首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Precise specification of the vertical distribution of cloud optical properties is important to reduce the uncertainty in quantifying the radiative impacts of clouds. The new global observations of vertical profiles of clouds from the CloudSat mission provide opportunities to describe cloud structures and to improve parameterization of clouds in the weather and climate prediction models. In this study, four years (2007–2010) of observations of vertical structure of clouds from the CloudSat cloud profiling radar have been used to document the mean vertical structure of clouds associated with the Indian summer monsoon (ISM) and its intra-seasonal variability. Active and break monsoon spells associated with the intra-seasonal variability of ISM have been identified by an objective criterion. For the present analysis, we considered CloudSat derived column integrated cloud liquid and ice water, and vertically profiles of cloud liquid and ice water content. Over the South Asian monsoon region, deep convective clouds with large vertical extent (up to 14 km) and large values of cloud water and ice content are observed over the north Bay of Bengal. Deep clouds with large ice water content are also observed over north Arabian Sea and adjoining northwest India, along the west coast of India and the south equatorial Indian Ocean. The active monsoon spells are characterized by enhanced deep convection over the Bay of Bengal, west coast of India and northeast Arabian Sea and suppressed convection over the equatorial Indian Ocean. Over the Bay of Bengal, cloud liquid water content and ice water content is enhanced by ~90 and ~200 % respectively during the active spells. An interesting feature associated with the active spell is the vertical tilting structure of positive CLWC and CIWC anomalies over the Arabian Sea and the Bay of Bengal, which suggests a pre-conditioning process for the northward propagation of the boreal summer intra-seasonal variability. It is also observed that during the break spells, clouds are not completely suppressed over central India. Instead, clouds with smaller vertical extent (3–5 km) are observed due to the presence of a heat low type of circulation. The present results will be useful for validating the vertical structure of clouds in weather and climate prediction models.  相似文献   

2.
Summary The interannual variability of the monthly mean upper layer thickness for the central Arabian Sea (5°N-15° N and 60° E-70° E) from a numerical model of the Indian Ocean during the period 1954–1976 is investigated in relation to Indian monsoon rainfall variability. The variability in the surface structure of the Somali Current in the western Arabian Sea is also briefly discussed. It is found that these fields show a great deal of interannual variability that is correlated with variability in Indian monsoon rainfall. Model upper layer thickness (H) is taken as a surrogate variable for thermocline depth, which is assumed to be correlated with sea surface temperature. In general, during the period 1967 to 1974, which is a period of lower than normal monsoon rainfall, the upper ocean warm water sphere is thicker (deeper thermocline which implies warmer surface water); in contrast, during the period 1954–1966, which is a period of higher than normal monsoon rainfall, the upper warm water sphere is thinner (shallower thermocline which implies cooler surface water). The filtered time series of uppper layer thickness indieates the presence of a quasi-biennial oscillation (QBO) during the wet monsoon period, but this QBO signal is conspicuously absent during the dry monsoon period.Since model H primarily responds to wind stress curl, the interannual variability of the stress curl is investigated by means of an empirical orthogonal function (EOF) analysis. The first three EOF modes represent more than 72% of the curl variance. The spatial patterns for these modes exhibit many elements of central Arabian Sea climatology. Features observed include the annual variation in the intensity of the summer monsoon ridge in the Arabian Sea and the annual zonal oscillation of the ridge during pre- and post-monsoon seasons. The time coefficients for the first EOF amplitude indicate the presence of a QBO during the wet monsoon period only, as seen in the ocean upper layer thickness.The variability in the model upper layer thickness is a passive response to variability in the wind field, or more specifically to variability in the Findlater Jet. When the winds are stronger, they drive stronger currents in the ocean and have stronger curl fields associated with them, driving stronger Ekman pumping. They transport more moisture from the southern hemisphere toward the Indian subcontinent, and they also drive a greater evaporative heat flux beneath the Findlater Jet in the Arabian Sea. It has been suggested that variability in the heat content of the Arabian Sea drives variability in Indian monsoon rainfall. The results of this study suggest that the opposite is true, that the northern Arabian Sea responds passively to variability in the monsoon system.With 10 Figures  相似文献   

3.
张永生  吴国雄 《气象学报》1998,56(5):513-528
该工作将亚洲季风区作为一个复杂的海-陆-气耦合系统,来深入考察季风区海-气、陆-气相互作用的基本事实和物理过程,探讨它们在决定亚洲季风爆发及北半球行星尺度大气环流的季节突变的物理机理。本文是系列文章的第一篇,着重研究亚洲夏季风爆发的区域性和阶段性特征,以及过渡季节热带、副热带地区海-气、陆-气相互作用的基本事实,初步分析了它们之间的联系。研究表明,热带季风对流于4月底到5月初越过赤道进入北半球,首先出现在孟加拉湾东部-中南半岛西南部地区,然后于5月中旬和6月上旬末分别出现在南海和印度半岛地区,呈阶段性爆发的特征。季风对流在孟加拉湾东部-中南半岛西南部地区爆发阶段,在大气环流变化和对流活动中心位置出现区别于南海季风和印度季风爆发的特征。通过对地表感热通量和海表潜热通量的分析,表明热带海洋上海表感热通量甚小于海表潜热通量,南海季风爆发时期印度洋上海表潜热通量显著增大,印度季风爆发后海表潜热通量的高值中心在孟加拉湾和阿拉伯海上建立起来。印度洋上低层增强的过赤道气流引起的强烈的海-气相互作用导致海表水汽的大量蒸发,并通过其输送作用,为季风对流的爆发提供了充足的水汽来源。过渡季节在副热带地区(沿27.5~37.5°N纬带上), 青藏高原和西太平洋上地(海)表感热通量和潜热通量均有迅速的季节变化性, 但趋势相反。当青藏高原上地表感热通量和潜热通量呈阶段性的显著加大, 西太平洋上海表感热通量和潜热通量迅速减小。这种大陆和海洋对大气加热的显著的季节化的差异, 影响着大气环流的季节转变。  相似文献   

4.
Observations from research ships which took part in the Indo-Soviet Monsoon Experiment of 1977 (MONSOON 77) and the International Monsoon Experiments (MONEX 79) over the central Arabian Sea and the north central Bay of Bengal were analyzed to study the mean wind and temperature structure of the monsoon boundary layer during active and break conditions. Mean profiles of wind speed and direction along with virtual potential temperature obtained by averaging data from several research ships during 1977 and 1979 indicate that onset conditions were associated with substantial increases in wind speed over the Arabian Sea and a shift to strong southwest flow. Monsoon onset was also characterized by near-neutral to slightly unstable temperature profiles in the lowest kilometer. Break conditions in 1977 in which the monsoon trough moved northward and substantial (5 mb) pressure rises were noted over the Arabian Sea show wind speeds typically decreasing from approximately 18 m s–1 during active conditions to roughly 8 m s –1. Temperature profiles during break conditions are similar to those observed in pre-monsoon conditions in that the boundary layer is observed to be generally much more stable up to 900 mb. Above 900 mb, profiles of virtual potential temperature show little variation.Analysis of latent and sensible heat fluxes during June 1977 calculated by the bulk aerodynamic method indicates values of latent heat flux during active conditions to be roughly two to three times larger than those during break conditions. Sensible heat flux shows an increase from approximately 20 to 80 W m –1 during the onset of the monsoon. Surface fluxes of water vapor indicate the importance of water vapor transport over the ship observation region in the central Arabian Sea during active conditions. Onset of the monsoon over the Arabian Sea is accompanied by an increase in the surface moisture flux by a factor of about two. Time histories of precipitable water show decreases of approximately 15% from active to break periods.  相似文献   

5.
Summary The concept of effective cloud cover, elaborated on the basis of an assumption that changes in the net radiation at the top of the atmosphere are mainly caused by changing cloudiness, has been used to deduce solar surface radiation from satellite data. It has been shown that the method permits a calculation of solar surface absorption distributions that agree well with the results obtained by other authors and that the existing disagreement can be to a great extent ascribed to the differences in the data sets and analysis periods. The method allows use of early satellite measurements to get longer time series of the surface radiation budget. In this study, it has been applied to the Nimbus-7 ERB WFOV data for 1979–1986.The net solar flux at the TOA (top of the atmosphere) can be partitioned into absorption at the surface and within the atmosphere. The geographical distributions of all the three quantities as well as the zonal averages of the surface absorption for January and July have been described. Special objectives of the present study are to estimate the interannual standard deviation for the 8-year period and to analyse the shortwave cloud-radiative forcing distributions at the surface and especially within the atmosphere.The standard deviation of the TOA and the surface solar absorption shows a temporal asymmetry, being much larger in January than in July. Noticeable is the disappearance of the wintertime strong variability over the central Pacific in July. As can be expected, the strong variability areas coincide with the strong variability areas of the cloud amount, showing the values up to 27 Wm–2 at the surface.According to our estimate, the shortwave cloud forcing at the surface is everywhere stronger than that at the TOA, so that the cloud forcing of the atmosphere is negative. This means that in the belt of 58.5° N–58.5° S a cloudy atmosphere absorbs more solar energy than a cloud-free atmosphere. Our mean annual value of the atmospheric cloud forcing for this belt is –11 Wm–2 which is somewhat stronger than that obtained by other investigators. It must be stressed that this value is within the uncertainty limits.Shortwave cloud forcing of the atmosphere is the strongest in the lower latitude areas of heavy cloudiness above the continents and negligible in the midlatitudes in winter. This gives evidence that the value of the shortwave cloud forcing of the atmosphere is modified by a combination of cloud absorption and cloud albedo.With 4 Figures  相似文献   

6.
Snow surface and sea-ice energy budgets were measured near 87.5°N during the Arctic Summer Cloud Ocean Study (ASCOS), from August to early September 2008. Surface temperature indicated four distinct temperature regimes, characterized by varying cloud, thermodynamic and solar properties. An initial warm, melt-season regime was interrupted by a 3-day cold regime where temperatures dropped from near zero to ?7°C. Subsequently mean energy budget residuals remained small and near zero for 1 week until once again temperatures dropped rapidly and the energy budget residuals became negative. Energy budget transitions were dominated by the net radiative fluxes, largely controlled by the cloudiness. Variable heat, moisture and cloud distributions were associated with changing air-masses. Surface cloud radiative forcing, the net radiative effect of clouds on the surface relative to clear skies, is estimated. Shortwave cloud forcing ranged between ?50 W m?2 and zero and varied significantly with surface albedo, solar zenith angle and cloud liquid water. Longwave cloud forcing was larger and generally ranged between 65 and 85 W m?2, except when the cloud fraction was tenuous or contained little liquid water; thus the net effect of the clouds was to warm the surface. Both cold periods occurred under tenuous, or altogether absent, low-level clouds containing little liquid water, effectively reducing the cloud greenhouse effect. Freeze-up progression was enhanced by a combination of increasing solar zenith angles and surface albedo, while inhibited by a large, positive surface cloud forcing until a new air-mass with considerably less cloudiness advected over the experiment area.  相似文献   

7.
The summer monsoon atmosphere was subjected to aerial cloud microphysical measurements by the National Center for Atmospheric Research (NCAR)'s Electra as part of the Arabian Sea component of the Summer Monsoon Experiment (SMONEX). The Particle Measuring System (PMS )'s probes were mounted on these flights. This study documents vertical profiles and concentration counts of aerosols and precipitation size particles for the flights on 20 and 24 June 1979. These flights were selected because the meteorology associated with them was analyzed in detail by several investigators who were interested in the turbulence flux measurements which were unique to these flights. The samples on 20 June were collected mostly underneath clouds except once within a cloud. In contrast, they were gathered exclusively within clouds on 24 June. The observations on these two days were collected in four different locations over the Arabian Sea when organized convection was presented.Results show that the aerosol concentration counts as measured by the ASAS-probe were higher than those expected from measurements in suppressed convective conditions. The ASAS and FSSP readings were nearly constant in the boundary layer. The FSSP readings increased more than ASAS readings with height passing them at elevations greater than 1500 m. Some young clouds with a depth of 1600 m showed maximum updraft values occurring at a certain level (e.g., 1000 m). At this level, a maximum concentration of droplets belonging to a particular size group ( ≈ 15 μm) was found. Thus a positive association was seen between these droplets and the vertical velocity distribution.  相似文献   

8.
This paper quantifies the sensitivity of radiation budget quantities to different cloud types over the Asian monsoon region using the International Satellite Cloud Climatology Project. Multiple regression was used to estimate the radiative effects of individual cloud type. It was observed that the regression performed better when the solution was constrained with clear sky fluxes, which is evident by an improvement in R 2 statistics. The sensitivity coefficients calculated for the Asian monsoon region reveal that, while the LWCRCF and SWCRF will be most vulnerable to changes in cloud cover of deep convective clouds, NETCRF will be susceptible to changes in the nimbostratus clouds. Although the cloud radiative forcing of individual cloud types are found to be similar in sign to previous global findings, their magnitudes are found to vary. It is seen that cirrus clouds play an important role in governing the radiative behavior of this region.  相似文献   

9.
Possible causes behind the unusual cooling by summer monsoon clouds over India are investigated. Results suggest that the causes behind the cooling over the Bay of Bengal, India (BBI) and Arabian Sea (AS) within the Indian monsoon region are different. Over the BBI, clouds are tall. A unique upper tropospheric easterly jet stream exists over India during the summer monsoon season, which horizontally spreads the vertically growing deep convective clouds and thereby increases the cloud cover. Hence, more incoming solar radiation is reflected back to space, which leads to cooling. A radiative transfer study employing the Santa Barbara DISORT Atmospheric Radiative Transfer model supports this view. Over the Arabian Sea, clouds are shallow, and hence the upper tropospheric jet cannot affect them. Due to their proximity to the ground, Arabian Sea clouds exert less warming effect, but they exert a considerable cooling effect, which arises because of the high reflectivity of the clouds. Over the Equatorial Indian Ocean (EIO), where the monsoon clouds originate and propagate towards the monsoon trough region, both cooling and warming effects are nearly canceled out. The upper tropospheric jet is located hundreds of kilometers north of the EIO, and hence it does not disturb the deep convective clouds of the EIO. Therefore, they behave similarly to other deep convective clouds in the tropical belt.  相似文献   

10.
Within the CIRCE project “Climate change and Impact Research: the Mediterranean Environment”, an ensemble of high resolution coupled atmosphere–ocean regional climate models (AORCMs) are used to simulate the Mediterranean climate for the period 1950–2050. For the first time, realistic net surface air-sea fluxes are obtained. The sea surface temperature (SST) variability is consistent with the atmospheric forcing above it and oceanic constraints. The surface fluxes respond to external forcing under a warming climate and show an equivalent trend in all models. This study focuses on the present day and on the evolution of the heat and water budget over the Mediterranean Sea under the SRES-A1B scenario. On the contrary to previous studies, the net total heat budget is negative over the present period in all AORCMs and satisfies the heat closure budget controlled by a net positive heat gain at the strait of Gibraltar in the present climate. Under climate change scenario, some models predict a warming of the Mediterranean Sea from the ocean surface (positive net heat flux) in addition to the positive flux at the strait of Gibraltar for the 2021–2050 period. The shortwave and latent flux are increasing and the longwave and sensible fluxes are decreasing compared to the 1961–1990 period due to a reduction of the cloud cover and an increase in greenhouse gases (GHGs) and SSTs over the 2021–2050 period. The AORCMs provide a good estimates of the water budget with a drying of the region during the twenty-first century. For the ensemble mean, he decrease in precipitation and runoff is about 10 and 15% respectively and the increase in evaporation is much weaker, about 2% compared to the 1961–1990 period which confirm results obtained in recent studies. Despite a clear consistency in the trends and results between the models, this study also underlines important differences in the model set-ups, methodology and choices of some physical parameters inducing some difference in the various air-sea fluxes. An evaluation of the uncertainty sources and possible improvement for future generation of AORCMs highlights the importance of the parameterisation of the ocean albedo, rivers and cloud cover.  相似文献   

11.
Seasonal and inter-annual variability of the mixed layer temperature in the Southern South China Sea (SSCS) is investigated using a regional ocean circulation model simulation. The mixed layer depth (MLD) over the SSCS exhibits a strong seasonal signal with deeper MLDs during the northeast and southwest monsoons. The main factor that drives the mixed layer temperature variation in the SSCS is the air-sea heat fluxes, with vertical ocean processes acting as a relatively weak negative feedback. In general, the budget analysis demonstrates a net balance between the vertical ocean processes and surface heat flux during the pre-monsoon and southwest monsoon. Northeast monsoon period is noted by an offsetting of surface heat flux, horizontal and vertical ocean processes. The first dominant mode of mixed layer temperature inter-annual variability in the SSCS shows significant correlation (0.34) with the El Nino phenomenon in the Pacific Ocean and is best correlated (0.67) with a lag of 5 months.  相似文献   

12.
经皓童  孙建奇  于水  华维 《大气科学》2021,45(5):1087-1098
本文利用1960~2017年中国西南地区115个台站观测降水资料和日本气象厅发布的55年再分析资料集,研究了中国西南地区5月降水变异的主导模态及其与阿拉伯海季风的关系。结果显示,中国西南地区5月降水的第一主导模态主要表现为全区一致的变异特征;该模态与同期5月阿拉伯海季风强度异常关系密切,但两者的关系在20世纪70年代后期发生了显著的年代际变化。在1960~1976年,阿拉伯海季风异常所引起的低层大气环流和水汽输送异常主要集中在阿拉伯海到孟加拉湾一带;阿拉伯海季风异常所引起的大气环流不能到达中国西南地区,因此它对中国西南地区5月降水的影响偏弱。但在1981~2017年,阿拉伯海季风异常可以导致整个北印度洋到南海地区的大气环流异常,进而引起中国西南地区水汽和垂直运动的变化,最终对该地区5月降水产生显著的影响。进一步的研究显示,阿拉伯海季风与中国西南地区5月降水关系的变化可能与季风自身的年代际变率有关。阿拉伯海季风在20世纪70年代末之前变率偏弱,其引起的环流异常也偏弱;相反在20世纪70年代末之后,其变率增强,它引起的大气环流异常也偏强,可以延伸到中国西南地区,进而影响到西南地区的5月降水。因此,季风变率的强弱可能在季风对西南地区5月降水的影响中起着非常重要的作用。  相似文献   

13.
Summary The air-sea interaction processes over the tropical Indian Ocean region are studied using sea surface temperature data from the Advanced Very High Resolution Radiometer sensor onboard the NOAA series of satellites. The columnar water-vapour content, low-level atmospheric humidity, precipitation, wind speed, and back radiation from the Special Sensor Microwave Imager on board the U.S. Defense Meteorological Satellite Program are all examined for two contrasting monsoon years, namely 1987 (deficit rainfall) and 1988 (excess rainfall). From these parameters the longwave radiative net flux at the sea surface and the ocean-air moisture flux are derived for further analysis of the air-sea interaction in the Arabian Sea, the Bay of Bengal, the south China Sea and the southern Indian Ocean. An analysis of ten-day and monthly mean evaporation rates over the Arabian Sea and Bay of Bengal shows that the evaporation was higher in these areas during the low rainfall year (1987) indicating little or no influence of this parameter on the ensuing monsoon activity over the Indian subcontinent. On the other hand, the evaporation in the southern Indian Ocean was higher during July and September 1988 when compared with the same months of 1987. The evaporation rate over the south Indian Ocean and the low-level cross-equatorial moisture flux seem to play a major role on the ensuing monsoon activity over India while the evaporation over the Arabian Sea is less important. Since we have only analysed one deficit/ excess monsoon cycle the results presented here are of preliminary nature. Received November 5, 1997 Revised March 20, 1998  相似文献   

14.
The dynamics of the seasonal surface circulation in the Philippine Archipelago (117°E–128°E, 0°N–14°N) are investigated using a high-resolution configuration of the Regional Ocean Modeling System (ROMS) for the period of January 2004–March 2008. Three experiments were performed to estimate the relative importance of local, remote and tidal forcing. On the annual mean, the circulation in the Sulu Sea shows inflow from the South China Sea at the Mindoro and Balabac Straits, outflow into the Sulawesi Sea at the Sibutu Passage, and cyclonic circulation in the southern basin. A strong jet with a maximum speed exceeding 100 cm s−1 forms in the northeast Sulu Sea where currents from the Mindoro and Tablas Straits converge. Within the Archipelago, strong westward currents in the Bohol Sea carry the surface water of the western Pacific (WP) from the Surigao Strait into the Sulu Sea via the Dipolog Strait. In the Sibuyan Sea, currents flow westward, which carry the surface water from the WP near the San Bernardino Strait into the Sulu Sea via the Tablas Strait.These surface currents exhibit strong variations or reversals from winter to summer. The cyclonic (anticyclonic) circulation during winter (summer) in the Sulu Sea and seasonally reversing currents within the Archipelago region during the peak of the winter (summer) monsoon result mainly from local wind forcing, while remote forcing dominates the current variations at the Mindoro Strait, western Sulu Sea and Sibutu passage before the monsoons reach their peaks. The temporal variations (with the mean removed), also referred to as anomalies, of volume transports in the upper 40 m at eight major Straits are caused predominantly by remote forcing, although local forcing can be large during sometime of a year. For example, at the Mindoro Strait, the correlation between the time series of transport anomalies due to total forcing (local, remote and tides) and that due only to the remote forcing is 0.81 above 95% significance, comparing to the correlation of 0.64 between the total and local forcing. Similarly, at the Sibutu Passage, the correlation is 0.96 for total versus remote effects, comparing to 0.53 for total versus local forcing. The standard deviations of transports from the total, remote and local effects are 0.59 Sv, 0.50 Sv, and 0.36 Sv, respectively, at the Mindoro Strait; and 1.21 Sv, 1.13 Sv, and 0.59 Sv at the Sibutu Passage. Nonlinear rectification of tides reduces the mean westward transports at the Surigao, San Bernardino and Dipolog Straits, and it also has non-negligible influence on the seasonal circulation in the Sulu Sea.  相似文献   

15.
Summary The January anomaly time series for each term of the surface heat budget (solar and longwave radiation, sensible and latent heat fluxes) are calculated for Ocean Weather Stations (OWSs) in the North Pacific and North Atlantic Oceans. The data set used is the Comprehensive Ocean-Atmosphere Data Set (COADS). The dominant term is the latent heat flux. The results for OWS P in the northern North Pacific show that the interannual variability of the heat budget parameters is correlated with the synoptic variability of the Aleutian low. There is also an interdecadal signal present in the heat budget anomaly time series, with the sign of the anomaly persisting for about 8–10 years. In contrast, for OWS J in the northern North Atlantic, no correlation is found between the variability of the heat budget parameters and the corresponding synoptic variability of the Icelandic low. The station J air-sea heat fluxes also show a higher frequency variability, compared to those of station P. The results suggest the variability of the January air-sea heat exchange processes are fundamentally different over the two ocean basins.With 3 Figures  相似文献   

16.
Inter-annual variability in the formation of the mini warm pool [sea-surface temperature (SST)>30°C] over the south eastern Arabian Sea (SEAS) and its role in the formation of the monsoon onset vortex (MOV) has been examined using two independent SST data sets. The role of SST, convection, integrated columnar water vapour and the low-level jet in the setting up of the monsoon onset over Kerala (MOK) is examined. It is found that the MOV which forms over the SEAS region upsets the delicate balance between convection, buildup of moisture and strengthening and deepening of the westerlies over the SEAS that is needed for the setting up of the MOK. Thus, the formation over the SEAS of an MOV is not necessarily conducive for MOK. Furthermore, it is shown that a mini warm pool over the southeastern Arabian Sea is not a sufficient condition for the formation of an MOV because such a warm pool is present over this region during most of the years, but an MOV does not necessarily form over there.  相似文献   

17.
Development and structure of a maritime continent thunderstorm   总被引:4,自引:0,他引:4  
Summary The evaluation of a maritime continent thunderstorm complex (Hector) occurring over Bathurst and Melville Islands north of Darwin, Australia (12° S, 131° E) is investigated primarily using Doppler radar data. Thunderstorm formation follows the development of sea breeze circulations and a period of shallow non-precipitating convection. Evidence exists for initiation of long-lived and organised convection on the sea breeze fronts, although short-lived, scattered convection is apparent earlier in the day. Merging of the convective systems is observed in regions of enhanced low-level convergence related to sea breeze circulations. The merged convective complex is initially aligned in an almost east-west direction consistent with the low-level forcing. The merged complex results in rapid vertical development with updraughts reaching 40 m s and echo tops reaching 20 km height. Maximum precipitation production occurs during this merger phase. On the perimeter of the merged convective complex, evidence exists for front-to-rear updraughts sloped over lower-level downdraughts with rear-to-front relative flow and forward propagating cold pools. The mature phase is dominated by this convection and the complex re-orientates in the prevailing easterly vertical shear to an approximate north-south direction, then moves westward off the islands with the classic multicellular squall-like structure.The one-dimensional cloud model of Ferrier and Houze (1989) used with a four class ice formulation reproduced the cloud top height, updraught structure and echo profile very well. To test the importance of ice physics upon thunderstorm development, several sensitivity tests were made removing the effects of the ice phase. All of these model clouds reached nearly 20 km, although simulations without the effects of ice had updraughts reduced from about 40 m s–1 to 30 m s–1. The simulated convection was more sensitive to changes in environmental conditions and parameterised cloud dynamics. The strong intensity of the convection was largely accounted for by increasing equivalent potential temperatures due to diurnal heating of the surface layer. The vertical velocity and radar structure of the island thunderstorm has more similarity with continental rather than oceanic convection. Maximum vertical velocities, in particular are almost an order of magnitude greater than typical of oceanic convection. With the intense updraughts, even in the low shear environment, there is evidence for mesoscale circulations within the convection.With 17 Figures  相似文献   

18.
中国东部和印度季风区云辐射特性的比较   总被引:14,自引:0,他引:14  
基于 ISCCP和 EQBE资料,本文比较了中国东部和印度季风区的云和云辐射强迫的气候特征。虽然它们同属于亚洲季风区,并且有相似的降水季节特征,但它们各自的云和云辐射强迫特征差异很大。在印度区域,所有的云量有着相同的季节变化,最大云量分布都出现在夏季,且总云量中以高云量为主。而中国东部云量的季节变化都比较复杂,在总云量中以中、低云量为主,最大总云量出现在春季。冬季的总云量和中、低云量要大于夏季。在全球云量分布中,中国东部最典型的特征是:该地区为全球最大的雨层云覆盖区。与云的分布和变化相关,印度季风区最大的负短波云辐射强迫,最大的正的长波辐射强迫和最大的负的净云辐射强迫发生在夏季,而在中国东部,大的负的短波云辐射强迫发生在春夏之交。年平均的负的短波云辐射强迫在中国东部地区明显要大于在印度季风区。  相似文献   

19.
Summary Monthly mean surface fields of different meteorological parameters and evaporation are studied for the 1979 (poor monsoon) and 1983 (good monsoon) monsoon seasons over the Arabian Sea, in order to understand the role of evaporation on the Indian monsoon rainfall. It is noticed that in general, the sea surface temperatures are higher in 1983 throughout the monsoon season than in 1979 in the Arabian Sea excepting western region. The mean rates of evaporation on a seasonal scale are found to be equal in both years (3.66×1010 and 3.59×1010 tons/day in 1979 and 1983, respectively). No coherence is observed between the evaporation and the west coast rainfall within a season. It is also noted that the pressure distribution over the Arabian Sea is even important to advect the moisture towards the west coast of India, through winds.With 10 Figures  相似文献   

20.
The boreal summer intraseasonal variability (BSISV), which is characterized by pronounced meridional propagation from the equatorial zone to the Indian Continent, exerts significant modulation of the active/break phases of the south Asian monsoon. This form of variability provides a primary source of subseasonal predictive skill of the Asian summer monsoon. Unfortunately, current general circulation models display large deficiencies in representing this variability. The new cloud observations made available by the CloudSat mission provide an unprecedented opportunity to advance our characterization of the BSISV. In this study, the vertical structures of cloud water content and cloud types associated with the BSISV over the Indian Ocean and subcontinent are analyzed based on CloudSat observations from 2006 to 2008. These cloud structures are also compared to their counterparts as derived from ERA-interim reanalysis. A marked vertical tilting structure in cloud water is illustrated during the northward propagation of the BSISV based on both datasets. Increased cloud liquid water content (LWC) tends to appear to the north of the rainfall maximum, while ice water content (IWC) in the upper troposphere slightly lags the convection. This northward shift of increased LWC, which is in accord with local enhanced moisture as previously documented, may play an important role in the northward propagation of the BSISV. The transition in cloud structures associated with BSISV convection is further demonstrated based on CloudSat, with shallow cumuli at the leading edge, followed by the deep convective clouds, and then upper anvil clouds. Some differences in cloud water structures between CloudSat and ERA-interim are also noted, particularly in the amplitudes of IWC and LWC fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号