首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial biomass and production were measured on two cruises to the northwestern Arabian Sea in 1994; the first cruise took place towards the end of the SW monsoon in September, and the second cruise during the inter-monsoon period in November and December. Although phytoplankton production was significantly higher during the monsoon, bacterial numbers showed little difference. Bacteria were most abundant in the euphotic zone and highest bacterial numbers were measured during the monsoon period in the Gulf of Oman and the shelf waters off southern Oman; in these regions, numbers ranged from 0.9 to 1.6×109 bacteria l-1. On both cruises, bacteria were less abundant in the euphotic zone of the central Arabian Sea and typically ca 0.8×109 cells l-1 were present. The majority of bacteria (80–95%) were small cocci that were larger (median diameter 0.40 μm) during the monsoon period than the inter-monsoon, when the cells had a diameter of 0.36 μm; there was no comparable change in cell dimensions of bacteria present as rods. Bacterial production was measured by the incorporation of 3H-thymidine and 3H-leucine. On both cruises, uptake rates were highest on the Omani shelf and decreased offshore. In the central Arabian Sea, thymidine incorporation rates were similar in the monsoon and inter-monsoon periods, but higher rates of leucine incorporation were measured during the monsoon period. Bacterial production was a relatively small proportion of phytoplankton production in both periods sampled; bacterial production was equivalent to between 10 and 30% of the daily primary production in the Arabian Sea.  相似文献   

2.
Within the framework of the EU-funded BENGAL programme, the effects of seasonality on biogenic silica early diagenesis have been studied at the Porcupine Abyssal Plain (PAP), an abyssal locality located in the northeast Atlantic Ocean. Nine cruises were carried out between August 1996 and August 1998. Silicic acid (DSi) increased downward from 46.2 to 213 μM (mean of 27 profiles). Biogenic silica (BSi) decreased from ca. 2% near the sediment–water interface to <1% at depth. Benthic silicic acid fluxes as measured from benthic chambers were close to those estimated from non-linear DSi porewater gradients. Some 90% of the dissolution occurred within the top 5.5 cm of the sediment column, rather than at the sediment–water interface and the annual DSi efflux was close to 0.057 mol Si m−2 yr−1. Biogenic silica accumulation was close to 0.008 mol Si m−2 yr−1 and the annual opal delivery reconstructed from sedimentary fluxes, assuming steady state, was 0.065 mol Si m−2 yr−1. This is in good agreement with the mean annual opal flux determined from sediment trap samples, averaged over the last decade (0.062 mol Si m−2 yr−1). Thus ca. 12% of the opal flux delivered to the seafloor get preserved in the sediments. A simple comparison between the sedimentation rate and the dissolution rate in the uppermost 5.5 cm of the sediment column suggests that there should be no accumulation of opal in PAP sediments. However, by combining the BENGAL high sampling frequency with our experimental results on BSi dissolution, we conclude that non-steady state processes associated with the seasonal deposition of fresh biogenic particles may well play a fundamental role in the preservation of BSi in these sediments. This comes about though the way seasonal variability affects the quality of the biogenic matter reaching the seafloor. Hence it influences the intrinsic dissolution properties of the opal at the seafloor and also the part played by non-local mixing events by ensuring the rapid transport of BSi particles deep into the sediment to where saturation is reached.  相似文献   

3.
螺旋藻多糖对移植性癌细胞的抑制作用及其机理的研究   总被引:24,自引:0,他引:24  
螺旋藻多糖200mg/kg可显著抑制小鼠体内腹水型肝癌细胞的增殖。它对S180和腹水型肝癌细胞DNA,RNA和蛋白质的抑制作用,在3~24h内均随作用时间延长而提高。它对癌细胞DNA合成的抑制作用,属DNA代谢干扰型。螺旋藻多糖虽不能直接杀伤癌细胞,但通过增强机体的免疫力而抑制癌细胞的增殖。  相似文献   

4.
The impact of seasonal pulses of phytodetritus on the grazing behaviour of Oneirophanta mutabilis was assessed on the Porcupine Abyssal Plain (PAP) in the NE Atlantic. Sediment and sediment trap samples were analysed by HPLC to estimate the quantity and quality of the organic material in terms of phytopigments and nucleic acids. Food selection by Oneirophanta was estimated by analysing these constituents in the gut contents.The study area is characterised by large interannual variations in the deposition of fresh organic material. The mass fluxes at 10 m above bottom (mab) varied from 0.25 g DW m−2 d−1 in September 1996 to <0.1 g DW m−2 d−1 in March 1997. The material caught in the sediment trap in September 1996 had a relative fresh signature with a chlorophyll-a:phaeophorbide ratio of 1.33. During the other seasons (March 1997, July 1997 and October 1997) the chlorophyll-a:phaeophorbide ratio remained low. In sediment cores this ratio showed a similar seasonal and inter-annual pattern, and again September 1996 was the period of maximum abundance of fresh organic material in the surficial sediment. The analyses of the gut contents of Oneirophanta mirrored exactly the seasonal variation of the phytopigments in both the sediment and the sediment trap material. Concentrations of pigments in the fore-gut were 5 to 15 times higher than in the sediment and the nucleic acid concentrations were up to 80 times higher. This discrepancy between pigments and nucleic acids concentrations suggests that the latter are “indigenous” to the gut of Oneirophanta, either because the gut contains high numbers of actively-dividing bacteria or as a result of cell lysis of the gut epithelium. The seasonal differences in the pigment concentration factor suggest that Oneirophanta does not actively search for hotspots where pigment concentrations are enriched. By using the degradation rate of chlorophyll-a in the PAP sediments, the minimum residence time of chlorophyll in the sediment within the gut of Oneirophanta was calculated. In combination with gut volume and density data it was estimated that each year the Oneirophanta population skims a third of the sediment surface at the PAP site.  相似文献   

5.
The effect of pressure on upper ocean free-living bacteria and bacteria attached to rapidly sinking particles was investigated through studying their ability to synthesize DNA and protein by measuring their rate of 3H-thymidine and 3H-leucine incorporation. Studies were carried out on samples from the NE Atlantic under the range of pressures (1–430 atm) encountered by sinking aggregates during their journey to the deep-sea bed. Thymidine and leucine incorporation rates per bacterium attached to sinking particles from 200 m were about six and ten times higher, respectively, than the free-living bacterial assemblage. The ratio of leucine incorporation rate per cell to thymidine incorporation rate per cell was significantly different between the larger attached (18.9:1) and smaller free-living (10.4:1) assemblages. The rates of leucine and thymidine incorporation decreased exponentially with increasing pressure for the free-living and linearly for attached bacteria, while there was no significant influence of pressure on cell numbers. At 100 atm leucine and thymidine incorporation rate per free-living bacterium was reduced to 73 and 20%, respectively, relative to that measured at 1 atm. Pressure of 100 atm reduced leucine and thymidine incorporation per attached bacterium to 94 and 70%, and at 200 atm these rates were reduced to 34 and 51%, respectively, relative to those measured at 1 atm. There was no significant uncoupling of thymidine and leucine incorporation for either the free-living or attached bacterial assemblages with increasing pressure, indicating that the processess of DNA and protein synthesis may be equally affected by increasing pressure. It is therefore unlikely that bacteria, originating from surface waters, attached to rapidly sinking particles play a role in particle remineralization below approximately 1000–2000 m. These results may help to explain the occurrence of relatively fresh aggregates on the deep-sea bed that still contain sufficient organic carbon to fuel the rapid growth of benthic micro-organisms; they also indicate that the effect of pressure on microbial processes may be important in oceanic biogeochemical cycles.  相似文献   

6.
We present a 3-year multidisciplinary biogeochemical data set taken in situ at the Porcupine Abyssal Plain (PAP) time-series observatory in the Northeast Atlantic (49°N, 16.5°W; water depth ∼4850 m) for the period 2003 to 2005. The high-resolution year-round autonomous measurements include temperature, salinity, chlorophyll-a (derived from in situ chlorophyll-fluorescence) and inorganic nitrate, all at a nominal depth of 30 m on an Eulerian observatory mooring. This study compares these in situ time-series data with satellite chlorophyll-a data, regional data from a ship of opportunity, mixed-layer depth measurements from profiling Argo floats and lateral advection estimates from altimetry. This combined and substantial data set is used to analyse seasonal and inter-annual variability in hydrography and nitrate concentrations in relation to convective mixing and lateral advection. The PAP observatory site is in the inter-gyre region of the North Atlantic where convective mixing ranges from 25 m in the summer to over 400 m in winter when nutrients are supplied to the surface. Small inter-annual changes in the winter mixed layer can result in large changes in nitrate supply and productivity. However the decrease in maximum winter nitrate over the three-year period, from 10 to 7 mmol m−3, cannot be fully explained by convective mixing. Trajectories leading to the PAP site, computed from altimetry-derived geostrophic velocities, confirm that lateral advection cannot be ignored at this site and may be an important process along with convective mixing. Over the three years, there is an associated decrease in new production calculated from nitrate assimilation from 85.4 to 40.3±4.3 gCm−2 a−1. This confirms year-to-year variability in primary production seen in model estimates for the region. The continuous in situ dataset also shows inter-annual variation in the timing of the spring bloom due to variations in heat flux; the 2005 bloom occurred earlier than in 2004.  相似文献   

7.
Stable carbon and nitrogen isotopic composition of zooplankton, suspended particulate organic matter (SPOM), and sinking particles collected using sediment traps were measured for samples obtained from the southeastern Bering Sea middle and outer shelf during 1997–1999. The quantity of material collected by the middle shelf sediment trap was greater in both spring and late summer and fall than in early and mid-summer. The δ15N of SPOM, sinking material and zooplankton showed greater inter-annual variability at the middle shelf site (M2) than at the outer shelf site (M3). Zooplankton and sinking organic matter collected by M2 sediment traps became more depleted in 15N from 1997 through 1999, associated with a change from unusually warm to unusually cold conditions. Suspended and sinking organic matter and zooplankton collected from M3 decreased only slightly in δ15N from 1998 to 1999. SPOM, zooplankton, and sediment trap samples collected at M2 were usually enriched in δ15N and δ13C over those from M3. However, in 1999 sediment trap samples from the middle shelf were enriched in 13C over M3 material, but the δ15N of samples from the two sites was similar. The geographic pattern could be explained greater productivity over the middle shelf, associated with either isotopically heavy nitrogen being regenerated from sediments, or with utilization of a greater fraction of the available inorganic nitrogen pool during most years.  相似文献   

8.
In March and September 1995, bacterial production was measured by the 3H-leucine method in the oligotrophic Cretan Sea (Aegean Sea, Eastern Mediterranean) in the framework of the CINCS/MTP program. Samples were obtained from four stations (a coastal, a continental shelf and 2 open-sea stations) for the construction of vertical profiles of bacterial abundance and production. Bacterial production ranged from 0.1 μg C m−3 h−1 at 1500 m depth, to 82 μg C m−3 h−1 in March at 50 m at the coastal station. Higher bacterial integrated production was observed in March at the coastal station (131 mg C m−2 d−1 for the 0–100 m layer). Bacterial production, integrated through the water-column, was similar in March and September for the open-sea stations (60–70 mg C m−2 d−1). Relative to production, bacterial concentrations varied little between stations and seasons ranging from 9×105 ml−1 to 3×105 ml−1. Relationships between bacterial biomass and bacterial production indicated seasonal differences, likely reflecting resource limitation of bacterial biomass in March (bloom situation), and predator limitation of bacterial biomass in September (post-bloom situation).  相似文献   

9.
Measurements of particle size-fractionated POC/234Th ratios and 234Th and POC fluxes were conducted using surface-tethered, free-floating, sediment traps and large-volume in-situ pumps during four cruises in 2004 and 2005 to the oligotrophic eastern Mediterranean Sea and the seasonally productive western Mediterranean and northwest Atlantic. Analysis of POC/234Th ratios in sediment trap material and 10, 20, 53, 70, and 100 μm size-fractionated particles indicate, for most stations, decreasing ratios with depth, a weak dependence on particle size, and ratios that converge to ~1–5 μmol dpm?1 below the euphotic zone (~100–150 m) throughout the contrasting biogeochemical regimes. In the oligotrophic waters of the Aegean Sea, 234Th and POC fluxes estimated using sediment traps were consistently higher than respective fluxes estimated from water-column 234Th–238U disequilibrium, observations that are attributed to terrigenous particle scavenging of 234Th. In the more productive western Mediterranean and northwest Atlantic, 234Th and POC fluxes measured by sediment trap and 234Th–238U disequilibrium agreed within a factor of 2–4 throughout the water column. An implication of these results is that estimates of POC export by sediment traps and 234Th–238U disequilibrium can be biased differently because of differential settling speeds of POC and 234Th-carrying particles.  相似文献   

10.
Time-series measurements of particulate organic carbon (POC) and particulate nitrogen (PN) fluxes, sediment community composition, and sediment community oxygen consumption (SCOC) were made at the Hawaii Ocean Time-series station (Sta. ALOHA, 4730 m depth) between December 1997 and January 1999. POC and PN fluxes, estimated from sediment trap collections made at 4000 m depth (730 m above bottom), peaked in late August and early September 1998. SCOC was measured in situ using a free vehicle grab respirometer that also recovered sediments for chemical and biological analyses on six cruises during the 1-year study. Surface sediment organic carbon, total nitrogen and phaeopigments significantly increased in September, corresponding to the pulses in particulate matter fluxes. Bacterial abundance in the surface sediment was highest in September with a subsurface high in November. Sediment macrofauna were numerically dominated by agglutinating Foraminifera fragments with highest density in September. Metazoan abundance, dominated by nematodes was also highest in September. SCOC significantly increased from a low in February to a high in September. POC and PN fluxes at 730 m above bottom were significantly correlated with SCOC with a lag time of ⩽14 days, linking pelagic food supply with benthic processes in the oligotrophic North Pacific gyre. The annual supply of POC into the abyss compared to the estimated annual demand by the sediment community (POC:SCOC) indicates that only 65% of the food demand is met by the supply of organic carbon.  相似文献   

11.
We examined bacterioplankton biomass and heterotrophic production (BHP) during summer stratification in the northwestern Mediterranean in four successive stratification seasons (June–July of 1993–1996). Values of phytoplankton biomass and primary production were determined simultaneously so that the data sets for autotrophic and heterotrophic microbial plankton could be compared. Three standard stations were set along a transect from Barcelona to the channel between Mallorca and Menorca, representing coastally influenced shelf waters, frontal waters over the slope front, and open sea waters. Conversion factors from 3H-leucine incorporation to BHP were empirically determined and varied between 0.29 and 3.25 kg C mol-1. Bacterial biomass values were among the lowest found in any marine environment. BHP values (between 0.02 and 2.5 μg C L-1 d-1) were larger than those of low nutrient low chlorophyll areas such as the Sargasso Sea and lower than those from high nutrient low chlorophyll areas such as the equatorial Pacific. Growth rates of bacterioplankton were highest at the slope front (0.20 d-1) and lowest at the open sea station (0.04 d-1). Phytoplankton growth rates were similar at the three stations (∼0.50 d-1). Integrated values of bacterioplankton biomass, BHP and bacterial growth rates did not show significant differences among years, but differences between the three stations were clearly significant. Phytoplankton biomass, primary production, and phytoplankton growth rates did not show significant differences either with year or with station. As a consequence the bacterioplankton to phytoplankton biomass (BB/BPHY) and production (BHP/PP) ratios varied from the coastal to the open sea stations. The BB/BPHY ratio was 0.98 at the coast and ∼0.70 at the other two stations. These ratios are similar to those found in other oligotrophic marine environments. The BHP/PP ratio was 0.83 at the coast, 0.36 at the slope and 0.09 at the open sea station. The last value is also similar to values found in other oligotrophic marine environments. Vertical distribution of these ratios was also examined.The comparison of microbial parameters at the three stations indicates a different kind of relationship between bacterioplankton and phytoplankton in oligotrophic open sea waters and in coastal, nutrient-richer waters. According to such parameters and to the values of the BB/BPHY and BHP/PP ratios, open waters in the northwestern Mediterranean (despite their relatively short distance from the shore) were intermediate between the extremely oligotrophic waters of the eastern Mediterranean or the Sargasso Sea and the more productive waters of the equatorial Pacific.  相似文献   

12.
Fluxes contributing to the particulate carbonate system in deep-sea sediments were investigated at the BENGAL site in the Porcupine Abyssal Plain (Northeast Atlantic). Deposition fluxes were estimated using sediment traps at a nominal depth of 3000 m and amounted to 0.37±0.1 mmol C m−2 d−1. Dissolution of carbonate was determined using flux of total alkalinity from in situ benthic chambers, is 0.4±0.1 mmol C m−2 d−1. Burial of carbonate was calculated from data on the carbonate content of the sediment and sedimentation rates from a model age based on 14C dating on foraminifera (0.66±0.1 mmol C m−2 d−1). Burial plus dissolution was three times larger than particle deposition flux which indicates that steady-state is not achieved in these sediments. Mass balances for other components (BSi, 210Pb), and calculations of the focusing factor using 230Th, show that lateral inputs play only a minor role in this imbalance. Decadal variations of annual particle fluxes are also within the uncertainty of our average. Long-term change in dissolution may contribute to the imbalance, but can not be the main reason because burial alone is greater than the input flux. The observed imbalance is thus the consequence of a large change of carbonate input flux which has occured in the recent past. A box model is used to check the response time of the solid carbonate system in these sediments and the time to reach a new steady-state is in the order of 3 kyr. Thus it is likely that the system has been perturbed recently and that large dissolution and burial rates reflect the previously larger particulate carbonate deposition rates. We estimate that particulate carbonate fluxes have certainly decreased by a factor of at least 3 and that this change has occurred during the last few centuries.  相似文献   

13.
The Earth’s most extensive biomes – the oceanic subtropical gyres – are considered to be expanding with current surface ocean warming. Although it is well established that microbial communities control gyre biogeochemistry, comparisons of their metabolic activities between gyres are limited. In order to estimate metabolic activities including production of microbial communities, the uptake rates of amino acids leucine, methionine and tyrosine at ambient concentrations were estimated in surface waters of the Atlantic Ocean using radioisotopically labelled tracers. Data were acquired during six research cruises covering main oceanic provinces herein termed: North and South Atlantic Gyres, Bermuda Atlantic Time-series Study site (BATS), Equatorial region, and Mauritanian Upwelling (off Cape Blanc). Data were divided between provinces, the extents of which were identified by ocean colour data, in order to achieve provincial mean uptake rates. Leucine and methionine uptake rates did not differ between sampling periods, and were comparable between the North and South subtropical gyres. Furthermore, variation in uptake rates measured throughout the two oligotrophic gyres, where sampling covered ∼4 × 106 km2, was considerably lower than that measured within the Mauritanian Upwelling and Equatorial regions, and even at the BATS site. Tyrosine was generally the slowest of the amino acids to be taken up, however, it was assimilated faster than methionine within the Mauritanian Upwelling region. Thus, we propose that one value for leucine (12.6 ± 3.2 pmol L−1 h−1) and methionine (10.0 ± 3.3 pmol L−1 h−1) uptake could be applied to the oligotrophic subtropical gyres of the Atlantic Ocean. However, with the significantly lower uptake rates observed at the BATS site, we would not advise extrapolation to the Sargasso Sea.  相似文献   

14.
Two major size classes of the sediment community, meiofauna and macrofauna, and four classes of lipid compounds, fatty acids, alkanes, alcohols and sterols, were investigated using multicorer and USNEL boxcorer samples, collected during six cruises over a two year period (September 1996 to September–October 1998), at the Porcupine Abyssal Plain ( 48° 50′N 16° 30′W, 4850 m depth) within the framework of the MAST 3 BENGAL project. This site was known to be subject to seasonality in the input of organic matter to the seafloor. Results are given for each faunal size class in terms of taxonomic structure at the level of phylum, class or order, depending on the taxon, and for the dominant faunal components in terms of density and vertical distribution. For each lipid compound class, results are given in concentration and vertical distribution. The taxonomic structure of each size class did not change within the study period. Total meiofaunal and macrofaunal densities were particularly high, probably reflecting the high quantity and quality of organic matter inputs to the site. The dominant components of the two size classes presented different temporal patterns in their responses to changes in their environment. Populations of meiofaunal species, a foraminiferan and an opheliid polychaete, which inhabit the surface or sub-surface of sediment and feed on phytodetritus, responded with a rapid increase in abundance to a pulse of organic input in summer 1996. The macrofaunal polychaetes showed a lagged response to the same event by slowly increasing in density. Other components of the sediment community, that can live deeper in the sediment, moved down the sediment column, in response to 1) the impoverishment and bioturbation of the surface layer, and 2) the downward mixing of organic matter in the sediment by larger organisms. In this study, different temporal patterns were demonstrated for the first time in different size classes of the sediment community, and in the biological and environmental parameters that were studied simultaneously.  相似文献   

15.
In this study at the Bermuda Atlantic Time-series Study (BATS) site we demonstrate that the polonium–lead disequilibrium system may perform better as a tracer of organic carbon export under low-flux conditions (in this case, <2.5 mmol C m?2 d?1) than under bloom conditions in an oligotrophic setting. With very few exceptions, the POC flux predictions calculated from the water-column 210Po deficit were within a factor of 2 of the POC flux caught in surface-tethered sediment traps. However, we found higher correlation between size-fractionated particulate 210Po activity and POC concentration in November 2006 (r=0.93) than in January (r=0.79) and during the spring bloom in March 2007 (r=0.80). We suggest that this is due to the ability of polonium to distinguish between bulk mass flux and organic carbon export under oligotrophic and lithogenic-driven flux regimes. Further, we found that the POC/Po ratio on particles was largely independent of size class between 10 and 100 μm (P=0.13) during each season, supporting the notion that export in this oligotrophic system is driven by sinking aggregates of smaller cells and not by large, individual cells.  相似文献   

16.
A 2-yr record of downward particle flux was obtained with moored sediment traps at several depths of the water column in two regions characterized by different primary production levels (mesotrophic and oligotrophic) of the eastern subtropical North Atlantic Ocean. Particle fluxes, of ∼71–78% biogenic origin (i.e. consisting of CaCO3, organic matter and opal) on average, decrease about six-fold from the mesotrophic site (highest fluxes in the North Atlantic) nearer the Mauritanian margin (18°30′N, 21°00′W) to the remote, open-ocean, oligotrophic site (21°00′N, 31°00′W). This decrease largely reflects the difference in total primary production between the two sites, from ∼260 to ∼110 g organic C m−2 yr−1. At both sites, temporal variability of the downward particle flux seems to be linked to westward surface currents, which are likely to transport seaward biomass-rich water masses from regions nearer the coast. The influence of coastal upwelling is marked at the mesotrophic site. The large differences between the 1991 and 1992 records at that site, where carbon export is large, underscore the interest of long-term studies for export budget estimates. The different productivity regimes at the two sites seem to induce contrasting downward modes of transport of the particulate matter, as shown in particular by the faster settling rates and the higher E ratio (particulate organic carbon export versus total primary production) estimated at the mesotrophic site.  相似文献   

17.
Rates of transformation, recycling and burial of nitrogen and their temporal and spatial variability were investigated in deep-sea sediments of the Porcupine Abyssal Plain (PAP), NE Atlantic during eight cruises from 1996 to 2000. Benthic fluxes of ammonium (NH4) and nitrate (NO3) were measured in situ using a benthic lander. Fluxes of dissolved organic nitrogen (DON) and denitrification rates were calculated from pore water profiles of DON and NO3, respectively. Burial of nitrogen was calculated from down core profiles of nitrogen in the solid phase together with 14C-based sediment accumulation rates and dry bulk density. Average NH4 and NO3-effluxes were 7.4 ± 19 μmol m−2 d−1 (n = 7) and 52 ± 30 μmol m−2 d−1 (n = 14), respectively, during the period 1996–2000. During the same period, the DON-flux was 11 ± 5.6 μmol m−2 d−1 (n = 5) and the denitrification rate was 5.1 ± 3.0 μmol m−2 d−1 (n = 22). Temporal and spatial variations were only found in the benthic NO3 fluxes. The average burial rate was 4.6 ± 0.9 μmol m−2 d−1. On average over the sampling period, the recycling efficiency of the PON input to the sediment was 94% and the burial efficiency hence 6%. The DON flux constituted 14% of the nitrogen recycled, and it was of similar magnitude as the sum of burial and denitrification. By assuming the PAP is representative of all deep-sea areas, rates of denitrification, burial and DON efflux were extrapolated to the total area of the deep-sea floor (>2000 m) and integrated values of denitrification and burial of 8 ± 5 and 7 ± 1 Tg N year−1, respectively, were obtained. This value of total deep-sea sediment denitrification corresponds to 3–12% of the global ocean benthic denitrification. Burial in deep-sea sediments makes up at least 25% of the global ocean nitrogen burial. The integrated DON flux from the deep-sea floor is comparable in magnitude to a reported global riverine input of DON suggesting that deep-sea sediments constitute an important source of DON to the world ocean.  相似文献   

18.
Lagoa de Araruama in the state of Rio de Janeiro, Brazil, is a hypersaline lagoon with salinity varying spatially from 45 to 56. We collected water samples during monthly cruises throughout the lagoon, and along the streams feeding the system, from April 1991 to March 1992. Nutrients and other water quality parameters exhibited great spatial and temporal variations. Mass balance calculations indicate large amounts of anthropogenic nutrient inputs. The data indicate that the lagoon currently is oligotrophic but is in a state of transition to become a mesotrophic system. Molar dissolved inorganic nitrogen:dissolved inorganic phosphorus (DIN/DIP) varied between 2.2:1 and 659:1 with a volume-weighted average of 22:1. The high DIN/DIP ratio contrasts with that found in nearby lagoons, suggesting that phytoplankton primary production is limited by phosphorus in Lagoa de Araruama. The major loss of DIP is apparently driven by biological assimilation and diagenic reactions in the sediments. Calculations indicate that the lagoon is slightly net autotrophic at +0.9 mol C m−2 yr−1. This suggests that the biomass of the primary producers is restricted by phosphorus availability. Phosphorus retention in the sediment and the hypersaline state of the lagoon prevent changes in autotrophic communities and the formation of eutrophic conditions.  相似文献   

19.
Sediment transport in the Yellow Sea and East China Sea   总被引:2,自引:0,他引:2  
Eight survey cruises in different seasons have been conducted in the Yellow Sea (YS) and East China Sea (ECS) during the period from 2000 to 2008. Suspended sediment concentration (SSC) and hydrological data were collected during each cruise. Data analysis showed that total suspended sediment mass was approximately 0.18 × 109 tons in the surveyed area during spring and autumn seasons. Highly turbid waters were found in the shallow waters between the Subei coast, the Changjiang estuary and the Zhejiang coast with seasonal variations.  相似文献   

20.
The vertical distributions of prokaryote heterotrophic production (3H-leucine incorporation rate) and abundance were investigated in the meso- and bathy-pelagic layers of the Canada Basin, western Arctic Ocean, during September 2009. Prokaryote production and abundance were high in the Pacific-origin water mass located in the upper mesopelagic layer (depth, 100–200 m). Below the halocline layer (depth, 300–3000 m), both the production and abundance decreased with depth, with log–log regression slopes of −1.33 and −0.77, respectively. Depth-integrated production and biomass in the meso- and bathy-pelagic layers was three- to five-fold lower than the corresponding values reported in the subpolar regions, whereas they were close to or lower than the corresponding values in oligotrophic subtropical regions. Prokaryote turnover times were estimated to be 1.1 and 6.1 years for meso- and bathy-pelagic layers, respectively, with the latter being among the longest turnover times reported for oceanic basins. We estimated prokaryote carbon demand in the water column (100–3000 m) to be on the order of 11 mg C m−2 d−1, which largely exceeds (by 38-fold) the sinking particulate organic carbon flux at depths of 120–200 m reported in the literature. This large carbon imbalance may be partly explained by organic carbon delivery by lateral intrusion of the Pacific-origin water mass into the upper mesopelagic layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号