首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of ans-polarized plane electromagnetic wave incident from a dielectric (or vacuum) region on awarm moving magnetized plasma half-space is considered. The external magnetic field is assumed to be normal to the direction of the wave normal and the velocity of the moving medium. Using the first three moment equations, together with Maxwell's electromagnetic equations, we construct the constitutive relations in the rest frame of the moving medium. The constitutive relations are then transformed to the laboratory frame by invokingMinkowski's equations for the moving plasma medium, and the dispersion relation for the propagating ordinary mode in the moving medium is derived. Expressions are obtained for the phase and group velocities and the index of refraction for the ordinary mode, as also for power reflection and transmission coefficients. It is found that in contrast to the case of a cold magnetized plasma, the ordinary electromagnetic mode excited in the warm magnetoplasma medium getsmodified due to the presence of an external magnetic field. In addition, the various reflection and transmission characteristics for a warm magnetoplasma depend on the velocity of the moving plasma as well as on the strength of the applied magnetic field, as against the case for a cold moving magnetized plasma. Numerical results on the reflection coefficient are presented for several values of the parameters characterizing the electron-plasma temperature, the velocity of the moving medium and the strength of the applied magnetic field.  相似文献   

2.
A dispersion relation for left hand circularly polarized electromagnetic wave propagation in an anisotropic magnetoplasma in the presence of a very weak parallel electrostatic field has been derived with the help of linearized Vlasov and Maxwell equations. An expression of the growth rate has been derived in presence of parallel electric field for ion-cyclotron electromagnetic wave in an anisotropic media. The modification made in the growth rate by introducing parallel electric field and temperature anisotropy has been studied for fully ionized hydrogen plasma with the help of observations made on Jovian ionosphere and magnetosphere atL = 5.6 Rj. It is concluded that the growth (damping) of ion-cyclotron electromagnetic wave is possible when the wave vector is parallel (antiparallel) to the static electric field and effect is more pronounced at higher wave number.  相似文献   

3.
We investigate electromagnetic buoyancy instabilities of the electron-ion plasma with the heat flux based on not the magnetohydrodynamic (MHD) equations, but using the multicomponent plasma approach when the momentum equations are solved for each species. We consider a geometry in which the background magnetic field, gravity, and stratification are directed along one axis. The nonzero background electron thermal flux is taken into account. Collisions between electrons and ions are included in the momentum equations. No simplifications usual for the one-fluid MHD-approach in studying these instabilities are used. We derive a simple dispersion relation, which shows that the thermal flux perturbation generally stabilizes an instability for the geometry under consideration. This result contradicts to conclusion obtained in the MHD-approach. We show that the reason of this contradiction is the simplified assumptions used in the MHD analysis of buoyancy instabilities and the role of the longitudinal electric field perturbation which is not captured by the ideal MHD equations. Our dispersion relation also shows that the medium with the electron thermal flux can be unstable, if the temperature gradients of ions and electrons have the opposite signs. The results obtained can be applied to the weakly collisional magnetized plasma objects in laboratory and astrophysics.  相似文献   

4.
We model a compact relativistic body with anisotropic pressures in the presence of an electric field. The equation of state is barotropic, with a linear relationship between the radial pressure and the energy density. Simple exact models of the Einstein–Maxwell equations are generated. A graphical analysis indicates that the matter and electromagnetic variables are well behaved. In particular, the proper charge density is regular for certain parameter values at the stellar center unlike earlier anisotropic models in the presence of charge. We show that the electric field affects the mass of stellar objects and the observed mass for a particular binary pulsar is regained. Our models contain previous results of anisotropic charged matter with a linear equation of state for special parameter values.  相似文献   

5.
The Maxwell equations for gravitational fields previously assumed by Sciama are derived from elementary considerations. The Lagrangian for a gravitating mass in a non-inertial coordinate system yields equations of motion leading to force definitions for a gravitational field intensity and a gravitational induction field. The non-inertial velocity of the coordinate system plays the role of a vector potential contributing to the generalized momenta of bodies moving in the system. A Lagrangian density constructed from the force-defined fields then lead to the source definitions of gravitational fields. It is found that positive field energy densities require repulsive gravitational forces, whereas attractive forces imply the violation of the conservation of energy. This paradox is resolved by representing gravitational quantities as pure-imaginary entities. Thus characterized, the equations which define gravitational fields become identical to Maxwell's equations but are pure-imaginary. This suggests a combined representation for gravitational and electromagnetic fields which, in covariant form, indicates both the well known equivalence of mass and energy and a possible equivalence of charge and energy. From orthogonality considerations, it is conjectured that this latter energy is gravitational, and that, whereas gravitational fields interact with electromagnetic energy, electromagnetic fields interact with gravitational energy. Parts of this work were completed at Air Force Cambridge Research Laboratories, Bedford, Mass., U.S.A.  相似文献   

6.
The equivalence of Lagrangian containing gravitational, electromagnetic, scalar, and torsion fields is discussed. It is shown that the equation for the variation of the scalar field leads to a torsion wave equation generated by electromagnetic field leads to a torsion wave equation generated by electromagnetic fields. The system is proved to be equivalent to a Proca field coupling torsion non-minimally to a massive photon and having the scalar Higgs field as a strength of this photon-torsion coupling. The generalized Maxwell equations containing the scalar fields are obtained. The torsion potential around the Sun or a more massive collapsing star in the weak field limit is estimated.  相似文献   

7.
This paper is devoted to study the effects of electromagnetic on the collapse and expansion of anisotropic gravitating source. For this purpose, we have evaluated the generating solutions of Einstein–Maxwell field equations with spherically symmetric anisotropic gravitating source. We found that a single function generates the various anisotropic solutions. In this case every generating function involves an arbitrary function of time which can be chosen to fit several astrophysical time profiles. Two physical phenomenon occur, one is gravitational collapse and other is the cosmological expanding solution. In both cases electromagnetic field effects the anisotropy of the model. For collapse the anisotropy is increased while for expansion it deceases from maximum value to finite positive value. In case of collapse there exits two horizons like in case of Reissner–Nordström metric.  相似文献   

8.
This paper considers, in the context of modeling the evolution of a protoplanetary cloud, the hydrodynamic aspects of the theory of concurrent processes of mass transfer and coagulation in a two-phase medium in the presence of shear turbulence in a differentially rotating gas–dust disk and of polydisperse solid particles suspended in a carrying flow of solid particles. The defining relations are derived for diffuse fluxes of particles of different sizes in the equations of turbulent diffusion in the gravitational field, which describe the convective transfer, turbulent mixing, and sedimentation of disperse dust grains onto the central plane of the disk, as well as their coagulation growth. A semiempirical method is developed for calculating the coefficients of turbulent viscosity and turbulent diffusion for particles of different kinds. This method takes into account the inverse effects of dust transfer on the turbulence evolution in the disk and the inertial differences between disperse solid particles. To solve rigorously the problem of the mutual influence of the turbulent mixing and coagulation kinetics in forming the gas–dust subdisk, the possible mechanisms of gravitational, turbulent, and electric coagulation in a protoplanetary disk are explored and the parametric method of moments for solving the Smoluchowski integro-differential coagulation equation for the particles' size distribution function is considered. This method takes into account the fact that this distribution belongs to a definite parametric class of distributions.  相似文献   

9.
We analyse the general radiation emission mechanism from a charged particle moving in a curved inhomogeneous magnetic field. The consideration of the gradient makes the vacuum magnetic field compatible with the Maxwell equations, and adds a non-trivial term to the transverse drift velocity, and, consequently, to the general radiation spectrum. To obtain the radiation spectrum in the classical domain a general expression for the spectral distribution and characteristic frequency of an electron in arbitrary motion is derived, by using Schwinger's method. The radiation patterns of the ultrarelativistic electron are represented in terms of the acceleration of the particle. The same results can be obtained by considering that the motion of the electron can be formally described as an evolution caused by magnetic and electric forces. By defining an effective electromagnetic field, which combines the magnetic field with the fictitious electric field associated to the curvature and drift motion, one can obtain all the physical characteristics of the radiation by replacing the constant magnetic field with the effective field. The power, angular distribution and spectral distribution of all three components (synchrotron, curvature and gradient) of the radiation are considered, in both the classical and the quantum domain, within the framework of this unified formalism. In the quantum domain the proposed approach allows the study of the effects of the inhomogeneities and curvature of the magnetic field on the radiative transition rates of electrons between low-lying Landau levels and the ground state.  相似文献   

10.
The radiative thermal instability is investigated taking into account finite-, or electromagnetic, effects. The two-fluid model for magnetized plasmas together with the Maxwell equations are used to derive a general dispersion relation valid for compressional perturbations with frequency below the electron-cyclotron frequency. The growth rates of the radiative thermal instabilities involving fast magnetosonic flute-like and low-frequency hydromagnetic perturbations are presented.  相似文献   

11.
Group theory is used to describe a procedure for adding inhomogeneous absorbing and scattering atmospheres in a one-dimensional approximation. The inhomogeneity originates in the variation of the scattering coefficient with depth. Group representations are derived for the composition of media in three different cases: inhomogeneous atmospheres in which the scattering coefficient varies continuously with depth, composite or multicomponent atmospheres, and the special case of homogeneous atmospheres. We extend an earlier proposal to solve problems in radiative transfer theory by first finding global characteristics of a medium (reflection and transmission coefficients) and then determining the internal radiation field for an entire family of media without solving any new equations. Semi-infinite atmospheres are examined separately. For some special depth dependences of the scattering coefficients it is possible to obtain simple analytic solutions expressed in terms of elementary functions. An algorithm for numerical solution of radiative transfer problems in inhomogeneous atmospheres is described.  相似文献   

12.
We perform a detailed physical analysis for a class of exact solutions for the Einstein–Maxwell equations. The linear equation of state consistent with quark stars has been incorporated in the model. The physical analysis of the exact solutions is performed by considering the charged anisotropic stars for the particular nonsingular exact model obtained by Maharaj, Sunzu and Ray. In performing such an analysis we regain masses obtained by previous researchers for isotropic and anisotropic matter. It is also indicated that other masses and radii may be generated which are in acceptable ranges consistent with observed values of stellar objects. A study of the mass-radius relation indicates the effect of the electromagnetic field and anisotropy on the mass of the relativistic star.  相似文献   

13.
The directional diffusion coefficients of low-energy (? 0.3 MeV) solar protons inside and outside the bow shock are examined during the solar flare event of 24 January 1969. The data are derived from simultaneous observations obtained by Explorer 33 inside the magnetosheath and by Explorer 35 in the interplanetary medium. Although the gross properties of the spin-averaged intensities on a diffusion-type plot appear to be the same in both media, the directional intensities show significant variations. It is shown that directional intensities of low-energy protons can be described reasonably well by anisotropic diffusion with an associated diffusion coefficient. Directional diffusion coefficients are found to differ by a factor as much as three among different directions in space, and from the spin-averaged diffusion coefficient. This suggests that anisotropic diffusion does indeed take place and that so called ‘isotropic’ diffusion coefficients derived in the past from spin-averaged intensities may actually be directional diffusion coefficients in cases where substantial anisotropies (> 50 per cent) exist. The typical postulated ratio of field aligned to cross-field diffusion coefficients is κ⊥κ∥ < 0.1. The present data would indicate a ratio of ?0.3. This value of the anisotropy is to be taken only as an upper limit of the ratio because of the limitations introduced by the wide field of view of the detectors (~90°) and the lack of directional measurements over the entire sphere. Comparison between directional diffusion coefficients in the interplanetary medium and magnetosheath derived from identical directions in space implies changes in the parameters of the interplanetary magnetic field as it interacts with the bow shock.  相似文献   

14.
For application to the mid-latitude topside ionosphere, we have derived diffusion and heat flow equations for a gas mixture composed of two major ions, electrons and a number of minor ions. These equations were derived by expanding the velocity distribution of each constituent about its 13 lower order velocity moments. As a consequence, each constituent was allowed to have its own temperature and drift velocity. The restriction to mid-latitudes results because we have assumed that the species temperature and drift velocity differences were small. In deriving the diffusion and thermal conduction equations, we have discovered some new transport effects. For the major ions, we have found that: (1) a temperature gradient in either gas causes thermal diffusion in both gases; (2) a temperature gradient in either gas causes heat to flow in both gases; and (3) a relative drift between the major ion gases induces a heat flow in both gases. Similar transport effects have also been found for the minor ions.  相似文献   

15.
When assessing the influence of the Coriolis force on wave propagation in plasmas or other dielectric media, all the equations and relevant physical quantitities should be expressed in a rotating reference frame. Only then does the Coriolis force appear. However, most treatments for plasmas seem to fail in this respect because the Maxwell equations are used in their customary form, which in general is not valid in a rotating frame. A consistent approach requires the inclusion of Schiff charges and currents in the Maxwell equations. These Schiff sources are fictitious in the same way as the Coriolis force. The resulting wave equation has coefficients depending on the position and this precludes a plane wave solution, even in the slow rotation approximation where the centrifugal force may be neglected in comparison with the Coriolis force. Perturbation analysis then gives a dispersion law as if the system were not rotating. The wave electric field, however, now has a position dependent amplitude, which is not only stretched but also changed in direction compared to the previously known unperturbed or not rotating solution.  相似文献   

16.
An heuristic way of modeling the turbulent exchange coefficients for Keplerian accretion disks surrounding solar-type stars is considered. The formulas for these coefficients, taking into account the inverse effects of dust transfer and potential temperature on the maintenance of shear turbulence, generalize to protoplanetary gas–dust clouds the expression for the turbulent viscosity coefficient in so-called a-disks which was obtained in a classic work by Shakura and Syunyaev (1973). The defining relationships are derived for turbulent diffusion and heat flows, which describe, for the two-phase mixture rotating differentially at an angular velocity O(r, z), the dust and heat transfer in the direction perpendicular to the central plane of the disk. The regime of limiting saturation by small dust particles of the layer of “cosmic fluid” located slightly above (or below) the dust subdisk is analyzed.  相似文献   

17.
The propagation features of extremely low frequency electromagnetic waves through the multicomponent ionospheric plasma are studied. It is shown that at relatively lower frequencies refractive index for right hand mode is higher than the left-hand mode, which is reversed at higher frequencies. The thermal temperature of plasma particle causes decrease in phase and group velocities of both right and left-hand modes. The crossover frequencies for different plasma models are computed and variation with ion concentration and thermal velocity is studied. Explicit expression for group velocity and travel time has been derived and studied numerically. Finally, we have presented simulation of the ion whistler spectrograms for Hydrogen, Helium and Oxygen ions present in the ionospheric plasma. The results are compared with the experimentally detected hydrogen and helium ion whistlers. The importance of the present study in the exploration of ionospheric plasma is illustrated.  相似文献   

18.
We formulate a complete system of equations of two-phase multicomponent mechanics including the relative motion of the phases, coagulation processes, phase transitions, chemical reactions, and radiation in terms of the problem of reconstructing the evolution of the protoplanetary gas-dust cloud that surrounded the proto-Sun at an early stage of its existence. These equations are intended for schematized formulations and numerical solutions of special model problems on mutually consistent modeling of the structure, dynamics, thermal regime, and chemical composition of the circumsolar disk at various stages of its evolution, in particular, the developed turbulent motions of a coagulating gas suspension that lead to the formation of a dust subdisk, its gravitational instability, and the subsequent formation and growth of planetesimals. To phenomenologically describe the turbulent flows of disk material, we perform a Favre probability-theoretical averaging of the stochastic equations of heterogeneous mechanics and derive defining relations for the turbulent flows of interphase diffusion and heat as well as for the “relative” and Reynolds stress tensors needed to close the equations of mean motion. Particular attention is given to studying the influence of the inertial effects of dust particles on the properties of turbulence in the disk, in particular, on the additional generation of turbulent energy by large particles near the equatorial plane of the proto-Sun. We develop a semiempirical method of modeling the coefficient of turbulent viscosity in a two-phase disk medium by taking into account the inverse effects of the transfer of a dispersed phase (or heat) on the growth of turbulence to model the vertically nonuniform thermohydrodynamic structure of the subdisk and its atmosphere. We analyze the possible “regime of limiting saturation” of the subdisk atmosphere by fine dust particles that is responsible for the intensification of various coagulation mechanisms in a turbulized medium. For steady motion when solid particles settle to the midplane of the disk under gravity, we analyze the parametric method of moments for solving the Smoluchowski integro-differential coagulation equation for the particle size distribution function. This method is based on the fact that the sought-for distribution function a priori belongs to a certain parametric class of distributions.  相似文献   

19.
The equations of the electromagnetic field of a slowly rotating magnetized neutron star in Saa's gravitation model with torsion are derived and their exterior solution is investigated. The following conclusions are obtained: first, there is a specific solution for the electromagnetic field when Aô = 0; second, there is no solution at all when Aô ≠ 0. Therefore, we can judge whether or not torsion exists by observing the exterior electromagnetic field of the neutron star.  相似文献   

20.
Conformally flat line-elements are applied to imperfect fluids in cosmology. Explicit solutions of the field equations are given for an equation of state for which the pressure is proportional to the density. Both the isotropic case (for which the shear viscosity vanishes) and the non-isotropic case are considered and expressions derived for the appropriate coefficients of shear and bulk viscosity, as well as density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号