首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hourly interplanetary proton plasma data, measured by Helios-1 and Helios-2 heliocentric satellites over the period extending between the sunspot minimum and maximum of the 21rst solar cycle are analysed. This analysis gives an emphasis in the presence of a third type solar wind (intermediate) at 450 km s–1, appearing at solar minimum, during which large coronal holes are dominating in the Sun. This type of solar wind is hardly to be observed during the solar maximum period.Both Helios-1 and Helios-2 data give an average speed of the slow solar wind of 350 km s–1 for the period between these two extremes of solar activities.After correlation of the plasma temperature with its speed in different heliocentric distances, it comes out the stronger heating which takes place in distances shorter than 0.6 AU than in distances between 0.6 and 1.0 AU.A different behaviour of the radial proton temperature gradient in different solar activities appears after the calculation of the gradients as a function of solar wind speed and radial distance.  相似文献   

2.
Takakura  T.  Degaonkar  S. S.  Ohki  K.  Kosugi  T.  Enome  S. 《Solar physics》1983,83(2):379-384
New solar wind data from Helios-2 are used to study, in a statistical fashion, the relation between proton number density n, flow speed u and heliocentric distance r. It is shown that the average of nu 2 r 2 does not depend on flow speed nor on distance, verifying the previously established invariance of momentum flux density (mnu2) carried by the solar wind. Averages of mnu2 from different spacecraft do not show correlation with the solar cycle. Rather, the close agreement (to within 1.8%) of values from Helios-1 and Helios-2 suggests that the momentum flux density carried by the solar wind may be also constant during the solar cycle.  相似文献   

3.
We investigate the possibility of an additional acceleration of the high speed solar wind by whistler waves propagating outward from a coronal hole. We consider a stationary, spherically symmetric model and assume a radial wind flow as well as a radial magnetic field. The energy equation consists of (a) energy transfer of the electron beam which excites the whistler waves, and (b) energy transfer of the whistler waves described by conservation of wave action density. The momentum conservation equation includes the momentum transfer of two gases (a thermal gas and an electron beam). The variation of the temperature is described by a polytropic law. The variation of solar wind velocity with the radial distance is calculated for different values of energy density of the whistler waves. It is shown that the acceleration of high speed solar wind in the coronal hole due to the whistler waves is very important. We have calculated that the solar wind velocity at the earth's orbit is about equal to 670 km/sec (for wave energy density about 10?4 erg cm?3 at 1.1R⊙). It is in approximate agreement with the observed values.  相似文献   

4.
Khabarova  O.  Zastenker  G. 《Solar physics》2011,270(1):311-329
Analysis of the Interball-1 spacecraft data (1995 – 2000) has shown that the solar wind ion flux sometimes increases or decreases abruptly by more than 20% over a time period of several seconds or minutes. Typically, the amplitude of such sharp changes in the solar wind ion flux (SCIFs) is larger than 0.5×108 cm−2 s−1. These sudden changes of the ion flux were also observed by the Solar Wind Experiment (SWE), on board the Wind spacecraft, as the solar wind density increases and decreases with negligible changes in the solar wind velocity. SCIFs occur irregularly at 1 AU, when plasma flows with specific properties come to the Earth’s orbit. SCIFs are usually observed in slow, turbulent solar wind with increased density and interplanetary magnetic field strength. The number of times SCIFs occur during a day is simulated using the solar wind density, magnetic field, and their standard deviations as input parameters for a period of five years. A correlation coefficient of ∼0.7 is obtained between the modelled and the experimental data. It is found that SCIFs are not associated with coronal mass ejections (CMEs), corotating interaction regions (CIRs), or interplanetary shocks; however, 85% of the sector boundaries are surrounded by SCIFs. The properties of the solar wind plasma for days with five or more SCIF observations are the same as those of the solar wind plasma at the sector boundaries. One possible explanation for the occurrence of SCIFs (near sector boundaries) is magnetic reconnection at the heliospheric current sheet or local current sheets. Other probable causes of SCIFs (inside sectors) are turbulent processes in the slow solar wind and at the crossings of flux tubes.  相似文献   

5.
The solar active region (AR) 7530 was observed at 6 cm on July 3 and 4, 1993 with the Westerbork Synthesis Radio Telescope, using a multi-channel receiver with very narrow bandwidth. We compare the radio data with Yohkoh SXT observations and with the magnetic field extrapolated from the Marshall vector magnetograms in the force-free and current-free approximations. The comparison with soft X-rays shows that, although a general agreement exists between the shape of the radio intensity map and the X-ray loops, the brightness temperature, T b, obtained using the parameters derived from the SXT is much lower than that observed. The comparison with the extrapolated photospheric fields shows instead that they account very well for the observed T b above the main sunspots, if gyroresonance emission is assumed. In the observation of July 4 an inversion and strong suppression of the circular polarization was clearly present above different portions of the AR, which indicates that particular relationships exist between the electron density and the magnetic field in the region where the corresponding lines of sight cross the field quasi-perpendicularly. The extrapolated magnetic field at a much higher level ( 1010 cm), satisfies the constraints required by the wave propagation theory all over the AR. However, a rather low electron density is derived.  相似文献   

6.
We present Very Large Array observations at wavelengths of 2, 3.5, 6, and 20 cm, of angular broadening of radio sources due to the solar wind in the region 2–16 solar radii. Angular broadening is anisotropic with axial ratios in the range 2–16. Larger axial ratios are observed preferentially at smaller solar distances. Assuming that anisotropy is due to scattering blobs elongated along magnetic field lines, the distribution of position angles of the elliptically broadened images indicates that the field lines are non-radial even at the largest heliocentric distances observed here. At 5R⊙, the major axis scattering angle is ∼ 0.7" atλ= 6 cm and it varies with heliocentric distance asR -1.6. The level of turbulence, characterized by the wave structure function at a scale of 10 km along the major axis, normalized toλ = 20 cm, has a value 20 ± 7 at 5R⊙and varies with heliocentric distance asR -3. Comparison with earlier resu lts suggest that the level of turbulence is higher during solar maximum. Assuming a power-law spectrum of electron density fluctuations, the fitted spectral exponents have values in the range 2.8–3.4 for scale sizes between 2–35 km. The data suggests temporal fluctuations (of up to 10%) in the spectral exponent on a time scale of a few tens of minutes. The observed structure functions at different solar distances do not show any evidence for an inner scale; the upper limits are l k m at 2R⊙ and 4 km at 13R⊙. These upper limits are in conflict with earlier determinations and may suggest a reduced inner scale during solar maximum.  相似文献   

7.
During the second interval of the Study of Travelling Interplanetary Phenomena (STIP, 20 March–5 May, 1976) a series of solar, interplanetary, geomagnetic and cosmic-ray events have occurred. These are surprising events, since this period falls into the minimum of the solar activity of the past solar cycle. The present analysis is concentrated on Forbush decreases, cosmic-ray increases, geomagnetic variations and the related solar wind disturbances recorded by the heliocentric satellites Helios-1, 2 and the geocentric IMP-8, in the period 23 March–7 April, 1976. The cosmic-ray enhancements on 26 March and 1 April were of geomagnetic origin and particularly expressed in middle latitude stations during the largeDst magnetic field depressions. The detected multiple Forbush decreases are related with the type IV solar flares, all produced by the same active region (McMath Plage 14143). The relative positions among the satellites Helios-1, 2, the Sun, and the Earth were very favorable in this period for studying these events, since Helios-1 approached the Sun to its perihelion and Helios-2 was lined-up with the Earth. Helios-2 detected two shock fronts on 30 March and 1 April, respectively, and Helios-1 detected a tangential discontinuity on 26 March. An attempt is made to relate these shock fronts with the erupted solar flares and Storm Sudden Commencements (SSC) recorded on the Earth and to estimate a lower limit of the deceleration distance of the involved shock waves.  相似文献   

8.
Comparison of Explorer 34 observations on solar protons in the energy range 0.7–55 MeV with similar observations from other spacecrafts show that the large field aligned anisotropies which are observed during the rise time of a flare event change to an equilibrium anisotropy coming radially from the sunward direction due to the convective removal of the solar particles. At very late times during the decay (T 4 days) the anisotropy is observed to be from a direction 45° E of the satellite-Sun line which is interpreted as indicative of positive density gradient of solar cosmic ray population. The dependence of both types of equilibrium anisotropies on the energy and the velocity of the particles and on plasma velocity are shown to be in agreement with the theoretical predictions. The amplitude of the large field aligned anisotropies observed earlier in the event is found to be independent of the rise time of the event and to vary as (Vt)–1.Interplanetary magnetic sector crossings during a flare event, cause abrupt changes in both the amplitude and phase of the non-equilibrium anisotropy whereas they have no significant effect on equilibrium anisotropy. The effect of azimuthal density gradients on the decay time constants of flare enhancements are also examined in an attempt to understand the complicated structures, often observed, in the time intensity profiles at low energies.Part of this work was done while the author was at the University of Texas as Dallas, U.S.A.Now at the National Academy of Sciences, Washington, D.C.  相似文献   

9.
The evolution of the background magnetic field with the solar cycle has been studied using the dipole-quadrupole magnetic energy behaviour in a cycle. The combined energy of the axisymmetric dipole, non-axisymmetric quadrupole, and equatorial dipole is relatively lowly variable over the solar cycle. The dipole field changed sign when the quadrupole field was near a maximum, andvice versa. A conceptual picture involving four meridional magnetic polarity sectors proposed to explain these features may be in agreement with equatorial coronal hole observations. The rate of sector rotation is estimated to be 8 heliographic degrees per year faster than the Carrington rotation (P = 27.23d synodic). Polarity boundaries of sectors located 180° apart show meridional migrations in one direction, while the boundaries of the other two sectors move in the opposite direction. A simple model of how the magnetic field energy varies, subject to specifying reasonable initial photospheric magnetic and velocity field patterns, follows the observed evolution of the dipole and quadrupole field energies quite nicely.  相似文献   

10.
Köhnlein  W. 《Solar physics》1996,169(1):209-213
The radial dependencies of four solar wind parameters (plasma density N, velocity V, temperature T, and magnitude of the interplanetary magnetic field B) are derived from remote sensing data of the solar corona and from in situ measurements in the heliosphere (Helios-1, 2, Pioneer-10, 11, and Voyager-1, 2). Using doubly logarithmic scaling (solar wind parameter vs radial distance from the Sun) one finds two distinct intervals in the ecliptic, i.e., an exponential section within, approximately, the inner heliosphere and a linear section - up to at least 61 AU - in the outer heliosphere.  相似文献   

11.
Predictions of Energy and Helicity in Four Major Eruptive Solar Flares   总被引:1,自引:0,他引:1  
In order to better understand the solar genesis of interplanetary magnetic clouds (MCs), we model the magnetic and topological properties of four large eruptive solar flares and relate them to observations. We use the three-dimensional Minimum Current Corona model (Longcope, 1996, Solar Phys. 169, 91) and observations of pre-flare photospheric magnetic field and flare ribbons to derive values of reconnected magnetic flux, flare energy, flux rope helicity, and orientation of the flux-rope poloidal field. We compare model predictions of those quantities to flare and MC observations, and within the estimated uncertainties of the methods used find the following: The predicted model reconnection fluxes are equal to or lower than the reconnection fluxes inferred from the observed ribbon motions. Both observed and model reconnection fluxes match the MC poloidal fluxes. The predicted flux-rope helicities match the MC helicities. The predicted free energies lie between the observed energies and the estimated total flare luminosities. The direction of the leading edge of the MC’s poloidal field is aligned with the poloidal field of the flux rope in the AR rather than the global dipole field. These findings compel us to believe that magnetic clouds associated with these four solar flares are formed by low-corona magnetic reconnection during the eruption, rather than eruption of pre-existing structures in the corona or formation in the upper corona with participation of the global magnetic field. We also note that since all four flares occurred in active regions without significant pre-flare flux emergence and cancelation, the energy and helicity that we find are stored by shearing and rotating motions, which are sufficient to account for the observed radiative flare energy and MC helicity.  相似文献   

12.
We investigate the effect of viscosity and magnetic diffusivity on the oblique propagation and dissipation of Alfvén waves with respect to the normal outward direction, making use of MHD equations, density, temperature and magnetic field structure in coronal holes and underlying magnetic funnels. We find reduction in the damping length scale, group velocity and energy flux density as the propagation angle of Alfvén waves increases inside the coronal holes. For any propagation angle, the energy flux density and damping length scale also show a decrement in the source region of the solar wind (< 1.05 R) where these may be one of the primary energy sources, which can convert the inflow of the solar wind into the outflow. In the outer region (> 1.21 R), for any propagation angle, the energy flux density peaks match with the peaks of MgX 609.78 Å and 624.78 Å linewidths observed from the Coronal Diagnostic Spectrometer (CDS) on SOHO and the non-thermal velocity derived from these observations, justify the observed spectroscopic signature of the Alfvén wave dissipation.  相似文献   

13.
At the Sun-Earth distance of one astronomical unit (1 AU), the solar wind is known to be strongly supersonic and super Alfvenic with Mach and Alfven numbers being on average 12 and 9 respectively. Also, solar wind densities (average ∼10cm-3) and velocities (average ∼450kms-1) at 1AU, are known to be inversely correlated with low velocities having higher than average densities andvice versa. However, on May 11 and 12 1999 the Earth was engulfed by an unusually low density (< 0.1cm-3) and low velocity (< 350km s-1) solar wind with an Alfven Mach number significantly less than 1. This was a unique low-velocity, low-density, sub-Alfvénic solar wind flow which spacecraft observations have shown lasted more than 24 hours. One consequence of this extremely tenuous solar wind was a spectacular expansion of the Earth’s magnetosphere and bow shock. The expanding bow shock was observed by several spacecraft and reached record upstream distances of nearly 60 Earth radii, the lunar orbit. The event was so dramatic that it has come to be known asthe solar wind disappearance event. Though extensive studies of this event were made by many authors in the past, it has only been recently shown that the unusual solar wind flows characterizing this event originated from a small coronal hole in the vicinity of a large active region on the Sun. These recent results have put to rest speculation that such events are associated with global phenomenon like the periodic solar polar field reversal that occurs at the maximum of each solar cycle. In this paper we revisit the 11 May 1999 event, look at other disappearance events that have ocurred in the past, examine the reasons why speculations about the association of such events with global phenomena like solar polar field reversals were made and also examine the role of transient coronal holes as a possible solar source for such events.  相似文献   

14.
The solar wind quasi-invariant (QI) has been defined by Osherovich, Fainberg, and Stone (Geophys. Res. Lett. 26, 2597, 1999) as the ratio of magnetic energy density and the energy density of the solar wind flow. In the regular solar wind QI is a rather small number, since the energy of the flow is almost two orders of magnitude greater than the magnetic energy. However, in magnetic clouds, QI is the order of unity (less than 1) and thus magnetic clouds can be viewed as a great anomaly in comparison with its value in the background solar wind. We study the duration, extent, and amplitude of this anomaly for two groups of isolated magnetic clouds: slow clouds (360<v<450 km s−1) and fast clouds (450≤v<720 km s−1). By applying the technique of superposition of epochs to 12 slow and 12 fast clouds from the catalog of Richardson and Cane (Solar Phys. 264, 189, 2010), we create an average slow cloud and an average fast cloud observed at 1 AU. From our analysis of these average clouds, we obtain cloud boundaries in both time and space as well as differences in QI amplitude and other parameters characterizing the solar wind state. Interplanetary magnetic clouds are known to cause major magnetic storms at the Earth, especially those clouds which travel from the sun to the Earth at high speeds. Characterizing each magnetic cloud by its QI value and extent may help in understanding the role of those disturbances in producing geomagnetic activity.  相似文献   

15.
During the latitudinal alignment in 2004, ACE and Ulysses encountered two stream interaction regions (SIRs) each Carrington rotation from 2016 to 2018, at 1 and 5.4 AU, respectively. More SIR-driven shocks were observed at 5.4 AU than at 1 AU. Three small SIRs at 1 AU merged to form a strong SIR at 5.4 AU. We compare the Enlil model results with spacecraft observations from four aspects: i) the accuracy of the latest versions of models (WSA v2.2 and Enlil v2.7) vs. old versions (WSA v1.6 and Enlil v2.6), ii) the sensitivity to different solar magnetograms (MWO vs. NSO), iii) the sensitivity to different coronal models (WSA vs. MAS), iv) the predictive capability at 1 AU vs. 5.4 AU. We find the models can capture field sector boundaries with some time offset. Although the new versions have improved the SIR timing prediction, the time offset can be up to two days at 1 AU and four days at 5.4 AU. The models cannot capture some small-scale structures, including shocks and small SIRs at 1 AU. For SIRs, the temperature and total pressure are often underestimated, while the density compression is overestimated. For slow wind, the density is usually overestimated, while the temperature, magnetic field, and total pressure are often underestimated. The new versions have improved the prediction of the speed and density, but they need more robust scaling factors for magnetic field. The Enlil model results are very sensitive to different solar magnetograms and coronal models. It is hard to determine which magnetogram-coronal model combination is superior to others. Higher-resolution solar and coronal observations, a mission closer to the Sun, together with simulations of greater resolution and added physics, are ways to make progress for the solar wind modeling.  相似文献   

16.
As is well known, the interplanetary magnetic field is the extension of the solar magnetic field, and the solar wind is the extension of the solar corona (Biermann, 1951; Parker, 1958). Consequently, knowledge of these two interplanetary structures reflects a knowledge of the solar corona itself.Calculations of radial proton temperature gradients within magnetic sector boundaries, observed by Helios-1 and Helios-2 heliocentric satellites between 0.3 and 1.0 AU, revealed lower temperatures in the solar corona in the region where these boundaries merge.  相似文献   

17.
An extensive study of the IMP-6 and IMP-8 plasma and radio wave data has been performed to try to find electron plasma oscillations associated with type III radio noise bursts and low-energy solar electrons. This study shows that electron plasma oscillations are seldom observed in association with solar electron events and type III radio bursts at 1.0 AU. In nearly four years of observations only one event was found in which electron plasma oscillations are clearly associated with solar electrons. For this event the plasma oscillations appeared coincident with the development of a secondary maximum in the electron velocity distribution functions due to solar electrons streaming outwards from the Sun. Numerous cases were found in which no electron plasma oscillations with field strengths greater than 1 μV m?1 could be detected even though electrons from the solar flare were clearly detected at the spacecraft. For the one case in which electron plasma oscillations are definitely produced by the electrons ejected by the solar flare the electric field strength is relatively small, only about 100 μV m?1. This field strength is about a factor of ten smaller than the amplitude of electron plasma oscillations generated by electrons streaming into the solar wind from the bow shock. Electromagnetic radiation, believed to be similar to the type III radio emission, is also observed coming from the region of the more intense electron plasma oscillations upstream of the bow shock. Quantitative calculations of the rate of conversion of the plasma oscillation energy to electromagnetic radiation are presented for plasma oscillations excited by both solar electrons and electrons from the bow shock. These calculations show that neither the type III radio emissions nor the radiation from upstream of the bow shock can be adequately explained by a current theory for the coupling of electron plasma oscillations to electromagnetic radiation. Possible ways of resolving these difficulties are discussed.  相似文献   

18.
Magnetically closed regions in the solar wind   总被引:1,自引:0,他引:1  
Interplanetary plasma and magnetic field data collected by Helios-1, Helios-2 and IMP-8 satellites over the periods December 1974–December 1976, January 1976–December 1976 and December 1974–December 1976, respectively, are analysed. From this analysis, we identified 85 about cases in which the proton temperature was very low. In 50 of these cases, the interplanetary magnetic field showed characteristic variations favorable for closed structures in the solar wind.By using the calculated radial temperature gradients as a function of the solar wind speed and the heliocentric distance we were able to identify cold protons in the neighborhood of the Sun (0.3 AU).The estimation of the distance at which regions of cold protons are formed (10R ) shows that this distance is the same whether we are using solar wind plasma data measured in fixed or in varied heliocentric distances.  相似文献   

19.
A model is presented which describes the 3-dimensional non-radial solar wind expansion between the Sun and the Earth in a specified magnetic field configuration subject to synoptically observed plasma properties at the coronal base. In this paper, the field is taken to be potential in the inner corona based upon the Mt. Wilson magnetograph observations and radial beyond a certain chosen surface. For plasma boundary conditions at the Sun, we use deconvoluted density profiles obtained from synopticK-coronameter brightness observations. The temperature is taken to be 2 × 106 K at the base of closed field lines and 1.6 x 106K at the base of open field lines. For a sample calculation, we employ data taken during the period of the 12 November 1966 eclipse. Although qualitative agreement with observations at 1 AU is obtained, important discrepancies emerge which are not apparent from spherically symmetric models or those models which do not incorporate actual observations in the lower corona. These discrepancies appear to be due to two primary difficulties - the rapid geometric divergence of the open field lines in the inner corona as well as the breakdown in the validity of the Spitzer heat conduction formula even closer to the Sun than predicted by radial flow models. These two effects combine to produce conductively dominated solutions and lower velocities, densities, and field strengths at the Earth than those observed. The traditional difficulty in solar wind theory in that unrealistically small densities must be assumed at the coronal base in order to obtain observed densities at 1 AU is more than compensated for here by the rapid divergence of field lines in the inner corona. For these base conditions, the value ofβ(ratio of gas pressure to magnetic pressure) is shown to be significantly greater than one over most of the lower corona - suggesting that, for the coronal boundary conditions used here, the use of a potential or force-free magnetic field configuration may not be justified. The calculations of this paper point to the directions where future research on solar-interplanetary modelling should receive priority:
  1. better models for the coronal magnetic field structure
  2. improved understanding of the thermal conductivity relevant for the solar wind plasma.
  相似文献   

20.
Alfvén wave turbulence is considered as the source of the non-thermal line broadenings observed in soft X-rays in solar flares. The waves are assumed to lose energy to particle acceleration and the temporal development for the case of Fermi acceleration,W(k)k –2, is investigated. The decay of the wave energy density is compared to that of the non-thermal velocity for the event of 1980 June 29. The wave energy densities required to explain the degree of non-thermal broadening and its temporal characteristics are consistent with those typically inferred from-ray observations. A relationship between the degree of non-thermal broadening and-ray fluxes is predicted. In general, the larger the-ray flux the shorter the time scales for the decay of the wave energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号