首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The ground-water flow system in the Lower Susquehanna River Basin in Pennsylvania and Maryland can be considered as one complex unconfined aquifer in which secondary porosity and permeability are the dominant influences on the occurrence and flow of ground water. The degree of development of secondary porosity and permeability in the various lithologies of the lower basin determines the aquifer characteristics of each lithology. Based on qualitative evidence, the use of a porous-media model was assumed to be appropriate on a regional scale and a finite-difference ground-water flow model was constructed for the lower basin. The conceptual model of ground-water flow in the lower basin incorporates the major features of the flow system. Through the use of two layers, 21 hydrogeologic units, and five topographic settings, the conceptual model was systematically reduced to arrive at a simplified conceptual model. Further reduction produced a numerical model representation of the conceptual model, in which the essential features of the lower-basin flow system were quantified for input into the numerical model. The model was calibrated under both steady-state and transient conditions, and was used to evaluate the water-supply potential of the 21 hydrogeologic units. The carbonate units have the greatest potential for ground-water development and the Triassic sedimentary and crystalline units have the least potential. A total ground-water yield potential of about 900 million gallons per day could be obtained from the lower basin with a consequent 50-percent reduction of base flow in streams.  相似文献   

2.
Studies of the geology, geochemistry of thermal waters, and of one exploratory geothermal well show that two related hot spring systems discharge in Canõn de San Diego at Soda Dam (48°C) and Jemez Springs (72°C). The hot springs discharge from separate strands of the Jemez fault zone which trends northeastward towards the center of Valles Caldera. Exploration drilling to Precambrian basement beneath Jemez Springs encountered a hot aquifer (68°C) at the top of Paleozoic limestone of appropriate temperature and composition to be the local source of the fluids in the surface hot springs at Jemez Springs. Comparisons of the soluble elements Na, Li, Cl, and B, arguments based on isotopic evidence, and chemical geothermometry indicate that the hot spring fluids are derivatives of the deep geothermal fluid within Valles Caldera. No hot aquifer was discovered in or on top of Precambrian basement. It appears that low- to moderate-temperature geothermal reservoirs (< 100°C) of small volume are localized along the Jemez fault zone between Jemez Springs and the margin of Valles Caldera.  相似文献   

3.
Run‐off transmission loss into karstified consolidated aquifer bedrock below ephemeral streams (wadis) has rarely been described nor quantified. This study presents unique data of long‐term high‐resolution field measurements and field observations in a semiarid to subhumid Mediterranean carbonatic mountainshed. The catchment with a 103 km2 surface area is subdivided into 5 subcatchments. Coupled run‐off measurements were made in the different stream sections (reaches), and transmission loss calculated from differences in discharge. Rainfall and run‐off observations from 9 automated precipitation gauging stations and 5 pressure transducers for automatic water level recording are complemented by manual measurements during 34 run‐off events covering a total measurement period of 8 consecutive years. Run‐off generation is strongly event based depending on rainfall intensities and depths. Both, run‐off generation and transmission losses are related to spatial patterns of bedrock lithologies (and hydrostratigraphy). Transmission losses range between 62% and 80% of generated run‐off, with most of the smaller events showing 100% transmission loss. Therefore, although event run‐off coefficients in the mountains can reach up to 22%, only 0.11% of total annual precipitation leaves the catchment as run‐off. Most run‐off infiltrates directly into the regional karst aquifers (Upper Cretaceous carbonate series), with transmission loss intensities of up to 40 mm/h below the stream channels. The factors determining run‐off—such as geology, pedology, vegetation cover and land use, relief and morphology, the semiarid to subhumid Mediterranean climate with a strong elevation gradient, and the patchiness of individual storm events distributed over the winter seasons—as well as the lithology and epikarst features of the bedrock are all characteristic for larger areas in the Mediterranean region. Therefore, we expect that our findings can be generalized to a large extent.  相似文献   

4.
In variably confined carbonate platforms, impermeable confining units collect rainfall over large areas and deliver runoff to rivers or conduits in unconfined portions of platforms. Runoff can increase river stage or conduit heads in unconfined portions of platforms faster than local infiltration of rainfall can increase groundwater heads, causing hydraulic gradients between rivers, conduits and the aquifer to reverse. Gradient reversals cause flood waters to flow from rivers and conduits into the aquifer where they can dissolve limestone. Previous work on impacts of gradient reversals on dissolution has primarily emphasized individual caves and little research has been conducted at basin scales. To address this gap in knowledge, we used legacy data to assess how a gradient of aquifer confinement across the Suwannee River Basin, north‐central Florida affected locations, magnitudes and processes of dissolution during 2005–2007, a period with extreme ranges of discharge. During intense rain events, runoff from the confining unit increased river stage above groundwater heads in unconfined portions of the platform, hydraulically damming inputs of groundwater along a 200 km reach of river. Hydraulic damming allowed allogenic runoff with SICAL < ?4 to fill the entire river channel and flow into the aquifer via reversing springs. Storage of runoff in the aquifer decreased peak river discharges downstream and contributed to dissolution within the aquifer. Temporary storage of allogenic runoff in karst aquifers represents hyporheic exchange at a scale that is larger than found in streams flowing over non‐karst aquifers because conduits in karst aquifers extend the area available for exchange beyond river beds deep into aquifers. Post‐depositional porosity in variably confined carbonate platforms should thus be enhanced along rivers that originate on confining units. This distribution should be considered in models of porosity distribution used to manage water and hydrocarbon resources in carbonate rocks. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The effects of basin hydrology on hydraulic geometry of channels variability for incised streams were investigated using available field data sets and models of watershed hydrology and channel hydraulics for the Yazoo River basin,USA.The study presents the hydraulic geometry relations of bankfull discharge,channel width,mean depth,cross-sectional area,longitudinal slope,unit stream power,and mean velocity at bankfull discharge as a function of drainage area using simple linear regression.The hydraulic geometry relations were developed for 61 streams,20 of them are classified as channel evolution model(CEM) Types Ⅳ and Ⅴ and 41 of them are CEM streams Types Ⅱ and Ⅲ.These relationships are invaluable to hydraulic and water resources engineers,hydrologists,and geomorphologists involved in stream restoration and protection.These relations can be used to assist in field identification of bankfull stage and stream dimension in un-gauged watersheds as well as estimation of the comparative stability of a stream channel.A set of hydraulic geometry relations are presented in this study,these empirical relations describe physical correlations for stable and incised channels.Cross-sectional area,which combines the effects of channel width and mean channel depth,was found to be highly responsive to changes in drainage area and bankfull discharge.Analyses of cross-sectional area,channel width,mean channel depth,and mean velocity in conjunction with changes in drainage area and bankfull discharge indicated that the channel width is much more responsive to changes in both drainage area and bankfull discharge than are mean channel depth or mean velocity.  相似文献   

6.
美国南加州洛杉矶地区是自然和人为活动引起的地质构造活跃、石油及地下水抽取和回灌频繁的区域.本文利用19景ENVISAT ASAR降轨影像生成了71幅垂直基线小于300 m、时间间隔小于3年的解缠差分干涉图,并基于短基线集技术(SBAS),GPS和地下水水位数据估计了该区域2003年9月~2009年8月的地表时序形变及含水层贮水系数等物理参数.研究结果表明:(1)在InSAR干涉图中可以清楚的识别多处沉降明显的区域.例如,主要由于含水层地下水的抽取与回灌引起地表沉降的Pasadena盆地(~-2.5 cm/a)、San Gabriel流域(~-2 cm/a)、San Bernardino盆地(~-2.5 cm/a)、Pomona-Ontario盆地(~-4 cm/a)和Santa Ana盆地(~-2.5 cm/a),以及由石油抽取引起地面形变的Santa Fe Springs区域(~-1 cm/a)和Wilmington区域(~-1 cm/a)等;(2)InSAR时间序列形变与GPS投影在雷达视线方向上的形变结果具有较高的一致性,平均形变速率差异的均方差为0.39 cm/a;(3)InSAR时间序列形变与含水层地下水位的变化基本一致,并基于相关理论计算出了含水层的弹性贮水系数和非弹性贮水系数,分析了含水层的形变机理.  相似文献   

7.
Groundwater discharge along a channelized Coastal Plain stream   总被引:1,自引:1,他引:0  
In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffuse discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.  相似文献   

8.
四川西昌1850年地震地表破裂特征研究   总被引:8,自引:7,他引:8       下载免费PDF全文
任金卫  李坪 《地震地质》1993,15(2):97-106,T002
本文对则木河断裂带上各种地震地表破裂现象作了调查和时代方面的研究,结果表明,1850年西昌地震在西昌北的李金堡至宁南的松新间形成了长达90km的地震形变带。地震位错的最大水平位移为7m,垂直位移一般为0.5~2m,对地震形变带中的各种变形遗迹和地震地表破裂特征的研究表明,则木河断裂是这次地震的发震构造,震中位于大箐梁子一带,震中烈度达Ⅹ~Ⅺ。地震破裂的力学性质为左旋扭张,与则木河断裂晚第四纪以来的活动一致。地震破裂具有向南突出发展的不对称特点  相似文献   

9.
Abstract

Four geoelectrical soundings were measured with a combination of Schlumberger and azimuthal or equatorial dipole electrode arrays on a Carboniferous limestone basin of the Condroz area, Belgium. The measuring technique is briefly outlined as well as the interpretation procedure, which follows a closed-loop scheme with control of calculated model curves. Some general problems of interpretation of geoelectrical sounding curves are tackled, as far as they have a practical bearing on the treatment of Condroz soundings.

The problem of determining the very high resistivity of limestone is approached through ARCHIE's formula, an empirical relation between the bulk rock resistivity, the porosity and the electrolyte resistivity. An evaluation of the latter two parameters, combined with electrical horizontal conductance measurements directly made on resistivity sounding curves, offers a possibility for fast determination of the total water storage in a limestone aquifer. Such storage determinations could be applied whenever an aquifer shows up as a conductive layer interbedded between two highly resistant layers (e.g. nonsaturated limestone and compact, non-fractured limestone).  相似文献   

10.
The quantitative analysis of morphologic characteristics of bedrock fault surface is a useful approach to study faulting history and identify paleo-earthquake. It is an effective complement to trenching technique, specially to identifying paleo-earthquakes in a bedrock area where the trenching technique cannot be applied. This paper focuses on the Luoyunshan piedmont fault, which is an active normal fault extending along the eastern boundary of the Shanxi Graben, China. There are a lot of fault scarps along the fault zone, which supply plentiful samples to be selected to our research, that is, to study faulting history and identify paleo-earthquakes in bedrock area by the quantitative analysis of morphologic characteristics of fault surfaces. In this paper, we calculate the 2D fractal dimension of two bedrock fault surfaces on the Luoyunshan piedmont fault in the Shanxi Graben, China using the isotropic empirical variance function, which is a popular method in fractal geometry. Results indicate that the fractal dimension varies systematically with height above the base of the fault surface exposures, indicating segmentation of the fault surface morphology. The 2D fractal dimension on a fault surface shows a ‘stair-like’ vertical segmentation, which is consistent with the weathering band and suggests that those fault surfaces are outcropped due to periodic faulting earthquakes. However, compared to the results of gneiss obtained by the former researchers, the characteristic fractal value of limestone shows an opposite evolution trend. 1)The paleo-earthquake study of the bedrock fault surface can be used as a supplementary method to study the activity history of faults in specific geomorphological regions. It can be used to fill the gaps in the exploration of the paleo-earthquake method in the bedrock area, and then broaden the study of active faults in space and scope. The quantitative analysis of bedrock fault surface morphology is an effective method to study faulting history and identify paleo-earthquake. The quantitative feature analysis method of the bedrock fault surface is a cost-effective method for the study of paleo-earthquakes in the bedrock fault surface. The number of weathered bands and band height can be identified by the segment number and segment height of the characteristic fractal dimension, and then the paleoearthquake events and the co-seismic displacement can be determined; 2)The exposure of the fault surface of the Luoyunshan bedrock is affected and controlled by both fault activity and erosion. A strong fault activity(ruptured earthquake)forms a segment of fault surface which is equivalent to the vertical co-seismic displacement of the earthquake. After the segment is cropped out, it suffers from the same effect of weathering and erosion, and thus this segment has approximately the same fractal dimension. Multiple severe fault activities(ruptured earthquake)form multiple fault surface topography. The long-term erosion under weak hydrodynamic conditions at the base of the fault cliff between two adjacent fault activities(intermittent period)will form a gradual slow-connect region where the fractal dimension gradually changes with the height of the fault surface. Based on the segmentation of quantitative morphology of the two fault surfaces on the Luoyunshan piedmont fault, we identified four earthquake events. Two sets of co-seismic displacement of about 3m and 1m on the fault are obtained; 3)The relationship between the fault surface morphology parameters and the time is described as follows:The fractal dimension of the limestone area decreases with the increase of the exposure time, which reflects the gradual smoothing characteristics after exposed. The phenomenon is opposite to the evolution of the geological features of gneiss faults acquired by the predecessors on the Huoshan piedmont fault; 4)Lithology plays an important role in morphology evolution of fault surface and the two opposite evolution trends of the characteristic fractal value on limestone and gneiss show that the weathering mechanism of limestone is different from that of the gneiss.  相似文献   

11.
Abstract Field, geochemical and geophysical evidence show that the southern Zambales Ophiolite Complex attained its present-day configuration through the juxtapositioning of an arc terrane (San Antonio massif) to a back-arc crust (Cabangan massif). The San Antonio massif manifests island arc-related characteristics (i.e. spinel XCr [Cr/(Cr + Al)] >0.60; mostly plagioclase An92–95; pyroxene crystallizing ahead of plagioclase; orthopyroxene as an early, major crystallizing phase) which cannot be directly parental to the Cabangan massif transitional mid-ocean ridge basalt to island arc tholeiitic volcanic carapace. The two massifs are believed to be separated by a left-lateral strike–slip fault, the Subic Bay Fault Zone. Apart from the presence of highly sheared, allochthonous outcrops, the Subic Bay Fault Zone is generally defined by northwest–southeast trending magnetic and bouguer anomalies. The San Antonio massif was translated southward from the northern part of the Zambales Ophiolite Complex through the Subic Bay Fault Zone. This resulted into its suturing with the Cabangan massif and could have led to the formation of the present-day Subic Bay.  相似文献   

12.
程绍平  杨桂枝 《地震地质》1994,16(4):346-354
通过1个探槽记录、3个地质学剖面、7个晚更新世沉积物表面断层崖形态学剖面和15个放射性测年数据,论述了延庆盆地北缘断裂带蚕房营段的晚更新世晚期断层作用。这些资料显示出该时期内的两次断层作用事件:最近的一次发生在9870±130~11800±1100aB.P.之间,最早不超过13200±l100aB.P.;较早一次的发生时间为19850±1550aB.P.。一次事件的位移量3.34~3.64m,两次事件之间的重复间隔9980a。大约自21050±1600aB.P.以来的垂直位移速度计算为0.31~0.34mm/a。蚕房营段的晚更新世晚期的断层作用,以较大的表面位移量和较长的重复间隔为特征。全新世没有类似的断层作用事件  相似文献   

13.
The Yuguang basin is a half-graben basin in the basin-range tectonic zone in northwest Beijing, located at the northern end of the Shanxi graben system, and the Yuguang basin southern marginal fault (YBSMF) controls the formation of this basin. A linear fault escarpment has formed in the proluvial fan on the piedmont fault zone of the Tangshankou segment of YBSMF. A trench across this escarpment reveals three paleo-earthquake events on two active faults. One fault ruptured at about 9ka for the first time, and then faulted again at about 7.3ka, causing the formation and synchronous activity of another fault. Finally, they faulted for the third time, but we cannot determine the faulting time due to the lack of relevant surface deposition. The accumulative vertical displacement of these three events is about 8.1m. We estimate that the average recurrence period of the piedmont fault is about 1.7ka, and the average slip rate of the piedmont fault is about 1.6mm/a. We also estimate the reference magnitude of each event according to the empirical formula.  相似文献   

14.
东秦岭铁炉子断裂的新活动特征   总被引:3,自引:0,他引:3       下载免费PDF全文
描述了东秦岭山地铁炉子断裂新活动的方式、表现以及断裂所在地区的新构造应力场。从河流阶地所反映的断裂在水平方向和垂直方向上的错距和错动速率看 ,铁炉子断裂的新活动主要表现为左旋走滑活动 ,其水平活动规模比垂直活动大一个数量级 ;该断裂垂直活动比较明显的地方是沿盆地发育的地段 ;断裂活动有加速的趋势。铁炉子断裂的新活动方式很可能是由于印度板块向北碰撞挤入欧亚板块及由此造成青藏高原隆起 ,使中国东部地块向东或东南方向差异性滑移的结果  相似文献   

15.
基于钻探的芦花台隐伏断层晚第四纪活动特征   总被引:1,自引:0,他引:1  
The Luhuatai fault is one of the important buried tectonics in the Yinchuan basin. Based on the results of shallow seismic exploration, we conducted composite drilling section exploration and dating of the samples from boreholes. Some useful data was obtained, such as the depth of the upper breaking point, the latest activity age, displacement in the late Quaternary, and slip rates, etc. This study shows that the activity is different between the north and south segment along the Luhuatai fault. The north segment is a Holocene fault, while the south segment is a late mid-Pleistocene fault. From north to south along the north segment of Luhuatai fault, the activity has been enhanced, and the faulting is stronger in late Pleistocene than Holocene.  相似文献   

16.
海阳断裂是胶东半岛NE向牟平 -即墨断裂带东部一条规模较大的断裂 ,尽管晚更新世以来该断裂的地表断错活动总体上已基本停息 ,但东石兰沟段在晚更新世晚期以来仍有断错地表的活动。最后一次断错地表的活动发生在距今 3 7~ 1 2万年 ,但接近 1 2万年。地表破裂长度约6 5km ,活动段长度 8km。地表断错以走滑活动为主 ,可见最大倾滑位移 0 2m ;根据断层擦痕侧伏角推测最大水平位移 1 13m。最后一次断错地表的活动若以距今 1 2万年计算 ,则最大平均倾滑速率为 0 0 17mm/a ;最大平均右旋走滑速率为 0 0 94mm/a。野外观测到该活动段的断错活动表现为突发断错 ,根据地震地表破裂参数、活动段长度与地震的关系 ,估计其最大潜在地震为 6 级  相似文献   

17.
The extent to which movement on major faults causes long term shear heating is a contentious issue and an important aspect in the debate about the strength of major faults in the crust. Comparing the results of experimental work on the kinetics of crystallization of carbonaceous material with results of thermal modeling show that the Raman carbonaceous material (CM) geothermometer is well suited to studying shear heating on geological time scales in suitable lithologies exposed around exhumed major fault zones. The Median Tectonic Line (MTL), SW Japan, is the largest on‐land fault in Japan with a length of > 800 km. Application of Raman CM thermometry to pelitic schist adjacent to the fault reveals the presence of a rise in peak temperature of around 60 °C over a distance of around 150 m perpendicular to the MTL fault plane. The spatial association of this thermal anomaly with the fault implies it is due to shear heating. Thermal modeling shows the recorded thermal anomaly and steep temperature gradient is compatible with very high rates of displacement over time scales of a few thousand years. However, the implied displacement rates lie outside those generally observed. An alternative explanation is that an originally broader thermal anomaly that developed during strike slip faulting was shortened due to the effects of normal faulting. Constraints on displacement rate, width of the original anomaly, duration of heating and peak temperature imply a coefficient of friction, μ, greater than 0.4.  相似文献   

18.
Strike-slip faults and normal faults are dominant active tectonics in the interior of Tibetan plateau and control a series of basins and lakes showing extension since the Late Cenozoic, by contrast with the thrust faulting along the orogenic belts bordering the plateau. The late Neotectonic movement of those faults is key information to understand the deformation mechanism for Tibetan plateau. The Gyaring Co Fault is a major active right-lateral strike-slip fault striking~300° for a distance of~240km in central Tibet, in south of Bangong-Nujiang suture zone. The Gyaring Co Fault merges with the north-trending Xainza-Dinggye rift near the southern shore of Gyaring Co. From NW to SE, Dongguo Co, Gemang Co-Zhangnai Co, Zigui Co-Gyaring Co form the Gyaring Co fault zonal drainage basin. Some scholars have noticed that the formation of lakes and basins may be related to strike-slip faults and rift, but there is no analysis on the Gyaring Co fault zonal drainage basin and its response to regional tectonics. In recent years, a variety of quantitative geomorphic parameters have been widely used in the neotectonic systems to analyze the characteristics of the basin and its response mechanism to the tectonic movement. In this paper, we applied ASTER GDEM data on the ArcGIS platform, extracted the Gyaring Co fault zonal drainage basin based on Google Earth images (Landsat and GeoEye) and field work. We acquired basic geomorphic parameters of 153 sub-basin (such as grade, relief, average slope, area) and Hypsometric Index (HI) value and curve. Statistical results have indicated significant differences in scale(area and river network grade)in north and south sides of the fault. Southern drainage basins' relief, slope, HI value are higher than the northern basins, and the overall shape of hypsometric curve of northern basins are convex compared with southern concavity. Along the strike of the Gyaring Co Fault, average slope, and HI value are showing generally increasing trending and hypsometric curve become convex from west to east. By comparing and analyzing the lithology and rainfall conditions, we found that they have little influence on the basic parameters and HI value of drainage basins. Therefore, the changes of basin topographic differences between northern and southern side of fault and profile reveal the Gyaring Co Fault has experienced differential uplift since the late Cenozoic, southern side has greater uplift compared to the north side, and the uplift increased from NW to SE, thus indicate that normal faulting of the Gyaring Co Fault may enhanced by the Xainza-Dinggye rift. The early uplift of the Gangdise-Nyainqentanglha Mountain in late Cenozoic might provide northward inclined pre-existing geomorphic surfaces and the later further rapid uplift on the Gangdise-Nyaingentanglha Mountain and Xainza-Dinggye rift might contribute to the asymmetrical development of the Gyaring Co fault zonal drainage basin.  相似文献   

19.
We present a summary of the methodology for probabilistic fault displacement hazard and discuss the types of data needed for the analysis. The methodology is based on the widely used formulation for probabilistic assessment of ground shaking hazard. We distinguish between principal faulting, ruptures occurring on the fault producing the earthquake, and distributed faulting, ruptures occurring on secondary features around the principal rupture. Data needed for assessments of principal fault displacement hazard are now commonly collected as part of post-earthquake studies and can be compiled and analyzed for this application. Data needed for assessments of distributed fault displacement hazard are collected only sporadically at present.  相似文献   

20.
We present explicit analytical solutions to problems of steady groundwater flow to a pumping well in an aquifer divided by an infinite, linear fault. The transmissivity of the aquifer is allowed to jump from one side of the fault to the other to model the juxtaposition of host rocks with different hydrologic properties caused by faulting. The fault itself is represented as a thin anisotropic inhomogeneity; this allows the fault to act as a combined conduit–barrier to groundwater flow, as is commonly described in the literature. We show that the properties of the fault may be represented exactly by two lumped parameters—fault resistance and fault conductance—and that the effects of the fault on flow in the adjacent aquifer is independent of the fault width. We consider the limiting cases of a purely leaky and a purely conductive fault where the fault domain may be replaced exactly by internal boundary conditions, and we investigate the effects of fault properties on the flow behavior in the adjacent aquifers. We demonstrate that inferring fault properties based on field observations of head in the aquifer is inherently difficult, even when the fault may be described by one of the two limiting cases. In particular, the effects of a leaky fault and a conductive fault on heads and discharges in the aquifer opposite the fault from the well, are shown to be identical in some cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号