首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The method presented here assumes that a single observation can be identified with one of q functional models that compete with one another. The estimation method is based on the assumption that a theoretical quantity, called elementary split potential, can be assigned to each observation. Such quantity is referred to the theory of probability as well as to the theory of information. Parameters of the competitive functional models are estimated by maximizing the split potential globally over for the whole observation set. Additionally, such M split(q) estimates minimize the amount of information that could be provided by other estimates computed for the same observation set. The method is a certain kind of extension of the maximum likelihood method and if one considers the generalizations presented in the paper it can also be regarded as the development of M-estimation. Special attention is paid to the squared M split(q) estimation where the objective function is a squared one. If q = 1, then the squared M split(q) estimation is equivalent to the least squares method. The last part of the paper presents some numerical examples illustrating the properties of the squared M split(q) estimation as well as pointing at possible applications in geodesy and surveying.  相似文献   

2.
This paper proposes a new approach to 3D modeling on the basis of laser scanner data. It presents the attempt to automatically detect two planes and an edge in one processing algorithm. The algorithm is based on the M split estimation, which is a recently developed regression method of multi functional models. Plane equations in three dimensional space are derived on the basis of the presented method. M split estimation divides the functional model of least squares adjustment in particular into two groups. Both simulated and real data from airborne laser scanning is tested to present the results. In each case the mehod gave good results which encourages for further work on the application of this method for 3D modeling.  相似文献   

3.
The present study investigates the characteristics of CO2 exchange (photosynthesis and respiration) over agricultural site dominated by wheat crop and their relationship with ecosystem parameters derived from MODIS. Eddy covariance measurement of CO2 and H2O exchanges was carried out at 10 Hz interval and fluxes of CO2 were computed at half-hourly time steps. The net ecosystem exchange (NEE) was partitioned into gross primary productivity (GPP) and ecosystem respiration (R e) by taking difference between day-time NEE and respiration. Time-series of daily reflectance and surface temperature products at varying resolution (250–1000 m) were used to derive ecosystem variables (EVI, NDVI, LST). Diurnal pattern in Net ecosystem exchange reveals negative NEE during day-time representing CO2 uptake and positive during night as release of CO2. The amplitude of the diurnal variation in NEE increased as LAI crop growth advances and reached its peak around the anthesis stage. The mid-day uptake during this stage was around 1.15 mg CO2 m−2 s−1 and night-time release was around 0.15 mg CO2 m−2 s−1. Linear and non-linear least square regression procedures were employed to develop phenomenological models and empirical fits between flux tower based GPP and NEE with satellite derived variables and environmental parameters. Enhanced vegetation index was found significantly related to both GPP and NEE. However, NDVI showed little less significant relationship with both GPP and NEE. Furthemore, temperature-greenness (TG) model combining scaled EVI and LST was parameterized to estimate daily GPP over dominantly wheat crop site. (R 2 = 0.77). Multi-variate analysis shows that inclusion of LST or air temperature with EVI marginally improves variance explained in daily NEE and GPP.  相似文献   

4.
The TOPEX/Poseidon (T/P) satellite alti- meter mission marked a new era in determining the geopotential constant W 0. On the basis of T/P data during 1993–2003 (cycles 11–414), long-term variations in W 0 have been investigated. The rounded value W 0 = 62636856.0 ± 0.5) m 2 s −2 has already been adopted by the International Astronomical Union for the definition of the constant L G = W 0/c 2 = 6.969290134 × 10−10 (where c is the speed of light), which is required for the realization of the relativistic atomic time scale. The constant L G , based on the above value of W 0, is also included in the 2003 International Earth Rotation and Reference Frames Service conventions. It has also been suggested that W 0 is used to specify a global vertical reference system (GVRS). W 0 ensures the consistency with the International Terrestrial Reference System, i.e. after adopting W 0, along with the geocentric gravitational constant (GM), the Earth’s rotational velocity (ω) and the second zonal geopotential coefficient (J 2) as primary constants (parameters), then the ellipsoidal parameters (a,α) can be computed and adopted as derived parameters. The scale of the International Terrestrial Reference Frame 2000 (ITRF2000) has also been specified with the use of W 0 to be consistent with the geocentric coordinate time. As an example of using W 0 for a GVRS realization, the geopotential difference between the adopted W 0 and the geopotential at the Rimouski tide-gauge point, specifying the North American Vertical Datum 1988 (NAVD88), has been estimated.  相似文献   

5.
Errors in high-frequency ocean tide models alias to low frequencies in time-variable gravity solutions from the Gravity Recovery and Climate Experiment (GRACE). We conduct an observational study of apparent gravity changes at a period of 161 days, the alias period of errors in the S2 semidiurnal solar tide. We examine this S2 alias in the release 4 (RL04) reprocessed GRACE monthly gravity solutions for the period April 2002 to February 2008, and compare with that in release 1 (RL01) GRACE solutions. One of the major differences between RL04 and RL01 is the ocean tide model. In RL01, the alias is evident at high latitudes, near the Filchner-Ronne and Ross ice shelves in Antarctica, and regions surrounding Greenland and Hudson Bay. RL04 shows significantly lower alias amplitudes in many of these locations, reflecting improvements in the ocean tide model. However, RL04 shows continued alias contamination between the Ronne and Larson ice shelves, somewhat larger than in RL01, indicating a need for further tide model improvement in that region. For unknown reasons, the degree-2 zonal spherical harmonics (C20) of the RL04 solutions show significantly larger S2 aliasing errors than those from RL01.  相似文献   

6.
Carbon dioxide (CO2) is one of the major gases that contribute to the global warming. Therefore, studying the distribution of CO2 can help people understand the carbon cycle. Based on the GOSAT retrieved CO2 products, the temporal and spatial distribution and seasonal variation of CO2 concentration were analyzed from 2011 to 2015. CO2 concentration has obvious seasonal variation. It was low in summer, and was high in spring, and the annual increase was about 2 ppm. Nevertheless, the annual growth rate of CO2 concentration in summer was higher than that in spring, it was 0.5425% in summer and was 0.46% in spring. CO2 concentration was low in the northwest and was high in the southeast. The growth rate of CO2 was 2.8 ppm in the northwest and was 3.42 ppm in the southeast. More human’s activities made CO2 concentration higher in the southeast than that in other regions.  相似文献   

7.
We address the problem of estimating the carrier-to-noise ratio (C/N0) in weak signal conditions. There are several environments, such as forested areas, indoor buildings and urban canyons, where high-sensitivity global navigation satellite system (HS-GNSS) receivers are expected to work under these reception conditions. The acquisition of weak signals from the satellites requires the use of post-detection integration (PDI) techniques to accumulate enough energy to detect them. However, due to the attenuation suffered by these signals, estimating their C/N0 becomes a challenge. Measurements of C/N0 are important in many applications of HS-GNSS receivers such as the determination of a detection threshold or the mitigation of near-far problems. For this reason, different techniques have been proposed in the literature to estimate the C/N0, but they only work properly in the high C/N0 region where the coherent integration is enough to acquire the satellites. We derive four C/N0 estimators that are specially designed for HS-GNSS snapshot receivers and only use the output of a PDI technique to perform the estimation. We consider four PDI techniques, namely non-coherent PDI, non-quadratic non-coherent PDI, differential PDI and truncated generalized PDI and we obtain the corresponding C/N0 estimator for each of them. Our performance analysis shows a significant advantage of the proposed estimators with respect to other C/N0 estimators available in the literature in terms of estimation accuracy and computational resources.  相似文献   

8.
A study on seasonal and inter-annual variability of the atmospheric CO2 is carried out based on National Oceanic and Atmospheric Administration Carbon Tracker (NOAACT) re-analysis and satellite measurements of mid-troposphere CO2 by Atmosphere Infrared Sounder on board NASA’s Aqua and lower troposphere CO2 by Greenhouse-gas Observing Satellite. Seasonal and non-seasonal components of each time series were extracted by means of least square based harmonic analysis procedure. The data of surface CO2 fluxes used in the NOAACT are also analyzed to examine its relationship with the atmosphere CO2 variability at different time scales. There exists good consistency between NOAACT analysis and satellite observations in their respective seasonal harmonics and climatology. Surface layer CO2 exhibits large climatological mean over the regions of major anthropogenic sources together with strong seasonal cycle over the humid and cold climatic terrestrial regions especially over the northern hemisphere. Existence of high coherency with the different components of the surface fluxes shows that surface layer atmosphere CO2 seasonality is primarily contributed from the terrestrial ecosystem exchanges and secondarily by anthropogenic and oceanic exchanges. The mid-troposphere CO2 exhibits large values associated with climatology and amplitudes of semi-annual and annual cycles over the northern extra tropics and Polar Regions along with a gradual decreasing trend from northern to southern hemisphere. Inter-annual variability of atmospheric CO2 in the NOAACT in some extent is consistent with the satellite observations. Large scale circulation patterns, its fluctuations associated with ENSO events and large scale ecosystem disturbances have significant influence on the inter-annual variability.  相似文献   

9.
Unmodeled sub-daily ocean S2 tide signals that alias into lower frequencies have been detected in the analysis of gravity recovery and climate experiment (GRACE) space gravity fields of GRGS. The most significant global S2 aliased signal occurs off the northwest coast of Australia in a shallow continental shelf zone, a region with high tidal amplitudes at a period of 161 days. The GRACE S2 aliased equivalent water height grids are convolved with Green’s functions to produce GRACE aliased tidal loading (GATL) vertical displacements. The analysis of hourly global positioning system (GPS) vertical coordinate estimates at permanent sites in the region confirms the presence of spectral power at the S2 frequency when the same ocean tide model (FES2004) was used. Thus, deficiencies in the FES2004 ocean tide model are detected both directly and indirectly by the two independent space geodetic techniques. Through simulation, the admittance (ratio of amplitude of spurious long-wavelength output signal in the GRACE time-series to amplitude of unmodeled periodic signals) of the GRACE unmodeled S2 tidal signals, aliased to a 161-day period, is found to have a global average close to 100%, although with substantial spatial variation. Comparing GATL with unmodeled S2 tidal sub-daily signals in the vertical GPS time-series in the region of Broome in NW Australia suggests an admittance of 110–130%.  相似文献   

10.
A photosynthetic-sterility model for grain production monitoring has been developed and validated under the background of climate change and Asian economic growth in developing countries. This paper presents an application of the model to evaluate carbon-fixation rates in yields of paddy rice, winter wheat, and maize in Asia. The validation of the model is based on carbon partitioning in grain plants. The carbon hydrate in grains has the same chemical formula as that of cellulose in grain vegetation. The partitioning of carbon in plants can validate fixation amounts of computed carbon using a satellite-based photosynthesis model. The model estimates the photosynthesis fixation of rice reasonably in Japan and China. Results were validated through examination of carbon in grains, but the model tends to underestimate results for winter wheat and maize. This study also provides daily distributions of the PSN, which is the CO2 fixation in Asian areas combined with a land-cover distribution classified from MODIS data, NDVI from SPOT VEGETATION, and meteorological re-analysis data by European Centre for Medium-Range Forecasts (ECMWF). The mean CO2 and carbon fixation rates in paddy areas were 25.92 (t CO2/ha) and 5.28 (t C/ha) in Japan, respectively. Comparisons between the model’s values and MODIS seasonal PSNs show similar trends. The writers are preparing to compare computed photosynthesis rates with observed AsiaFlux data for the validation of this model at field sites of paddy, grassland and forests in Japan and Asian countries.  相似文献   

11.
A phytoplankton bloom was monitored in coastal waters of Bay of Bengal and its influence in water column properties was investigated. Significant draw down of CO2 was noted within the vicinity of the bloom associated with high chlorophyll biomass. Microscopic analysis revealed diatoms as the dominant population. Skeletonema costatum a diatom, reached cell density of 36,898 cells l?1 within the bloom. The lowest surface pCO2 observed was 287 µatm at the southern end of the transect covarying with surface chlorophyll of 1.090 µg l?1. At the northern end the surface pCO2 went as low as 313 µatm. The pCO2 levels below the mixed layer increased twice of that of surface value (~600 µatm). The chlorophyll values observed by Ocean Colour Monitor-2 were modestly related with the in situ measurements. The primary productivity derived from growth rate, assimilation number and maximum surface chlorophyll was 160.6 mg C m?2 day?1 leading to a modest sequestration ~of 0.08 Gg of carbon per day by the surface waters. Our observations reflects the potential role of diatom blooms on coastal carbon dynamics therefore should be carefully monitored in realm of anthropogenic changes.  相似文献   

12.
Land degradation is believed to be one of the most severe and widespread environmental problems. In South Africa, large areas of land have been identified as degraded, as shown by the lower vegetation cover. One of the major causes of grassland degradation is change in plant species composition that leads to presence of unpalatable grass species. Some grass species have been successfully used as indicators of different levels of grassland degradation in the country. This paper, therefore explores the possibility of mapping grassland degradation in Cathedral Peak, South Africa, using indicators of grass species and edaphic factors. Multispectral SPOT 5 data were used to produce a grassland degradation map based on the spatial distribution of decreaser (Themeda triandra) and increaser (Hyparrhenia hirta) species. To improve mapping accuracy, soil samples were collected from each species site and analysed for nutrient content. A t-test and machine learning random forest classification algorithm were applied for variable selection and classification using SPOT 5 data and edaphic variables. Results indicated that the decreaser and increaser grass species can be mapped with modest accuracy using SPOT 5 data (overall accuracy of 75.30%, quantity disagreement = 2 and allocation disagreement = 23). The classification accuracy was improved to 88.60%, 1 and 11 for overall accuracy, quantity and allocation disagreements, respectively, when SPOT 5 bands and edaphic factors were combined. The study demonstrated that an approach based on the integration of multispectral data and edaphic variables, which increased the overall classification accuracy by about 13%, is a suitable when adopting remote sensing to monitor grassland degradation.  相似文献   

13.
Crustal deformations caused by surface load due to ocean tides are strongly dependent on the surface load closest to the observation site. In order to correctly model this ocean loading effect near irregular coastal areas, a high-resolution coastline is required. A test is carried out using two GPS sites located in Alaska, where the ocean tide loading effect is large and consequently observed easily by relative positioning with GPS. The selected sites are Fair (Fairbanks) and Chi3 (located on an island that separates Prince William Sound from the Gulf of Alaska). Processing of hourly baseline solutions between Fair and Chi3 over a period of 49 days yields a significant ocean tide loading effect. The data are processed using different strategies for the tropospheric delay correction. However, the best results are obtained when 1-h ZTD (Zenith Tropospheric Delay) parameters for hourly solutions are used. In this case ocean tide loading is not absorbed into the ZTD parameters. Hence, ocean tide loading can be well resolved in the GPS data analysis. In addition, the M 2 ocean tide wave in the Gulf of Alaska has a very large amplitude. Although the horizontal M 2 ocean tide loading amplitude in general is only about 1/4 of the vertical M 2 ocean tide loading amplitude, the differential horizontal M 2 ocean tide loading displacements are nevertheless measurable using differential GPS (DGPS). When using the GOT99.2 ocean tide model and taking the coastal structure into account, the predicted differential vertical M 2 amplitude and Greenwich phase lag due to ocean tide loading are 19.3 mm and 110.2 degrees respectively, while GPS measurements yield 21.3 ± 1.0 mm and 99.7±2.8 degrees. Similarly, the predicted differential horizontal M 2 amplitude and Greenwich phase lag (in the north–south direction) are 4.5 mm and –77.0 degrees, while GPS yields 5.4 ± 0.3 mm and –106.3±3.3 degrees. Only the north-south component of the differential horizontal M 2 ocean tide loading wave is considered, because the east–west component is too small for the processed baseline and not detectable using DGPS.  相似文献   

14.
Socio‐demographic data are typically collected at various levels of aggregation, leading to the modifiable areal unit problem. Spatial non‐stationarity of statistical associations between variables further influences the demographic analyses. This study investigates the implications of these two phenomena within the context of migration‐environment associations. Global and local statistical models are fit across increasing levels of aggregation using household level survey data from rural South Africa. We raise the issue of operational scale sensitivity, which describes how the explanatory power of certain variables depends on the aggregation level. We find that as units of analysis (households) are aggregated, some variables become non‐significant in the global models, while others are less sensitive to aggregation. Local model results show that aggregation reduces spatial variation in migration‐related local associations but also affects variables differently. Spatial non‐stationarity appears to be the driving force behind this phenomenon as the results from the global model mask this relationship. Operational scale sensitivity appears related to the underlying spatial autocorrelation of the non‐aggregated variables but also to the way a variable is constructed. Understanding operational scale sensitivity can help to refine the process of selecting variables related to the scale of analysis and better understand the effects of spatial non‐stationarity on statistical relationships.  相似文献   

15.
Existing research on DEM vertical accuracy assessment uses mainly statistical methods, in particular variance and RMSE which are both based on the error propagation theory in statistics. This article demonstrates that error propagation theory is not applicable because the critical assumption behind it cannot be satisfied. In fact, the non‐random, non‐normal, and non‐stationary nature of DEM error makes it very challenging to apply statistical methods. This article presents approximation theory as a new methodology and illustrates its application to DEMs created by linear interpolation using contour lines as the source data. Applying approximation theory, a DEM's accuracy is determined by the largest error of any point (not samples) in the entire study area. The error at a point is bounded by max(|δnode|+M2h2/8) where |δnode| is the error in the source data used to interpolate the point, M2 is the maximum norm of the second‐order derivative which can be interpreted as curvature, and h is the length of the line on which linear interpolation is conducted. The article explains how to compute each term and illustrates how this new methodology based on approximation theory effectively facilitates DEM accuracy assessment and quality control.  相似文献   

16.
Three years of TOPEX/POSEIDON altimeter data have been processed at Delft Institute for Earth-Oriented Space Research (DEOS) to solve the major diurnal and semi-diurnal constituents of the global ocean tide using the two classical methods of tidal analysis, i.e. the harmonic and response analyses. Some experiments with the parameters in the response formalism show that the tidal admittance in both the diurnal and semi-diurnal band can be adequately described with a lag interval of 2 days and a number of lags of three. Results of both methods are evaluated from the differences with the most recent Grenoble hydrodynamic model (FES95.2) and from the fit with the harmonic constants of a globally distributed set of tide gauges. It was found that the solutions of the two methods differ at the millimeter level and are thus fully equivalent, which is confirmed by the tide gauges and the differences with FES95.2. From the comparisons with the Grenoble model it was found that the M 2 and S 2 solutions of that model likely contain bathymetric errors which are of the order of 1–2 cm for M 2 and 0.5 cm for S 2. Received: 18 December 1996 / Accepted: 12 May 1997  相似文献   

17.
Cotton aphid (Aphis gossypii) is considered as one of the most important agriculture pest for the cotton production. However, it is generally labor-intensive and time-consuming to obtain some information of Cotton aphid with conventional methods through direct measurement by sampling in the field. This study explores the potential of using a new method to obtain information of the Cotton aphid rapidly. In our study, the cotton canopy spectral indices (NDVI, VI_2, REDrefc, NIRrefc) and chlorophyll concentration, obtained from hand-held high spectrometer GreenSeeker and chlorophyll meter SPAD-502 and Cotton aphid amount derived from the artificial field-based survey were used to uncover the relationship between Cotton aphid amount and canopy spectral index and SPAD value of the cotton in city of Shihezi, China. The results showed that NDVI and NIRrefc were negatively related to Cotton aphid amount. VI_2 content had a significant and positive relationship with its amount. The non-linear three cubic models with alate Aphid amount as independent variables have been established between VI_2 value and alatae Aphid amount, which could explain 92.37 % of VI_2 value variance. SPAD values were also significantly and negatively correlated to the Aphid amount. The non-linear logarithm model with wingless Aphid amount as independent variables was the best for uncovering the relationship between SPAD value and wingless Aphid amount, which could explain 85.48 % of SPAD value variance. The results demonstrate the establishment of the function model provides a theoretical basis and techniques for indirect and rapid monitoring and management of Cotton aphid.  相似文献   

18.
International compilations of marine gravity, such as the International Gravity Bureau (BGI) contain tens of millions of point data. Lemoine et al. (The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, NASA/TP-1998-206861) chose not to include any marine gravity in the construction of the global gravity model EGM96. Instead they used synthetic anomalies derived from altimetry, so that no independent information about Mean Dynamic Topography (MDT) can be deduced. Software has been developed not only to identify and correct those aspects of marine gravity data that are unreliable, but to do so in a way that can be applied to very large, ocean-wide data sets. First, we select only straight-line parts of ship-tracks and fit each one with a high-degree series of Chebyshev polynomials, whose misfit standard deviation is σ line and measures the random error associated with point gravity data. Then, network adjustment determines how the gravity datum is offset for each survey. A free least squares adjustment minimises the gravity anomaly mismatch at line-crossing points, using σ line to weight the estimate for each line. For a long, well crossed survey, the instrumental drift rate is also adjusted. For some 42,000 cross-over points in the northern Atlantic Ocean, network adjustment reduces the unweighted standard deviation of the cross-over errors from 4.03 to 1.58 mGal; when quality weighted, the statistic reduces from 1.32 to 0.39 mGal. The geodetic MDT is calculated combining the adjusted gravity anomalies and satellite altimetry, and a priori global ocean model through a new algorithm called the Iterative Combination Method. This paper reports a first demonstration that geodetic oceanography can characterise the details of basin wide ocean circulation with a resolution better than global ocean circulation models. The result matches regional models of ocean circulation from hydrography measurements (Geophys Res Lett 29:1896, 2002; J Geophys Res 108:3251, 2003).  相似文献   

19.
A function having some properties of a wavelet and being harmonic around a given point in R 3 is defined, and three models showing the local relationships between the disturbing density, the disturbing potential and the disturbing gravity are established by using the function as the kernel function of the integrals in the models. The local relationship has two meanings. One is that we can evaluate with a high accuracy the integrals in the models by using mainly high-accuracy and high-resolution data in a local area. The other is that we can obtain a stable solution with high resolution when we invert the integrals in the models because of the rapid decrease of the kernel function of the integrals. As a result, with these models we evaluate one quantity with high resolution, in a band limited by the maximum degree of a set of geopotential coefficients or by the resolution (spacing) of the local data, from another quantity (or quantities) in a local area, and the resulting solution is stable. Received: 6 April 1998 / Accepted: 16 June 1999  相似文献   

20.
The study to establish the optimum time span for distinguishing Avena ludoviciana from wheat crop based on their spectral signatures was carried out at Student’s Research Farm, Department of Agronomy during 2006–07 and 2007–08. The experimental sites during both the seasons were sandy loam in texture, with normal soil reaction and electrical conductivity, low in organic carbon and available nitrogen and medium in available phosphorus and potassium. The experiment was laid out in randomized block design with four replications and consisting of twelve treatments comprising 0, 10, 15, 25, 50, 75, 100, 125, 150, 200, 250 plants m−2 and a pure Avena ludoviciana plot (Tmax). The results revealed that in all the treatments irrespective of wheat and weeds, the red reflectance (%) value decreased from 34 to 95 DAS (days after sowing) in 2006–07 and 45 DAS to 100 DAS during 2007–08, and thereafter a sharp increase was observed in all the treatments. This trend might be due to increased chlorophyll index after 34 DAS as red reflectance was reduced by chlorophyll absorption. Among all the treatments, Tmax (Pure Avena ludoviciana plot) had the highest red reflectance and T0 (Pure wheat plot) had a lowest value of red reflectance during both the years. The highest value of IR reflectance was obtained at 95 DAS (2006–07) and 70 DAS (2007–08) in all the treatments. IR reflectance of wheat crop ranged between 24.61 and 61.21 per cent during 2006–07 and 27.33 and 67.3 per cent during 2007–08. However, IR reflectance values declined after 95 DAS and 70 DAS up to harvesting during 2006–07 and 2007–08. This lower reflectance may have been due to the onset of senescence. The highest RR and NDVI values were recorded under pure wheat treatment and minimum under pure weed plots. This may be due to dark green colour and better vigor of the wheat as compared to Avena ludoviciana. It was observed that by using RR and NDVI, pure wheat can be distinguished from pure populations of Avena ludoviciana after 34 DAS and different levels of weed populations can be discriminated amongst themselves from 68 DAS up to 107 DAS during both the years of investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号