首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a full set of model atmosphere equations for the accretion disc around a supermassive black hole irradiated by a hard X-ray lamp of power-law spectral distribution. Model equations allow for multiple Compton scattering of radiation on free electrons, and for large relative photon–electron energy exchange at the time of scattering. We present spectra in specific intensities integrated over the disc surface. Theoretical outgoing intensity spectra show soft X-ray excess below 1 keV, and distinct Kα and Kβ fluorescent lines of iron. We demonstrate the existence of the Compton Shoulder and claim that it can contribute to the asymmetry and equivalent widths of some observed Fe Kα lines in active galactic nuclei. Our models exhibit the effect of limb-brightening in reflected X-rays.  相似文献   

2.
Recent X-ray observations have shown evidence for exceptionally broad and skewed iron Kα emission lines from several accreting black hole systems. The lines are assumed to be due to fluorescence of the accretion disc illuminated by a surrounding corona and require a steep emissivity profile increasing into the innermost radius. This appears to question both standard accretion disc theory and the zero-torque assumption for the inner boundary condition, both of which predict a much less extreme profile. Instead it argues that a torque may be present due to magnetic coupling with matter in the plunging region or even to the spinning black hole itself. Discussion so far has centred on the torque acting on the disc. However, the crucial determinant of the iron line profile is the radial variation of the power radiated in the corona. Here we study the effects of different inner boundary conditions on the coronal emissivity and on the profiles of the observable Fe Kα lines. We argue that in the extreme case where a prominent highly redshifted component of the iron line is detected, requiring a steep emissivity profile in the innermost part and a flatter one outside, energy from the gas plunging into the black hole is being fed directly to the corona.  相似文献   

3.
The X-ray spectra of accreting stellar-mass black hole systems exhibit spectral features due to reflection, especially broad iron Kα emission lines. We investigate the reflection by the accretion disc that can be expected in the high/soft state of such a system. First, we perform a self-consistent calculation of the reflection that results from illumination of a hot, inner portion of the disc with its atmosphere in hydrostatic equilibrium. Then, we present reflection spectra for a range of illumination strengths and disc temperatures under the assumption of a constant-density atmosphere. Reflection by a hot accretion disc differs in important ways from that of a much cooler disc, such as that expected in an active galactic nucleus.  相似文献   

4.
We present an ASCA observation of the broad-line radio galaxy 3C 111. The X-ray spectrum is well described by a model consisting of a photoelectrically absorbed power-law form. The inferred absorbing column density is significantly greater than expected on the basis of 21-cm measurements of Galactic H  I . Whilst this may be the result of intrinsic absorption from a circumnuclear torus or highly warped accretion disc, inhomogeneities and molecular gas within the foreground giant molecular cloud may also be responsible for some of this excess absorption. We also claim a marginal detection of a broad iron Kα line which is well explained as being a fluorescent line originating from the central regions of a radiatively efficient accretion disc. This line appears weak in comparison to those found in (radio-quiet) Seyfert nuclei. We briefly discuss the implications of this fact.  相似文献   

5.
We present Fe Kα line profiles from and images of relativistic discs with finite thickness around a rotating black hole using a novel code. The line is thought to be produced by iron fluorescence of a relatively cold X-ray-illuminated material in the innermost parts of the accretion disc and provides an excellent diagnostic of accretion flows in the vicinity of black holes. Previous studies have concentrated on the case of a thin, Keplerian accretion disc. This disc must become thicker and sub-Keplerian with increasing accretion rates. These can affect the line profiles and in turn can influence the estimation of the accretion disc and black hole parameters from the observed line profiles. We here embark on, for the first time, a fully relativistic computation which offers key insights into the effects of geometrical thickness and the sub-Keplerian orbital velocity on the line profiles. We include all relativistic effects such as frame-dragging, Doppler boost, time dilation, gravitational redshift and light bending. We find that the separation and the relative height between the blue and red peaks of the line profile diminish as the thickness of the disc increases. This code is also well suited to produce accretion disc images. We calculate the redshift and flux images of the accretion disc and find that the observed image of the disc strongly depends on the inclination angle. The self-shadowing effect appears remarkable for a high inclination angle, and leads to the black hole shadow being in this case, completely hidden by the disc itself.  相似文献   

6.
We present the first of two papers describing an in-depth study of multiwaveband phase-resolved spectroscopy of the unusual dwarf nova WZ Sge. In this paper we present an extensive set of Doppler maps of WZ Sge covering optical and infrared emission lines, and describe a new technique for studying the accretion discs of cataclysmic variables using ratioed Doppler maps. Applying the ratioed Doppler map technique to our WZ Sge data shows that the radial temperature profile of the disc is unlike that predicted for a steady state α disc. Time-averaged spectra of the accretion disc line flux (with the bright spot contribution removed) show evidence in the shapes of the line profiles for the presence of shear broadening in a quiescent non-turbulent accretion disc. From the positions of the bright spots in the Doppler maps of different lines, we conclude that the bright spot region is elongated along the ballistic stream, and that the density of the outer disc is low. The velocity of the outer edge of the accretion disc measured from the H α line is found to be 723±23 km s−1. Assuming that the accretion disc reaches to the 3:1 tidal resonance radius, we derive a value for the primary star mass of 0.82 M. We discuss the implications of our results on the present theories of WZ Sge type dwarf nova outbursts.  相似文献   

7.
We present a systematic study of GX 339−4 in both its very high and low hard states from simultaneous observations made with XMM–Newton and RXTE in 2002 and 2004. The X-ray spectra of both these extreme states exhibit strong reflection signatures, with a broad, skewed Fe Kα line clearly visible above the continuum. Using a newly developed, self-consistent reflection model which implicitly includes the blackbody radiation of the disc as well as the effect of Comptonization, blurred with a relativistic line function, we were able to infer the spin parameter of GX 339−4 to be  0.935 ± 0.01  (statistical) ±0.01 (systematic) at 90 per cent confidence. We find that both states are consistent with an ionized thin accretion disc extending to the innermost stable circular orbit around the rapidly spinning black hole.  相似文献   

8.
We present Doppler and modulation tomography of the X-ray nova XTE J1118+480 with data obtained during quiescence using the 10-m Keck II telescope. The hotspot where the gas stream hits the accretion disc is seen in Hα, Hβ, He  i λ5876 and Ca  ii λ8662, thus verifying the presence of continued mass transfer within the system. The disc is clearly seen in Hα and Ca  ii λ8662. We image the mass-donor star in narrow absorption lines of Na  i  λλ5890, 5896, 8183, 8195  and Ca  ii λ8662, implying an origin from the secondary itself rather than the interstellar medium. We also detect deviations in the centroid of the double peak of Hα akin to those found by Zurita et al. suggesting disc eccentricity.  相似文献   

9.
We have carried out observations of the X-ray transient GX 339−4 during its high–soft and low–hard X-ray spectral states. Our high-resolution spectroscopic observation in 1999 April suggests that the H α line has a single-peaked profile in the low–hard state as speculated in our previous paper. The He  ii λ 4686 line, however, has a double-peaked profile in both the high–soft and low–hard states. This suggests that the line-emission mechanism is different in the two states. Our interpretation is that double-peaked lines are emitted from a temperature-inversion layer on the accretion disc surface when it is irradiatively heated by soft X-rays. Single-peaked lines may be emitted from outflow/wind matter driven by hard X-ray heating. We have constructed a simple plane-parallel model and we use it to illustrate that a temperature-inversion layer can be formed at the disc surface under X-ray illumination. We also discuss the conditions required for the formation of temperature inversion and line emission. Based on the velocity separations measured for the double-peaked lines in the high–soft state, we propose that GX 339−4 is a low-inclination binary system. The orbital inclination is about 15° if the orbital period is 14.8 h.  相似文献   

10.
In the light of recent results from numerical simulations of accretion disc MHD turbulence, we revisit the problem of the configuration of large-scale magnetic fields resulting from an α Ω dynamo operating in a thin accretion disc. In particular, we analyse the consequences of the peculiar sign of the α -effect suggested by numerical simulations . We determine the symmetry of the fastest-growing modes in the kinematic dynamo approximation and, in the framework of an ' α -quenched' dynamo model, study the evolution of the magnetic field. We find that the resulting field for this negative polarity of the α -effect generally has dipole symmetry with respect to the disc midplane, although the existence of an equilibrium configuration depends on the properties of the turbulence. The role of magnetic field dragging is discussed and, finally, the presence of an external uniform magnetic field is included to address the issue of magneto centrifugal wind launching from accretion discs.  相似文献   

11.
The absolute luminosity of the Fe Kα emission line from matter illuminated by X-rays in astrophysical sources is non-trivial to calculate except when the line-emitting medium is optically thin to absorption and scattering. We characterize the Fe Kα line flux using a dimensionless efficiency, defined as the fraction of continuum photons above the Fe K shell absorption edge threshold energy that appear in the line. The optically thin approximation begins to break down even for column densities as small as  2 × 1022 cm−2  . We show how to obtain reliable estimates of the Fe Kα line efficiency in the case of cold, neutral matter, even for the Compton-thick regime. We find that, regardless of geometry and covering factor, the largest Fe Kα line efficiency is attained well before the medium becomes Compton-thick. For cosmic elemental abundances it is difficult to achieve an efficiency higher than a few per cent under the most favourable conditions and lines of sight. For a given geometry, Compton-thick lines-of-sight may have Fe Kα line efficiencies that are orders of magnitude less than the maximum possible for that geometry. Configurations that allow unobscured views of a Compton-thick reflecting surface are capable of yielding the highest efficiencies. Our results can be used to estimate the predicted flux of the narrow Fe Kα line at  ∼6.4 keV  from absorption models in active galactic nucleus (AGN). In particular we show that contrary to a recent claim in the literature, absorption-dominated models for the relativistic Fe Kα emission line in  MCG−  6-30-15 do not overpredict the narrow Fe Kα line for any column density or covering factor.  相似文献   

12.
We argue that the quiescent value of the viscosity parameter of the accretion disc in WZ Sge may be  αcold∼ 0.01  , in agreement with estimates of αcold for other dwarf novae. Assuming the white dwarf in WZ Sge to be magnetic, we show that, in quiescence, material close to the white dwarf can be propelled to larger radii, depleting the inner accretion disc. The propeller therefore has the effect of stabilizing the inner disc and allowing the outer disc to accumulate mass. The outbursts of WZ Sge are then regulated by the (magnetically determined) evolution of the surface density of the outer disc at a radius close to the tidal limit. Numerical models confirm that the recurrence time can be significantly extended in this way. The outbursts are expected to be superoutbursts since the outer disc radius is forced to exceed the tidal (3:1 resonance) radius. The large, quiescent disc is expected to be massive, and to be able to supply the observed mass accretion rate during outburst. We predict that the long-term spin evolution of the white dwarf spin will involve a long cycle of spin-up and spin-down phases.  相似文献   

13.
The fluorescent iron K α emission-line profile provides an excellent probe of the innermost regions of active galactic nuclei. Fe  xxv and Fe  xxvi in diffuse plasma above the accretion disc can affect the X-ray spectrum by iron K α resonant absorption. This in turn can influence the interpretation of the data and the estimation of the accretion disc and black hole parameters. We embark on a fully relativistic computation of this effect and calculate the iron line profile in the framework of a specific model in which rotating, highly ionized and resonantly absorbing plasma occurs close to the black hole. This can explain the features seen in the iron K α line profile recently obtained by Nandra et al. for the type 1 Seyfert galaxy NGC 3516. We show that the redshift of this feature can be mainly gravitational in origin and accounted for without the need to invoke fast accretion of matter on to the black hole. New X-ray satellites such as XMM , ASTRO-E and Chandra provide excellent opportunities to test the model against high-quality observational data.  相似文献   

14.
Iron emission lines at 6.4–6.97 keV, identified with fluorescent Kα transitions, are among the strongest discrete features in the X-ray band. These are therefore one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disc around a compact object. In this paper, we present a recent XMM–Newton observation of the X-ray burster 4U 1705−44, where we clearly detect a relativistically smeared iron line at about 6.7 keV, testifying with high statistical significance that the line profile is distorted by high-velocity motion in the accretion disc. As expected from disc reflection models, we also find a significant absorption edge at about 8.3 keV; this feature appears to be smeared, and is compatible with being produced in the same region where the iron line is produced. From the line profile, we derive the physical parameters of the inner accretion disc with large precision. The line is identified with the Kα transition of highly ionized iron, Fe  xxv , the inner disc radius is   R in= 14 ± 2  R g  (where R g is the Gravitational radius,   GM / c 2  ), the emissivity dependence from the disc radius is   r −2.27±0.08  , the inclination angle with respect to the line of sight is   i = 39°± 1°  . Finally, the XMM–Newton spectrum shows evidences of other low-energy emission lines, which again appear broad and their profiles are compatible with being produced in the same region where the iron line is produced.  相似文献   

15.
We report on time-series optical spectrophotometry of the low-inclination intermediate polar RX  J0558+5353. This object exhibits coherent continuum and Hα line variations on both the orbital and white dwarf spin cycles. Despite the absence of a well-determined conjunction phase, the spectroscopic ephemeris combined with a favourable comparison with better-studied systems suggests that the impact between gas stream and accretion disc, or magnetosphere, drives orbital phenomena. Continuum variations over the spin cycle are consistent with previous broad-band data and indicate that accretion occurs on two poles of the primary star. We find no significant spin pulsations in the integrated line emission, but do detect variations in the resolved line profiles of Hα. Pulsed profiles are also suggestive of two-pole accretion. Double-peaked Hα line profiles and the non-detection of beat behaviour between the orbital and spin frequencies provide evidence for partial-disc transport in the system.  相似文献   

16.
We present XMM-Newton European Photon Imaging Camera (EPIC) observations of the bright Seyfert 1 galaxy MCG–6-30-15, focusing on the broad Fe K α line at ∼6 keV and the associated reflection continuum, which is believed to originate from the inner accretion disc. We find these reflection features to be extremely broad and redshifted, indicating an origin in the very central regions of the accretion disc. It seems likely that we have caught this source in the 'deep minimum' state first observed by Iwasawa et al. The implied central concentration of X-ray illumination is difficult to understand in any pure accretion disc model. We suggest that we are witnessing the extraction and dissipation of rotational energy from a spinning black hole by magnetic fields connecting the black hole or plunging region to the disc.  相似文献   

17.
We calculate the structure of the accretion disc around a rapidly rotating black hole with a super-Eddington accretion rate. The luminosity and height of the disc are reduced by the advection effect. In the case of large viscosity parameter, α>0.03, the accretion flow deviates strongly from thermodynamic equilibrium and overheats in the central region. With increasing accretion rate, the flow temperature steeply increases, reaches maximum, and then falls off. The maximum is achieved in the advection-dominated regime of accretion. The maximum temperature in the disc around a massive black hole of M =108 M⊙ with α=0.3 is of order 3×108 K. The discs with large accretion rates can emit X-rays in quasars as well as in galactic black hole candidates.  相似文献   

18.
We solve for the structure of a hot accretion disc with unsaturated thermal Comptonization of soft photons and with advection, generalizing the classical model of Shapiro et al. The upper limit on the accretion rate due to advection constrains the luminosity to ≲ 0.15 y3/5 α7/5 of the Eddington limit, where y and α are the Compton and viscosity parameters, respectively. The characteristic electron temperature and Thomson optical depth of the inner flow at accretion rates within an order of magnitude of that upper limit are ∼ 109 K and ∼ 1, respectively. The resulting spectra are then in close agreement with the X-ray and soft γ-ray spectra from black hole binaries in the hard state and Seyferts. At low accretion rates, bremsstrahlung becomes the dominant radiative process.  相似文献   

19.
We carried out spectroscopic observations of the candidate black hole binary GX 339−4 during its low–hard and high–soft X-ray states. We have found that the spectrum is dominated by emission lines of neutral elements with asymmetric, round-topped profiles in the low–hard state. In the high–soft state, however, the emission lines from both neutral and ionized elements have unambiguously resolved double-peaked profiles. The detection of double-peaked emission lines in the high–soft state, with a larger peak separation for higher ionization lines, indicates the presence of an irradiatively heated accretion disc. The round-topped lines in the low–hard state are probably caused by a dense matter outflow from an inflated non-Keplerian accretion disc. Our data do not show velocity modulations of the line centres caused by the orbital motion of the compact object, neither do the line basewidths show substantial variations in each observational epoch. There are no detectable absorption lines from the companion star. All these features are consistent with those of a system with a low-mass companion star and low orbital inclination.  相似文献   

20.
We present the results of a study of propagating warp or bending waves in accretion discs. Three-dimensional hydrodynamic simulations were performed using smoothed particle hydrodynamics (SPH), and the results are compared with calculations based on the linear theory of warped discs.
We examine the response of a gaseous disc to an initially imposed warping disturbance under a variety of physical conditions. We consider primarily the physical regime in which the dimensionless viscosity parameter α < H r , where H r is the disc aspect ratio, so that bending waves are expected to propagate. We also performed calculations for disc models in which α > H r , where the warps are expected to evolve diffusively. Small-amplitude (linear) perturbations are studied in both Keplerian and slightly non-Keplerian discs, and we find that the results of the SPH calculations can be reasonably well fitted by those of the linear theory. The main results of these calculations are: (i) the warp in Keplerian discs when α < H r propagates with little dispersion, and damps at a rate expected from estimates of the code viscosity; (ii) warps evolve diffusively when α > H r ; (iii) the slightly non-Keplerian discs lead to a substantially more dispersive behaviour of the warps, which damp at a similar rate to the Keplerian case, when α < H r .
Initially imposed higher amplitude, non-linear warping disturbances were studied in Keplerian discs. The results indicate that non-linear warps can lead to the formation of shocks, and that the evolution of the warp becomes less wave-like and more diffusive in character.
This work is relevant to the study of the warped accretion discs that may occur around Kerr black holes or in misaligned binary systems, and is mainly concerned with discs in which α < H r . The results indicate that SPH can model the hydrodynamics of warped discs, even when using rather modest numbers of particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号