首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 811 毫秒
1.
We analyse data obtained by different ground-based video camera systems during the 1999 Leonid meteor storm. We observe similar activity profiles at nearby observing sites, but significant differences over distances in the order of 4,000 km. The main peak occured at 02:03 UT (λ=235.286, J2000, corrected for the time of the topocentric stream encounter). At the Iberian peninsula quasi-periodic activity fluctuations with a period of about 7 min were recorded. The camera in Jordan detected a broad plateau of activity at 01:39–01:53 UT, but no periodic variations. The Leonid brightness distribution derived from all cameras shows a lack of faint meteors with a turning point close to +3m, which corresponds to meteoroids of approximately 10-3 g. We find a pin-point radiant at αalpha=153.65 ±0.1, δ=21.80 ±0. (λ=235.290). The radiant positionis identical before and after the storm, and also during the storm no driftis observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
There are two types of active longitudes (ALs) in terms of the distribution of sunspot areas: long-lived and intra-cyclic ALs. The rotation period of the long-lived ALs has been determined by a new method in this paper. The method is based on the property of ALs to be maintained over several cycles of solar activity. The daily values of sunspot areas for 1878 – 2005 are analyzed. It is shown that the AL positions remain almost constant over a period of about ten cycles, from cycle 13 to cycle 22. The rotation period was found to be 27.965 days during this period. The dispersion in AL positions is about 26° from cycle to cycle, which is half of the dispersion observed in the Carrington system. The ALs in the growth phase of the activity cycle are more stable and pronounced. The excess in solar activity in the ALs over adjacent longitudinal intervals is about 12 – 14%. It is shown that only one long-lived AL can be observed at one time on the Sun, as a rule.  相似文献   

3.
K. J. Li  Q. X. Li  T. W. Su  P. X. Gao 《Solar physics》2006,239(1-2):493-501
The periodicity of high-latitude solar activity has been studied with the use of the Carte Synoptique solar filaments archive. The Morlet wavelet is utilized to analyze the periodicity of the number of solar filaments at latitudes over 50° during Carrington solar rotations 876 – 1823. For solar filaments at latitudes over 50°, the most eminent periods are about 10.23 and 10.90 years, which correspond to the Schwabe period of high-latitude solar activity, and the these periods make-up a highly significant proportion of the time span considered. The periods of 1.3 and 1.7 years and the quasi-biennial 2 – 3-year oscillation often mentioned in the literature are not found to be a feature of every solar cycle but seem to appear only from time to time.  相似文献   

4.
The detection of 2009 Leonid, Perseid and Geminid meteor showers over Agartala, Tripura, India (Lat: 23.0° N, Long: 91.4° E) will be reported here by using two VLF receivers tuned to subionospheric transmitted VLF signals at the frequency 16.4 kHz from Aldra Island, Norway (Lat: 66.42° N, Long: 13.13° E) and the other at 18.2 kHz from Vijayananarayanam, India (Lat: 8.4° N; Long: 77.7° E). The received signals exhibited their peak values on November 17, 2009 when ZHR (Zenithal Hourly Rate) was highest. Some typical variations which are observed in the records of amplitude during the 2009 Leonid, Perseid and Geminid meteor showers will be presented in this paper.  相似文献   

5.
Enhanced Taurid activity in terms of visual meteor and fireball rates has been found in 1988, 1991, 1995, 1998 and 2005 data. The years of heightened activity are shown to be unequivocally linked to the encounters of swarms of resonantly trapped particles in the Taurid meteoroid stream according to the model proposed by Asher & Clube. While the annual activity level of the Taurid meteor shower in terms of zenithal hourly rate  (ZHR) is 7.8 ± 1.2  , swarm year activity typically reaches ZHRs of 12–17. The annual fraction of fireballs is below 1 per cent; in swarm years, this fraction is as high as 2.4–4.6 per cent near the maximum of the Taurid activity period.  相似文献   

6.
A comprehensive set of 612 h of visual meteor observations with a total of 29 077 Geminid meteors detected was analysed. The shower activity is measured in terms of the Zenithal Hourly Rate (ZHR). Two peaks are found at solar longitudes     and     with  ZHR = 126 ± 4  and  ZHR = 134 ± 4  , respectively. The physical quantities of the Geminid meteoroid stream are the mass index and the spatial number density of particles. We find a mass index of   s ≈ 1.7  and two peaks of spatial number density  234 ± 36  and  220 ± 31  particles causing meteors of magnitude +6.5 and brighter in a volume of 109 km3, for the two corresponding ZHR maxima. There were  0.88 ± 0.08  and  0.98 ± 0.08  particles with masses of 1 g or more in the same volume during the two ZHR peaks. The second of the two maxima was populated by larger particles than the first one. We compare the activity and mass index profiles with recent Geminid stream modelling. The comparison may be useful to calibrate the numerical models.  相似文献   

7.
We have performed a survey of the characteristics of two types of large spatial-scale solar-wind structures, stream interaction regions (SIRs), and interplanetary coronal mass ejections (ICMEs), near 5.3 AU, using solar-wind observations from Ulysses. Our study is confined to the three aphelion passes of Ulysses, and also within ± 10° of the solar ecliptic plane, covering a part of 1992, 1997 – 1998, and 2003 – 2005, representing three slices of different phases of the solar activity cycle. Overall, there are 54 SIRs and 60 ICMEs in the survey. Many are merged in hybrid events, suggesting that they have undergone multiple interactions prior to reaching Jovian orbit. About 91% of SIRs occur with shocks, with 47% of such shocks being forward – reverse shock pairs. The solar-wind velocity sometimes stays constant or even decreases within the interaction region near 5.3 AU, in contrast with the gradual velocity increase during SIRs at 1 AU. Shocks are driven by 58% of ICMEs, with 94% of them being forward shocks. Some ICMEs seem to have multiple small flux ropes with different scales and properties. We quantitatively compare various properties of SIRs and ICMEs at 5.3 AU, and study their statistical distributions and variations with solar activity. The width, maximum dynamic pressure, and peak perpendicular pressure of SIRs all become larger than ICMEs. Dynamic pressure (P dyn) is expected to be important for Jovian magnetospheric activity. We have examined the distributions of P dyn of SIRs, ICMEs, and general solar wind, but these cannot explain the observed bimodal distribution of the location of the Jovian magnetopause. By comparing the properties of SIRs and ICMEs at 0.72, 1, and 5.3 AU, we find that the ICME expansion slows down significantly between 1 and 5.3 AU. Some transient and small streams in the inner heliosphere have merged into a single interaction region. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

8.
A database combining information about solar proton enhancements (SPEs) near the Earth and soft X-ray flares (GOES measurements) has been used for the study of different correlations through the period from 1975 to May 2006. The emphasis of this work is on the treatment of peak-size distributions of SXR flares and SPEs. The frequency of SXR flares and solar proton events (>10 and >100 MeV, respectively) for the past three solar cycles has been found to follow mainly a power-law distribution over three to five orders of magnitude of fluxes, which is physically correct beyond the “sensitivity” problem with the smallest peak values. The absence of significant spectral steepening in the domain of the highest peak values demonstrates that during the period considered, lasting 30 years, the limit of the highest flare’s energy release has not yet been achieved. The power-law exponents were found to be −2.19±0.04, −1.34±0.02, and −1.46±0.04, for the total SXR flare distribution and the total SPE distributions (for both E P>10 MeV and E P>100 MeV), respectively. For SPEs associated with flares located to the West of 20° W, the exponents are −1.22±0.05 (E P>10 MeV) and −1.26±0.03 (E P>100 MeV). The size distribution for corresponding flares follows a power law with a slope of −1.29±0.12. Thus, X-ray and proton fluxes produced in the same solar events have very similar distribution shapes. Moreover, the derived slopes are not incompatible with a linear dependence between X-ray flare power and proton fluxes near the Earth. A similar statistical relation is obtained independently from the direct comparison of the X-ray and proton fluxes. These all argue for a statistically significant relationship between X-ray and proton emissions.  相似文献   

9.
A new paradigm in cosmology is presented: A geometrical phase transition from the Minkowski space to an anti-deSitter space at its maximum of extension instead of a big bang with inflation. This scenario implies an open universe with a negative cosmological constant which replaces completely the cold dark matter in galaxy clusters. Baryonic matter and radiation are created from the gravitational field over a very long period of about 30 billion years. The contracting universe runs then after a further period of 13 billion years through a minimum with T max ≃ 1.8 × 1012 K and a particle density n max ≃ 5 × 1038 cm-3 due to Hagedorn’s theory of a hadron gas. After the run through the minimum the universe expands like a big bang universe and reaches due to the negative cosmological constant after 44 billion years its maximal extension. Then it contracts again, and so on: An open ever-oscillating universe.  相似文献   

10.
The north – south asymmetries (NSA) of three solar activity indices are derived and mutually compared over a period of more than five solar cycles (1945 – 2001). A catalogue of the hemispheric sunspot numbers, the data set of the coronal green line brightness developed by us, and the magnetic flux derived from the NSO/KP data (1975 – 2001) are treated separately within the discrete low- and mid-latitude zones (5° – 30°, 35° – 60°). The calculated autocorrelations, cross-correlations, and regressions between the long-term NSA data sets reveal regularities in the solar activity phenomenon. Namely, the appearance of a distinct quasi-biennial oscillation (QBO) is evident in all selected activity indices. Nevertheless, a smooth behavior of QBO is derived only when sufficient temporal averaging is performed over solar cycles. The variation in the significance and periodicity of QBO allows us to conclude that the QBO is not persistent over the whole solar cycle. A similarity in the photospheric and coronal manifestations of the NSA implies that their mutual relation will also show the QBO. A roughly two-year periodicity is actually obtained, but again only after significant averaging over solar cycles. The derived cross-correlations are in fact variable in degree of correlation as well as in changing periodicity. A clear and significant temporal shift of 1 – 2 months in the coronal manifestation of the magnetic flux asymmetry relative to the photospheric manifestation is revealed as a main property of their mutual correlation. This shift can be explained by the delayed large-scale coronal manifestation in responding to the emergence of the magnetic flux in the photosphere. The reliability of the derived results was confirmed by numerical tests performed by selecting different numerical values of the used parameters.  相似文献   

11.
Series of photometric CCD observations of the asynchronous polar BY Cam in a low accretion state (R = 14m–16m) were made on the K-380 telescope at the Crimean Astrophysical Observatory (CrAO) over 100 hours in the course of 31 nights during 2004–2005. A period of P 1 = 0.137120±0.000002 days was found for the variations in the brightness, along with less significant periods of P 2 = 0.139759±0.000003 and P3 = 0.138428±0.000002 days, where P2 and P3 are obviously the orbital and rotation periods, while the dominant period P1 is the sideband period. A modulation in the brightness and an amplitude of 0.137 days in the oscillations at the orbital-rotational beat period (synodic cycle) of 14.568±0.003 day are found for the first time. The profile of the modulation period is four humped. This indicates that the magnetic field has a quadrupole component, which shows up well during the low brightness state. Accretion takes place simultaneously into two or three accretion zones, but at different rates. The times of the times of maxima for the main accretion zone vary with the phase of the beat period. Three types of variation of this sort are distinguished: linear, discontinuous, and chaotic, which indicate changes in the accretion regimes. At synodic phases 0.25 and 0.78 the bulk of the stream switches by 180°, and at phase 0.55, by ∼75°. At phases of 0.25–0.55 and 0.55–0.78, the O-C shift with a period of 0.1384 days, which can be explained by a retrograde shift of the main accretion zone relative to the magnetic pole and/or a change in the angle between the field lines and the surface of the white dwarf owing to the asynchronous rotation. For phases of 0.78–1.25 the motion of the accretion zone is quite chaotic. It is found that synchronization of the components occurs at a rate of less than dProt/Prot∼10−9 day/day. __________ Translated from Astrofizika, Vol. 49, No. 1, pp. 121–137 (February 2006).  相似文献   

12.
R. P. Kane 《Solar physics》2008,249(2):369-380
The sunspot number series at the peak of sunspot activity often has two or three peaks (Gnevyshev peaks; Gnevyshev, Solar Phys. 1, 107, 1967; Solar Phys. 51, 175, 1977). The sunspot group number (SGN) data were examined for 1997 – 2003 (part of cycle 23) and compared with data for coronal mass ejection (CME) events. It was noticed that they exhibited mostly two Gnevyshev peaks in each of the four latitude belts 0° – 10°, 10° – 20°, 20 ° – 30°, and > 30°, in both N (northern) and S (southern) solar hemispheres. The SGN were confined to within latitudes ± 50° around the Equator, mostly around ± 35°, and seemed to occur later in lower latitudes, indicating possible latitudinal migration as in the Maunder butterfly diagrams. In CMEs, less energetic CMEs (of widths < 71°) showed prominent Gnevyshev peaks during sunspot maximum years in almost all latitude belts, including near the poles. The CME activity lasted longer than the SGN activity. However, the CME peaks did not match the SGN peaks and were almost simultaneous at different latitudes, indicating no latitudinal migration. In energetic CMEs including halo CMEs, the Gnevyshev peaks were obscure and ill-defined. The solar polar magnetic fields show polarity reversal during sunspot maximum years, first at the North Pole and, a few months later, at the South Pole. However, the CME peaks and gaps did not match with the magnetic field reversal times, preceding them by several months, rendering any cause – effect relationship doubtful.  相似文献   

13.
We report the observations of 289 methanol maser sources at 6.7 GHz obtained over a two month period with the Torun 32 m telescope. The data form a catalogue of all objects north of δ = –22° brighter than 7.5 Jy in the peak emission. The positions of sub‐arcsecond accuracy are updated for 76 % of the objects. We find that about one third of the sources show changes in the peak fluxes by a factor of two or more on time scales of 8.5–9.5 years (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We analyze the relationship between the coronal hole (CH) area/position and physical characteristics of the associated corotating high-speed stream (HSS) in the solar wind at 1 AU. For the analysis we utilize the data in the period DOY 25 – 125 of 2005, characterized by a very low coronal mass ejection (CME) activity. Distinct correlations between the daily averaged CH parameters and the solar wind characteristics are found, which allows us to forecast the solar wind velocity v, proton temperature T, proton density n, and magnetic field strength B, several days in advance in periods of low CME activity. The forecast is based on monitoring fractional areas A, covered by CHs in the meridional slices embracing the central meridian distance ranges [−40°,−20°], [−10°,10°], and [20°,40°]. On average, the peaks in the daily values of n, B, T, and v appear delayed by 1, 2, 3, and 4 days, respectively, after the area A attains its maximum in the central-meridian slice. The peak values of the solar wind parameters are correlated to the peak values of A, which provides also forecasting of the peak values of n, B, T, and v. The most accurate prediction can be obtained for the solar wind velocity, for which the average relative difference between the calculated and the observed peak values amounts to %. The forecast reliability is somewhat lower in the case of T, B, and n ( , 30, and 40%, respectively). The space weather implications are discussed, including the perspectives for advancing the real-time calculation of the Sun – Earth transit times of coronal mass ejections and interplanetary shocks, by including more realistic real-time estimates of the solar wind characteristics.  相似文献   

15.
The orbital dynamics of the single known planet in the binary star system HD 196885 has been considered. The Lyapunov characteristic exponents and Lyapunov time of the planetary system have been calculated for possible values of the planetary orbit parameters. It has been shown that the dynamics of the planetary system HD 196885 is regular with the Lyapunov time of more than 5 × 104 years (the orbital period of the planet is approximately 3.7 years), if the motion occurs at a distance from the separatrix of the Lidov–Kozai resonance. The values of the planet’s orbital inclination to the plane of the sky and longitude of the ascending node lie either within ranges 30° < i p < 90° and 30° < Ωp < 90°, or 90° < i p < 180° and 180° < Ωp < 300°.  相似文献   

16.
Bistatic radar observations of Mars' north polar region during 1977–1978 showed surface rms slope σβ ranging from 1 to 6°; these values apply to horizontal scales of 1–100 m. Values of roughness tend to decrease with increasing latitude (especially over 65–80°N), but there are many exceptions. The smoothest surfaces (σβ≤1°) appear to be inclusions within generally rougher (σβ~3°) terrain, rather than broad expanses of very smooth material. The permanent north polar cap is relatively uniform with 2.5?σβ?3.0°. Considerable structure has been found in echo spectra, indicating a heterogeneous and perhaps anisotropic scattering surface. Echo spectra obtained from the same region, but several months apart (1°<LS<62°), show no significant differences in inferred roughness. Estimates of reflectivity and dielectric constant are systematically low in the polar region. This may indicate that surface material north of 65°N is less dense than that near the equator, but more study of these data is needed. Estimates of surface roughness and dielectric constant in the equatorial region are consistent with results from Earth-based measurements to the accuracy of our analysis.  相似文献   

17.
The heliocentric orbits of the two STEREO satellites are similar in radius and ecliptic latitude, with separation in longitude increasing by about 45° per year. This arrangement provides a unique opportunity to study the evolution of stream interfaces near 1 AU over time scales of hours to a few days, much less than the period of a Carrington rotation. Assuming nonevolving solar wind sources that corotate with the Sun, we calculated the expected time and longitude of arrival of stream interfaces at the Ahead observatory based on the in situ solar wind speeds measured at the Behind observatory. We find agreement to within 5° between the expected and actual arrival longitude until the spacecraft are separated by more than 20° in heliocentric inertial longitude. This corresponds to about one day between the measurement times. Much larger deviations, up to 25° in longitude, are observed after 20° separation. Some of the deviations can be explained by a latitude difference between the spacecraft, but other deviations most likely result from evolution of the source region. Both remote and in situ measurements show that changes at the source boundary can occur on a time scale much shorter than one solar rotation. In 32 of 41 cases, the interface was observed earlier than expected at STEREO/Ahead.  相似文献   

18.
The observed phase relations between the weak background solar magnetic (poloidal) field and strong magnetic field associated with sunspots (toroidal field) measured at different latitudes are presented. For measurements of the solar magnetic field (SMF) the low-resolution images obtained from Wilcox Solar Observatory are used and the sunspot magnetic field was taken from the Solar Feature Catalogues utilizing the SOHO/MDI full-disk magnetograms. The quasi-3D latitudinal distributions of sunspot areas and magnetic fields obtained for 30 latitudinal bands (15 in the northern hemisphere and 15 in the southern hemisphere) within fixed longitudinal strips are correlated with those of the background SMF. The sunspot areas in all latitudinal zones (averaged with a sliding one-year filter) reveal a strong positive correlation with the absolute SMF in the same zone appearing first with a zero time lag and repeating with a two- to three-year lag through the whole period of observations. The residuals of the sunspot areas averaged over one year and those over four years are also shown to have a well defined periodic structure visible in every two – three years close to one-quarter cycle with the maxima occurring at − 40° and + 40° and drifts during this period either toward the equator or the poles depending on the latitude of sunspot occurrence. This phase relation between poloidal and toroidal field throughout the whole cycle is discussed in association with both the symmetric and asymmetric components of the background SMF and relevant predictions by the solar dynamo models.  相似文献   

19.
The Lyrid Meteor Stream: Orbit and Structure   总被引:1,自引:0,他引:1  
A filamentary structure in the Lyrid meteor stream based on photographic orbits available in the IAU Meteor database is identified and studied. About 17 Lyrids are found in the database and the stream mean orbit is derived. The shower radiant is compact, of a size 2° × 1.5°. Applying a stricter limiting value for the Southworth-Hawkins D-criterion, two distinct filaments in the stream, on a short and a long period orbit, are separated. To confirm their consistency as filaments, their orbital evolution over 5,000 years is investigated.  相似文献   

20.
The power beam pattern and antenna effective area of the RATAN-600 radio telescope are analyzed based on source samples observed during the 7.6-cm sky surveys preformed in 1980, 1988, 1990, 1991, 1993, 1994, and 1999. The surveys were made with the Northern sector of the RATAN-600 at the same declination as the COLD experiment (δ ∼ 5°). Experimental power beam patterns derived from the survey data are compared with the computed patterns. The r.m.s. deviation of the experimental data from the corresponding computed values averaged over all years is (0.19 − 0.23) ± 0.02. The vertical pattern of the 1980 survey is offset by about 1t’ with respect to the central horizontal section. The patterns obtained from the data for other years are symmetric within the measurement errors. The mean antenna effective area averaged over all years except 1993 is 803 ± 88 m2. The behavior of both the beam pattern and effective telescope surface areas was stable from 1980 through 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号