对数振幅谱振荡剧烈的特点,采用EMD方法将不同时刻地震记录的对数振幅谱分解为一组具有不同振荡尺度的模态分量,通过滤除振荡剧烈分量、重构光滑连续分量提取时变子波振幅谱;再应用子波振幅谱和相位谱的关系提取时变子波相位谱,将分别提取的振幅谱和相位谱逐点进行合成,最终实现时变子波的准确提取.本文方法不需要求取Q值,适用于变Q值的情况,具有良好的抗噪性能.数值仿真和叠后实际资料处理结果表明,相比传统的分段提取方法,利用本文方法提取的时变子波准确度更高,研究成果对提高地震资料分辨率具有重要意义.  相似文献   

16.
Receiver Functions from Autoregressive Deconvolution   总被引:4,自引:0,他引:4  
Summary Receiver functions can be estimated by minimizing the square errors of Wiener filter in time-domain or spectrum division in frequency domain. To avoid the direct calculation of auto-correlation and cross-correlation coefficients in Toeplitz equation or of auto-spectrum and cross-spectrum in spectrum division equation as well as empirically choosing a damping parameter, autoregressive deconvolution is presented to isolate receiver function from three-component teleseismic P waveforms. The vertical component of teleseismic P waveform is modeled by an autoregressive model, which can be forward and backward, predicted respectively. The optimum length of the autoregressive model is determined by the Akaike criterion. By minimizing the square errors of forward and backward predicting filters, autoregressive filter coefficients can be recursively solved, and receiver function is also estimated in the similar procedure. Both synthetic and real data tests show that autoregressive deconvolution is an effective method to isolate receiver function from teleseismic P waveforms in time-domain.  相似文献   

17.
Approximate deconvolution by means of Wiener filters has become standard practice in seismic data-processing. It is well-known that addition of a certain percentage of noise energy to the autocorrelation of the signal wavelet leads to a filter that does not increase, or even reduces, the noise level on the seismogram. This noise addition will, in general, cause a minimum phase signal to become mixed phase. A technique is presented for the calculation of the optimum-lag shaping filter for a contaminated signal wavelet. The advantages of this method over the more conventional approach are that it needs less arithmetic operations and that it automatically gives the filter with the optimum combination of shaping performance and noise reduction.  相似文献   

18.
This article utilizes Savitzky–Golay (SG) filter to eliminate seismic random noise. This is a novel method for seismic random noise reduction in which SG filter adopts piecewise weighted polynomial via leastsquares estimation. Therefore, effective smoothing is achieved in extracting the original signal from noise environment while retaining the shape of the signal as close as possible to the original one. Although there are lots of classical methods such as Wiener filtering and wavelet denoising applied to eliminate seismic random noise, the SG filter outperforms them in approximating the true signal. SG filter will obtain a good tradeoff in waveform smoothing and valid signal preservation under suitable conditions. These are the appropriate window size and the polynomial degree. Through examples from synthetic seismic signals and field seismic data, we demonstrate the good performance of SG filter by comparing it with the Wiener filtering and wavelet denoising methods.  相似文献   

19.
地震资料处理中小波函数的选取研究   总被引:101,自引:14,他引:101       下载免费PDF全文
本文给出了常见地震子波的一个模拟公式,可以很好地模拟零相位及混合相位子波,在一定意义上也可以近似模拟最大相位及最小相位子波.模拟出的子波加上适当的修正项后满足允许条件,可用作小波函数.与Morlet小波类似,在实际应用中这些修正项在一定条件下可以略去,文中对Morlet小波作了改造,使其能更好地适应于地震资料处理.研究了反射波能量及噪声等干扰波在时间-尺度域的分布特征与所选基本小波的关系.提出用地震子波(或与地震子波相近的函数)作为基本小波,对地震资料进行去噪及分频解释的方法.最后用实例证明方法的有效性.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号