首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 209 毫秒
1.
We use the Cambridge stellar evolution code stars to model the evolution of 5 and  7 M  zero-metallicity stars. With enhanced resolution at the hydrogen- and helium-burning shell in the asymptotic giant branch (AGB) phases, we are able to model the entire thermally pulsing AGB (TP-AGB) phase. The helium luminosities of the thermal pulses are significantly lower than in higher metallicity stars so there is no third dredge-up. The envelope is enriched in nitrogen by hot-bottom burning of carbon that was previously mixed in during second dredge-up. There is no s -process enrichment owing to the lack of third dredge-up. The thermal pulses grow weaker as the core mass increases and they eventually cease. From then on the star enters a quiescent burning phase which lasts until carbon ignites at the centre of the star when the CO core mass is  1.36 M  . With such a high degeneracy and a core mass so close to the Chandrasekhar mass, we expect these stars to explode as type 1.5 supernovae, very similar to type Ia supernovae but inside a hydrogen-rich envelope.  相似文献   

2.
We investigate the behaviour of asymptotic giant branch (AGB) stars between metallicities   Z = 10−4  and 10−8. We determine which stars undergo an episode of flash-driven mixing, where protons are ingested into the intershell convection zone, as they enter the thermally pulsing AGB phase and which undergo third dredge-up. We find that flash-driven mixing does not occur above a metallicity of   Z = 10−5  for any mass of star and that stars above  2 M  do not experience this phenomenon at any metallicity. We find carbon ingestion (CI), the mixing of carbon into the tail of hydrogen-burning region, occurs in the mass range  2 M  to around  4 M  . We suggest that CI may be a weak version of the flash-driven mechanism. We also investigate the effects of convective overshooting on the behaviour of these objects. Our models struggle to explain the frequency of Carbon-Enhanced Metal-Poor (CEMP) stars that have both significant carbon and nitrogen enhancement. Carbon can be enhanced through flash-driven mixing, CI or just third dredge-up. Nitrogen can be enhanced through hot bottom burning and the occurrence of hot dredge-up also converts carbon into nitrogen. The C/N ratio may be a good indicator of the mass of the primary AGB stars.  相似文献   

3.
An analysis of high-resolution Anglo-Australian Telescope (AAT)/University College London Échelle Spectrograph (UCLÉS) optical spectra for the ultraviolet (UV)-bright star ROA 5701 in the globular cluster ω Cen (NGC 5139) is performed, using non-local thermodynamic equilibrium (non-LTE) model atmospheres to estimate stellar atmospheric parameters and chemical composition. Abundances are derived for C, N, O, Mg, Si and S, and compared with those found previously by Moehler et al. We find a general metal underabundance relative to young B-type stars, consistent with the average metallicity of the cluster. Our results indicate that ROA 5701 has not undergone a gas–dust separation scenario as previously suggested. However, its abundance pattern does imply that ROA 5701 has evolved off the asymptotic giant branch (AGB) prior to the onset of the third dredge-up.  相似文献   

4.
We investigate the molecular bands in carbon-rich asymptotic giant branch (AGB) stars in the Large Magellanic Cloud (LMC), using the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope ( SST ) over the 5–38 μm range. All 26 low-resolution spectra show acetylene (C2H2) bands at 7 and 14 μm. The hydrogen cyanide (HCN) bands at these wavelengths are very weak or absent. This is consistent with low nitrogen abundances in the LMC. The observed 14 μm C2H2  band is reasonably reproduced by an excitation temperature of 500 K. There is no clear dilution of the 14 μm C2H2  band by circumstellar dust emission. This 14-μm band originates from molecular gas in the circumstellar envelope in these high mass-loss rate stars, in agreement with previous findings for Galactic stars. The C2H2 column density, derived from the 13.7 μm band, shows a gas mass-loss rate in the range 3 × 10−6 to 5 × 10−5 M yr−1. This is comparable with the total mass-loss rate of these stars estimated from the spectral energy distribution. Additionally, we compare the line strengths of the 13.7 μm C2H2  band of our LMC sample with those of a Galactic sample. Despite the low metallicity of the LMC, there is no clear difference in the C2H2  abundance among LMC and Galactic stars. This reflects the effect of the third dredge-up bringing self-produced carbon to the surface, leading to high carbon-to-oxygen ratio at low metallicity.  相似文献   

5.
We present spectroscopic observations from the Spitzer Space Telescope of six carbon-rich asymptotic giant branch (AGB) stars in the Sagittarius dwarf spheroidal galaxy (Sgr dSph) and two foreground Galactic carbon stars. The band strengths of the observed C2H2 and SiC features are very similar to those observed in Galactic AGB stars. The metallicities are estimated from an empirical relation between the acetylene optical depth and the strength of the SiC feature. The metallicities are higher than those of the Large Magellanic Cloud, and close to Galactic values. While the high metallicity could imply an age of around 1 Gyr, for the dusty AGB stars, the pulsation periods suggest ages in excess of 2 or 3 Gyr. We fit the spectra of the observed stars using the dusty radiative transfer model and determine their dust mass-loss rates to be in the range  1.0–3.3 × 10−8 M yr−1  . The two Galactic foreground carbon-rich AGB stars are located at the far side of the solar circle, beyond the Galactic Centre. One of these two stars shows the strongest SiC feature in our present Local Group sample.  相似文献   

6.
We investigate the dependence of the carbon and oxygen production in stars on the 3α rate by varying the energy of the 0+ 2-state of 12C and determine the resulting yields for a selection of low-mass, intermediate-mass and massive stars. The yields are obtained using modern stellar evolution codes that follow the entire evolution of massive stars, including the supernova explosion, and consider in detail the 3rd dredge-up process during the thermally pulsating asymptotic giant branch of low-mass and intermediate-mass stars. Our results show that the C and O production in massive stars depends strongly on the initial mass, and that it is crucial to follow the entire evolution. A rather strong C production during the He-shell flashes compared to quiescent He burning leads to a lower sensitivity of the C and O production in low-mass and intermediate-mass stars on the 3α-rate than predicted in our previous work. In particular, the C production of intermediate-mass stars seems to have a maximum close to the actual value of the 0+ 2 energy level of 12C. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
We present a model-atmosphere analysis for the bright ( V ∼13) star ZNG-1, in the globular cluster M10. From high-resolution ( R ∼40 000) optical spectra we confirm ZNG-1 to be a post-asymptotic giant branch (post-AGB) star. The derived atmospheric parameters are T eff=26 500±1000 K and log  g =3.6±0.2 dex . A differential abundance analysis reveals a chemical composition typical of hot post-AGB objects, with ZNG-1 being generally metal poor, although helium is approximately solar. The most interesting feature is the large carbon underabundance of more than 1.3 dex. This carbon deficiency, along with an observed nitrogen enhancement relative to other elements, may suggest that ZNG-1 evolved off the AGB before the third dredge-up occurred. Also, iron depletions observed in other similar stars suggest that gas–dust fractionation in the AGB progenitor could be responsible for the observed composition of these objects. However, we need not invoke either scenario since the chemical composition of ZNG-1 is in good agreement with abundances found for a Population II star of the same metallicity.  相似文献   

8.
A globular cluster distance scale based on Hipparcos parallaxes of subdwarfs has been used to derive estimates of M K for cluster Miras, including one in the Small Magellanic Cloud (SMC) globular cluster NGC 121. These lead to a zero-point of the Mira infrared period–luminosity (PL) relation, PL( K ), in good agreement with that derived from Hipparcos parallaxes of nearby field Miras. The mean of these two estimates together with data on LMC Miras yields a Large Magellanic Cloud (LMC) distance modulus of     in evident agreement with a metallicity-corrected Cepheid modulus     .
The use of luminous asymptotic giant branch (AGB) stars as extragalactic population indicators is also discussed.  相似文献   

9.
Recent advances in constructing stellar evolution models of hydrogen-deficient post-asymptotic giant branch (AGB) stars are presented. Hydrogen-deficiency can originate from mixing and subsequent convective burning of protons in the deeper layers during a thermal pulse on the post-AGB (VLTP). Dredge-up alone may also be responsible for hydrogen-deficiency of post-AGB stars. Models of the last thermal pulse on the AGB with very small envelope masses have shown efficient third dredge-up. The hydrogen content of the envelope is diluted sufficiently to produce H-deficient post-AGB stars (AFTP). Moreover, dredge-up alone may also cause H-deficiency during the Born-again phase (LTP). During the second AGB phase a convective envelope develops. A previously unknown lithium enrichment at the surface of Born-again stellar models may be used to distinguish between objects with different post-AGB evolution. The observed abundance ratios of C, O and He can be reproduced by all scenarios if an AGB starting model with inclusion of overshoot is used for the post-AGB model sequence. An appendix is devoted to the numerical methods for models of proton capture nucleosynthesis in the He-flash convection zone during a thermal pulse.  相似文献   

10.
The Small Magellanic Cloud is a close, irregular galaxy that has experienced a complex star formation history due to the strong interactions occurred both with the Large Magellanic Cloud and the Galaxy. Despite its importance, the chemical composition of its stellar populations older than ∼ 1–2 Gyr is still poorly investigated. I present the first results of a spectroscopic survey of ∼ 200 Small Magellanic Cloud giant stars performed with FLAMES@VLT. The derived metallicity distribution peaks at [Fe/H] ∼ –0.9/–1.0 dex, with a secondary peak at [Fe/H] ∼ –0.6 dex. All these stars show [α /Fe] abundance ratios that are solar or mildly enhanced (∼+0.1 dex). Also, three metal‐poor stars (with [Fe/H] ∼ –2.5 dex and enhanced [α /Fe] ratios compatible with those of the Galactic Halo) have been detected in the outskirts of the SMC: These giants are the most metal‐poor stars discovered so far in the Magellanic Clouds. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The He, C, N, and O abundances in more than 120 planetary nebulae (PNe) of our Galaxy and the Magellanic Clouds have been redetermined by analyzing new PNe observations. The characteristics of PNe obtained by modeling their spectra have been used to compile a new catalog of parameters for Galactic and extragalactic PNe, which is accessible at http://www.astro.spbu.ru/staff/afk/GalChemEvol.html. The errors in the parameters of PNe and their elemental abundances related to inaccuracies in the observational data have been analyzed. The He abundance is determined with an accuracy of 0.06 dex, while the errors in the C, N, and O abundances are 0.1–0.2 dex. Taking into account the inaccuracies in the corrections for the ionization stages of the elements whose lines are absent in the PNe spectra increases the errors in the He abundance to 0.1 dex and in the C, N, and O abundances to 0.2–0.3 dex. The elemental abundances in PNe of various Galactic subsystems and the Magellanic Clouds have been analyzed. This analysis suggests that the Galactic bulge objects are similar to type II PNe in Peimbert’s classification, whose progenitor stars belong to the thin-disk population with ages of at least 4–6 Gyr. A similarity between the elemental abundances in PNe of the Magellanic Clouds and the Galactic halo has been established.  相似文献   

12.
Several stars at the low-metallicity extreme of the Galactic halo show large spreads of lead and associated 'heavy' s-process elements ([Pb/hs]). Theoretically, an s-process pattern should be obtained from an AGB star with a fixed metallicity and initial mass. For the third dredge-up and the s-process model, several important properties depend primarily on the core mass of AGB stars. Zijlstra reported that the initial-to-final mass relation steepens at low metallicity, due to low mass-loss efficiency. This might affect the model parameters of the AGB stars, e.g. the overlap factor and the neutron irradiation time, in particular at low metallicity. The calculated results do indeed show that the overlap factor and the neutron irradiation time are significantly small at low metallicities, especially for  3.0 M AGB  stars. The scatter of [Pb/hs] found in low metallicities can therefore be explained naturally when varying the initial mass of the low-mass AGB stars.  相似文献   

13.
We present theoretical evolutionary sequences of intermediate-mass stars  ( M = 3 − 6.5 M)  with metallicity   Z = 0.004  . Our goal is to test whether the self-enrichment scenario by massive asymptotic giant branch stars may work for the high-metallicity globular clusters, after previous works by the same group showed that the theoretical yields by this class of objects can reproduce the observed trends among the abundances of some elements, namely the O–Al and O–Na anticorrelations, at intermediate metallicities, i.e.  [Fe/H]=−1.3  . We find that the increase in the metallicity favours only a modest decrease of the luminosity and the temperature at the bottom of the envelope for the same core mass, and also the efficiency of the third dredge-up is scarcely altered. On the contrary, differences are found in the yields, due to the different impact that processes with the same efficiency have on the overall abundance of envelopes with different metallicities. We expect the same qualitative patterns as in the intermediate-metallicity case, but the slopes of some of the relationships among the abundances of some elements are different. We compare the sodium–oxygen anticorrelation for clusters of intermediate metallicity ( Z ≈ 10−3) and clusters of metallicity large as in these new models. Although the observational data are still too scarce, the models are consistent with the observed trends, provided that only stars of   M ≳ 5 M  contribute to self-enrichment.  相似文献   

14.
We show that the inclusion of axion emission during stellar evolution introduces important changes into the evolutionary behaviour of aymptotic giant branch (AGB) stars. The mass of the resulting C/O white dwarf (WD) is much lower than the equivalent obtained from standard evolution. This implies a deficit in luminous AGB stars and in massive WDs. Moreover, the total mass processed in the nuclear burning shells that is dredged up to the surface (third D up) increases when axion emission is included, modifying the chemical composition of the photosphere. We conclude that the AGB is a promising phase with which to put constraints on particle physics.  相似文献   

15.
Six stars out of a sample of ∼2300 carbon stars in the Magellanic Clouds have been identified as having strong C2 bands but CN bands that are very weak or absent. It is argued that five of these are likely to be R Coronae Borealis (RCB) stars on the basis of their spectral characteristics and peculiar colours. Most are variables and the Large Magellanic Cloud (LMC) members have extreme radial velocities that are more like the planetary nebula population than the carbon stars. This sample consists of four LMC members (only one of them previously recognized as an RCB star), one Small Magellanic Cloud (SMC) member (the first RCB star reported in the SMC) and one foreground Galactic star.  相似文献   

16.
There is an apparent dichotomy between the metal-poor  ([Fe/H]≤−2)  yet carbon-normal giants and their carbon-rich counterparts. The former undergo significant depletion of carbon on the red giant branch after they have undergone first dredge-up, whereas the latter do not appear to experience significant depletion. We investigate this in the context that the extra mixing occurs via the thermohaline instability that arises due to the burning of  3He  . We present the evolution of [C/Fe], [N/Fe] and  12C/13C  for three models: a carbon-normal metal-poor star, and two stars that have accreted material from a  1.5 M  AGB companion, one having received  0.01 M  of material and the other having received  0.1 M  . We find the behaviour of the carbon-normal metal-poor stars is well reproduced by this mechanism. In addition, our models also show that the efficiency of carbon-depletion is significantly reduced in carbon-rich stars. This extra-mixing mechanism is able to reproduce the observed properties of both carbon-normal and carbon-rich stars.  相似文献   

17.
3M⊙AGB星表面重元素丰度的演化   总被引:1,自引:0,他引:1  
张波  彭秋和 《天文学报》1997,38(3):231-238
本文以13C(a,n)16O及22Ne(a,n)25Mg作为双脉冲中子源,对于质量为3M■、初始金属度为0.015的热脉冲AGB星,采用无分叉s-过程反应通道,结合最新恒星演化的计算结果、在各参量合理取值范围内,计算了表面重元素丰度和碳氧比(C/O)的演化并与观测值进行比较。结果表明,就轻重s-元素丰度关系图和 C/O重元素丰度关系图而言,在各参量的合理取值范围内,理论计算曲线能够同时落入观测值区域之内,MS、S星和C星对应的平均中子辐照量范围是对AGB星的s-元素超丰影响较大。在达到渐近分布后才开始挖掘的合理假设下,其它因素(例如核心质量Mc、每次脉冲挖掘质量大小是否随脉冲数变化)对内禀AGB星表面重元素超丰影响不大。何时发生第三次挖掘对MS、S星的重元素超丰情况影响较大,但C星丰度几乎不受影响。  相似文献   

18.
A nearly complete sample of 24 Magellanic Cloud WC/WO subclass Wolf–Rayet stars is studied spectroscopically and photometrically to determine its binary frequency. Theory predicts the Roche lobe overflow produced Wolf–Rayet binary frequency to be 52±14 per cent in the Large Magellanic Cloud and 100 per cent in the Small Magellanic Cloud, not counting non-Roche lobe overflow Wolf–Rayet binaries. Lower ambient metallicity ( Z ) leads to lower opacity, preventing all but the most massive (hence luminous) single stars from reaching the Wolf–Rayet stage. However, theory predicts that Roche lobe overflow even in binaries of modest mass will lead to Wolf–Rayet stars in binaries with periods below approximately 200 d, for initial periods below approximately 1000 d, independent of Z . By examining their absolute continuum magnitudes, radial velocity variations, emission-line equivalent widths and full widths at half-maximum, a WC/WO binary frequency of only 13 per cent, significantly lower than the prediction, is found in the Large Magellanic Cloud. In the unlikely event that all of the cases with a less certain binary status actually turn out to be binary, current theory and observation would agree. (The Small Magellanic Cloud contains only one WC/WO star, which happens to be a binary.) The three WC+O binaries in the Large Magellanic Cloud all have periods well below 1000 d. The large majority of WC/WO stars in such environments apparently can form without the aid of a binary companion. Current evolutionary scenarios appear to have difficulty explaining either the relatively large number of Wolf–Rayet stars in the Magellanic Clouds, or the formation of Wolf–Rayet stars in general.  相似文献   

19.
We obtain the chemical abundances of six barium stars and two CH subgiant stars based on the high signal-to-noise ratio and high resolution Echelle spectra. The neu- tron capture process elements Y, Zr, Ba, La and Eu show obvious overabundances relative to the Sun, for example, their [Ba/Fe] values are from 0.45 to 1.27. Other elements, in- cluding Na, Mg, A1, Si, Ca, Sc, Ti, V, Cr, Mn and Ni, show comparable abundances to the Solar ones, and their [Fe/H] covers a range from -0.40 to 0.21, which means they belong to the Galactic disk. The predictions of the theoretical model of wind accretion for bi- nary systems can explain the observed abundance patterns of the neutron capture process elements in these stars, which means that their overabundant heavy-elements could be caused by accreting the ejecta of AGB stars, the progenitors of present-day white dwarf companions in binary systems.  相似文献   

20.
The semi‐regular variable star RU Vulpeculae (RU Vul) is being observed visually since 1935. Its pulsation period and amplitude are declining since ∼1954. A leading hypothesis to explain the period decrease in asymptotic giant branch (AGB) stars such as RU Vul is an ongoing flash of the He‐burning shell, also called a thermal pulse (TP), inside the star. In this paper, we present a CCD photometric light curve of RU Vul, derive its fundamental parameters, and test if the TP hypothesis can describe the observed period decline. We use CCD photometry to determine the present‐day pulsation period and amplitude in three photometric bands, and high‐resolution optical spectroscopy to derive the fundamental parameters. The period evolution of RU Vul is compared to predictions by evolutionary models of the AGB phase. We find that RU Vul is a metal‐poor star with a metallicity [M/H] = –1.59 ± 0.05 and an effective surface temperature of Teff = 3634 ± 20 K. The low metallicity of RU Vul and its kinematics indicate that it is an old, low‐mass member of the thick disc or the halo population. The present day pulsation period determined from our photometry is ∼108 d, the semiamplitude in the V ‐band is 0.39 ± 0.03 mag. The observed period decline is found to be well matched by an evolutionary AGB model with stellar parameters comparable to those of RU Vul. We conclude that the TP hypothesis is in good agreement with the observed period evolution of RU Vul. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号