首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 860 毫秒
1.
The Chinese Loess Plateau (CLP) comprises an extensive record of eolian deposition that contains important information about climate change. The objective of this study is to investigate if mineralogy can provide more insight into the long-term evolution of the East Asian monsoon. Comparisons between mineralogy and other paleoclimatic records (grain size and magnetic susceptibility) from the CLP have been made to evaluate the efficacy of mineralogy as a paleoclimatic tool.Here we present data from a mineralogical study of a red clay–loess sequence at Lingtai, central Chinese Loess Plateau. Changes related to source area(s), transport processes and weathering regime over time are recorded in mineral variation.Higher average concentrations of kaolinite, chlorite and quartz in the red clay, together with abrupt changes in relative mineral abundances across the red clay–loess boundary suggest a change of source area at 2.6 Ma. From 2.6 Ma to about 1.7 Ma the summer monsoon influence increases, destroying chlorite and contributing fine illite particles to the sediment. At around 1.7 Ma the mineralogy becomes relatively constant, suggesting that the monsoon was fairly stable during this period. At 0.7–0.5 Ma an increase of both summer monsoon and winter monsoon activity is inferred from illite, kaolinite, chlorite and plagioclase concentrations. Over the last 0.5 Ma mineralogy suggests an aridification of source area(s) as chlorite and plagioclase concentrations increase where illite concentration decreases. The last major change occurred around 0.07 Ma and indicates reducing summer monsoon influence as chlorite and quartz concentrations increase and illite concentration, as well as the < 2 μm size fraction, decreases. The mineralogical trends and differences between loess and paleosols units suggest different source areas in the last 0.5 Ma.  相似文献   

2.
The history (45–0 ka BP) of the aquatic vegetation composition of the shallow alpine Lake Luanhaizi from the NE Tibetan Plateau is inferred from aquatic plant macrofossil frequencies and aquatic pollen and algae concentrations in the sediments. C/N (range: 0.3–100), δ13C (range: −28 to −15‰), and n-alkane measurements yielded further information on the quantitative composition of sedimentary organic matter. The inferred primary production of the former lake ecosystem has been examined in respect of the alternative stable state theory of shallow lakes [Scheffer, M., 1989. Alternative stable states in eutrophic, shallow freshwater systems: a minimal model. Hydrobiological Bulletin 23, 73–83]. Switches between clear and turbid water conditions are explained by a colder climate and forest decline in the catchment area of Lake Luanhaizi. The macrofossil-based reconstruction of past water depth and salinity ranges, as well as other organic matter (OM) proxies allowed climatic inferences of the summer monsoon intensity during the late Quaternary. Around 45 ka BP, conditions similar to or even moister than present-day climate occurred. The Lake Luanhaizi record is further evidence against an extensive glaciation of the Tibetan Plateau and its bordering mountain ranges during the Last Glacial Maximum. Highest lake levels and consequently a strong summer monsoon are recorded for the early Holocene period, while gradually decreasing lake levels are reconstructed for the middle and late Holocene.  相似文献   

3.
South China Sea (SCS) is a major moisture source region, providing summer monsoon rainfall throughout Mainland China, which accounts for more than 80% total precipitation in the region. We report seasonal to monthly resolution Sr/Ca and δ18O data for five Holocene and one modern Porites corals, each covering a growth history of 9–13 years. The results reveal a general decreasing trend in sea surface temperature (SST) in the SCS from 6800 to 1500 years ago, despite shorter climatic cycles. Compared with the mean Sr/Ca–SST in the 1990s (24.8 °C), 10-year mean Sr/Ca–SSTs were 0.9–0.5 °C higher between 6.8 and 5.0 thousand years before present (ky BP), dropped to the present level by 2.5 ky BP, and reached a low of 22.6 °C (2.2 °C lower) by 1.5 ky BP. The summer Sr/Ca–SST maxima, which are more reliable due to faster summer-time growth rates and higher sampling resolution, follow the same trend, i.e. being 1–2 °C higher between 6.8 and 5.0 ky BP, dropping to the present level by 2.5 ky BP, and reaching a low of 28.7 °C (0.7 °C lower) by 1.5 ky BP. Such a decline in SST is accompanied by a similar decrease in the amount of monsoon moisture transported out of South China Sea, resulting in a general decrease in the seawater δ18O values, reflected by offsets of mean δ18O relative to that in the 1990s. This observation is consistent with general weakening of the East Asian summer monsoon since early Holocene, in response to a continuous decline in solar radiation, which was also found in pollen, lake-level and loess/paleosol records throughout Mainland China. The climatic conditions 2.5 and 1.5 ky ago were also recorded in Chinese history. In contrast with the general cooling trend of the monsoon climate in East Asia, SST increased dramatically in recent time, with that in the 1990s being 2.2 °C warmer than that 1.5 ky ago. This clearly indicates that the increase in the concentration of anthropogenic greenhouse gases played a dominant role in recent global warming, which reversed the natural climatic trend in East Asian monsoon regime.  相似文献   

4.
The climatological signal of δ18O variations preserved in ice cores recovered from Puruogangri ice field in the central Tibetan Plateau (TP) was calibrated with regional meteorological data for the past 50 years. For the period AD 1860–2000, 5-yearly averaged ice core δ18O and a summer temperature reconstruction derived from pollen data from the same ice core were compared. The statistical results provide compelling evidence that Puruogangri ice core δ18O variations represent summer temperature changes for the central TP, and hence regional temperature history during the past 600 years was revealed. A comparison of Puruogangri ice core δ18О with several other temperature reconstructions shows that broad-scale climate anomalies since the Little Ice Age occurred synchronously across the eastern and southern TP, and the Himalayas. Common cold periods were identified in the 15th century, 1625–1645 AD, 1660–1700 AD, 1725–1775 AD, 1795–1830 AD, 1850–1870 AD, 1890–1920 AD, 1940–1950 AD, and 1975–1985 AD. The period 1725–1775 AD was one of the most prolonged cool periods during the past 400 years and corresponded to maximum Little Ice Age glacier advance of monsoonal temperate glaciers of the TP.  相似文献   

5.
Hydrographic changes in the NW Arabian Sea are mainly controlled by the monsoon system. This results in a strong seasonal and vertical gradient in surface water properties, such as temperature, nutrients, carbonate chemistry and the isotopic composition of dissolved inorganic carbon (δ13CDIC). Living specimens of the planktic foraminifer species Globigerina bulloides and Globigerinoides ruber, were collected using depth stratified plankton tows during the SW monsoon upwelling period in August 1992 and the NE monsoon non-upwelling period in March 1993. We compare their distribution and the stable isotope composition to the seawater properties of the two contrasting monsoon seasons. The oxygen isotope composition of the shells (δ18Oshell) and vertical shell concentration profiles indicate that the depth habitat for both species is shallower during upwelling (SW monsoon period) than during non-upwelling (NE monsoon period). The calcification temperatures suggest that most of the calcite is precipitated at a depth level just below the deep chlorophyll maximum (DCM), however above the main thermocline. Consequently, the average calcification temperature of G. ruber and G. bulloides is lower than the sea surface temperature by 1.7±0.8 and 1.3±0.9 °C, respectively. The carbon isotope composition of the shells (δ13Cshell) of both species differs from the in situ δ13CDIC found at the calcification depths of the specimens. The observed offset between the δ13Cshell and the ambient δ13CDIC results from (1) metabolic/ontogenetic effects, (2) the carbonate chemistry of the seawater and, for symbiotic G. ruber, (3) the possible effect of symbionts or symbiont activity. Ontogenetic effects produce size trends in Δδ13Cshell–DIC and Δδ18Oshell–w: large shells of G. bulloides (250–355μm) are 0.33‰ (δ13C) and 0.23‰ (δ18O) higher compared to smaller ones (150–250 μm). For G. ruber, this is 0.39‰ (δ13C) and 0.17‰ (δ18O). Our field study shows that the δ13Cshell decreases as a result of lower δ13CDIC values in upwelled waters, while the effects of the carbonate system and/or temperature act in an opposite direction and increase the δ13Cshell as a result lower [CO32−] (or pH) values and/or lower temperature. The Δδ13Cshell–DIC [CO32−] slopes from our field data are close to those reported literature from laboratory culture experiments. Since seawater carbonate chemistry affects the δ13Cshell in an opposite sense, and often with a larger magnitude, than the change related to productivity (i.e. δ13CDIC), higher δ13Cshell values may be expected during periods of upwelling.  相似文献   

6.
Ocean Drilling Program Leg 188, Prydz Bay, East Antarctica is part of a larger initiative to explore the Cenozoic history of the Antarctic Ice Sheet through direct drilling and sampling of the continental margins. In this paper, we present stable isotopic results from Ocean Drilling Program (ODP) Site 1167 located on the Prydz Channel Trough Mouth Fan (TMF), the first Antarctic TMF to be drilled. The foraminifer-based δ18O record is interpreted along with sedimentary and downhole logging evidence to reconstruct the Quaternary glacial history of Prydz Bay and the adjacent Lambert Glacier Amery Ice Shelf System (LGAISS). We report an electron spin resonance age date of 36.9±3.3 ka at 0.45 m below sea floor and correlate suspected glacial–interglacial cycles with the global isotopic stratigraphy to improve the chronology for Site 1167. The δ18O record based on planktonic (Neogloboquadrina pachyderma (s.)) and limited benthic results (Globocassidulina crassa), indicates a trend of ice sheet expansion that was interrupted by a period of reduced ice volume and possibly warmer conditions during the early–mid-Pleistocene (0.9–1.38 Ma). An increase in δ18O values after 900 ka appears to coincide with the mid-Pleistocene climate transition and the expansion of the northern hemisphere ice sheet. The δ18O record in the upper 50 m of the stratigraphic section indicates as few as three glacial–interglacial cycles, tentatively assigned as marine isotopic stages (MIS) 16–21, are preserved since the Brunhes/Matuyama paleomagnetic reversal (780 ka). This suggests that there is a large unconformity near the top of the section and/or that there may have been few extreme advances of the ice sheet since the mid-Pleistocene climate transition resulting in lowered sedimentation rates on the Prydz Channel TMF. The stable isotopic record from Site 1167 is one of the few available from the area south of the Antarctic Polar Front that has been linked with the global isotopic stratigraphy. Our results suggest the potential for the recovery of useful stable isotopic records in other TMFs.  相似文献   

7.
Based on fieldwork and terrace ages, which were determined using 14C, TL and paleosol stratigraphy, a general model was established for the development of the Yellow River terrace system. The ages for the terraces and valley flats of the Yellow River system are T6—1.67–0.85 Ma BP, T5—0.85–0.47 Ma BP, T4—0.47–0.10 Ma BP, T3—0.10–0.007 Ma BP, T2—7.0–0.7 ka BP, T1—0.7–0.3 ka BP, the higher valley flat—0.3–0.15 ka BP and the lower valley flat 0.15–0 ka BP, respectively. Each terrace or valley flat and corresponding paleo-valley represents a river erosion/deposition cycle. Using this model and selected geomorphic parameters of terraces and paleo-valleys from 10 typical cross sections of Luohe River, a tributary of the Yellow River, an attempt is made here to estimate paleo-river erosion since the Pleistocene on the Loess Plateau.  相似文献   

8.
We present three new benthic foraminiferal δ13C, δ18O, and total organic carbon time series from the eastern Atlantic sector of the Southern Ocean between 41°S and 47°S. The measured glacial δ13C values belong to the lowest hitherto reported. We demonstrate a coincidence between depleted late Holocene (LH) δ13C values and positions of sites relative to ocean surface productivity. A correction of +0.3 to +0.4 [‰ VPDB] for a productivity-induced depletion of Last Glacial Maximum (LGM) benthic δ13C values of these cores is suggested. The new data are compiled with published data from 13 sediment cores from the eastern Atlantic Ocean between 19°S and 47°S, and the regional deep and bottom water circulation is reconstructed for LH (4–0 ka) and LGM (22–16 ka) times. This extends earlier eastern Atlantic-wide synoptic reconstructions which suffered from the lack of data south of 20°S. A conceptual model of LGM deep-water circulation is discussed that, after correction of southernmost cores below the Antarctic Circumpolar Current (ACC) for a productivity-induced artifact, suggests a reduced formation of both North Atlantic Deep Water in the northern Atlantic and bottom water in the southwestern Weddell Sea. This reduction was compensated for by the formation of deep water in the zone of extended winter sea-ice coverage at the northern rim of the Weddell Sea, where air–sea gas exchange was reduced. This shift from LGM deep-water formation in the region south of the ACC to Holocene bottom water formation in the southwestern Weddell Sea, can explain lower preformed δ13CDIC values of glacial circumantarctic deep water of approximately 0.3‰ to 0.4‰. Our reconstruction brings Atlantic and Southern Ocean δ13C and Cd/Ca data into better agreement, but is in conflict, however, with a scenario of an essentially unchanged thermohaline deep circulation on a global scale. Benthic δ18O-derived LGM bottom water temperatures, by 1.9°C and 0.3°C lower than during the LH at deepest southern and shallowest northern sites, respectively, agree with the here proposed reconstruction of deep-water circulation in the eastern South Atlantic Ocean.  相似文献   

9.
Elevation dependency of climate change signals has been found over major mountain ranges such as the European Alps and the Rockies, as well as over the Tibetan Plateau. In this study we examined the temporal trends in monthly mean minimum temperatures from 116 weather stations in the eastern Tibetan Plateau and its vicinity during 1961–2006. We also analyzed projected climate changes in the entire Tibetan Plateau and its surroundings from two sets of modeling experiments under future global warming conditions. These analyses included the output of the NCAR Community Climate System Model (CCSM3) with approximately 150 km horizontal resolution for the scenario of annual 1% increase in atmospheric CO2 for future 100 years and physically-based downscaling results from the NCAR CAM3/CLM3 model at 10' × 10' resolution during three 20-year mean periods (1980–1999, 2030–2049 and 2080–2099) for the IPCC mid-range emission (A1B) scenario. We divided the 116 weather stations and the regional model grids into elevation zones of 500 m interval to examine the relationship of climatic warming and elevation. With these corroborating datasets, we were able to confirm the elevation dependency in monthly mean minimum temperature in and around the Tibetan Plateau. The warming is more prominent at higher elevations than at lower elevations, especially during winter and spring seasons, and such a tendency may continue in future climate change scenarios. The elevation dependency is most likely caused by the combined effects of cloud-radiation and snow-albedo feedbacks among various influencing factors.  相似文献   

10.
We utilize a regional climate model with detailed land surface processes (RegCM2) to simulate East Asian monsoon climates at 0 ka, 6 ka and 21 ka BP, and evaluate the changes in hydrology process, including vapor transportation, precipitation, evapotranspiration and runoff in the eastern and western China during these periods. Results indicate that the Tibetan Plateau climate presents a wet–cold status during the LGM while it exhibits a wet–warm climate at 6 ka BP. The LGM wetter climate over the Tibetan Plateau mainly results from the increased vapor inflow through its south boundary, while the increase in the vapor import over the Tibetan Plateau at 6 ka BP mostly sources from its west boundary. The increase in the LGM runoff over the Tibetan Plateau is mainly caused by the decrease in evapotranspiration, while the increase in runoff at the 6 ka BP mainly by the enhanced precipitation. Eastern China (including southern China) presents a dry status during the LGM, which precipitation and runoff decreases significantly due largely to weakened Asian summer monsoon that results in the decreased vapor inflow through the south boundary of eastern China. The variation pattern in the hydrological cycle in eastern China is contrary to that in western China during the LGM. The increase in precipitation and runoff at 6 ka BP in eastern China is tightly related to the strong Asian summer monsoon that leads to increased vapor import through the south boundary. Long term decrease trend in precipitation and runoff in northern China since the last 20 000 years may be attributed to the steady increase in vapor export through the east boundary as a result of the changes of East Asian monsoon and the adjustments of local atmospheric circulations in this area.  相似文献   

11.
Considerable debate persists among scientists interested in the nature of the ice cap on the Tibetan Plateau during the late Quaternary. We examine the implications, on this problem, of the high resolution data that has recently become available from the Dunde ice cap in north Tibet. The observed −2% change in the δ18O of the ice formed at the Dunde ice cap during the Last Glacial Stage (LGS) suggests a limit in the range of 5–7°C on the reduction in annual surface air temperature over Tibet during the LGS. This then translates to an Equilibrium Line Altitude (ELA) lowering of 700–1200 m. Due to this lowering, ELA could have reached below the level of the surface of the plateau resulting in an extensive ice sheet formation during LGS.  相似文献   

12.
There is a continuous record of planktonic foraminifers for oxygen isotope stages 50 to 26 (ca. 1.5–1.0 Ma) in the early Pleistocene Omma Formation near Kanazawa City, Central Japan, on the Sea of Japan coast. The warm-water species Globigerinoides ruber entered the Sea of Japan with the Tsushima Current during all interglacial periods and went locally extinct in the succeeding glacial periods. This implies that the marine climate of the Sea of Japan varied predominantly with the 41,000-year period of Earth's orbital obliquity. However, the relative abundances of G. ruber in marine isotope stages 47, 43 and 31 are significantly higher than those in other interglacial stages. These stages correspond to periods when eccentricity-modulated precession extremes were aligned with obliquity maxima. The Tsushima Current is a branch of the warm Kuroshio Current which is the strong northwestern component of the subtropical North Pacific Ocean gyre. Our data imply that the early Pleistocene climate in the northwestern Pacific was influenced not only by obliquity cycles but also by eccentricity cycles. This study also supports the climate model regarding eccentricity's role in the origin of low-frequency climate changes before the late Pleistocene ice ages.  相似文献   

13.
Northward flowing coastal currents along the western margin of India during winter–spring advect low-salinity Bay of Bengal water in to the Eastern Arabian Sea producing a distinct low-salinity tongue, the strength of which is largely governed by the freshwater flux to the bay during summer monsoons. Utilizing the sedimentary records of δ18OG. sacculifer, we reconstructed the past salinity-gradient within that low-salinity tongue, which serves as a proxy for the variation in freshwater flux to the Bay of Bengal and hence summer monsoon intensity.The north–south contrast in the sea level corrected (residual)-δ18OG. sacculifer can be interpreted as a measure of surface salinity-contrast between those two locations because the modern sea surface temperature and its past variation in the study region is nearly uniform. The core-top residual-δ18OG. sacculifer contrast of 0.45‰ between the two cores is assumed to reflect the modern surface salinity difference of 1 psu and serves as a calibration for past variations.The residual-δ18OG. sacculifer contrast varies between 0.2‰ at 75 ky B.P. (i.e., late-Marine Isotope Stage 5) and 0.7‰ at 20 ky B.P. (i.e., Last Glacial Maximum), suggesting that the overall salinity difference between the northern- and southern-end of the low-salinity tongue has varied between 0.6 and 1.6 psu. Considerably reduced difference during the former period than the modern suggests substantially intensified and northward-extended low-salinity tongue due to intense summer monsoons than today. On the other hand, larger difference (1.6 psu) during the latter period indicates that the low-salinity tongue was significantly weakened or withdrawn due to weaker summer monsoons. Thus, the salinity-gradient in the eastern Arabian Sea low-salinity tongue can be used to understand the past variations in the Indian summer monsoons.  相似文献   

14.
The masers of E-type methanol in orion KL and SGR B2   总被引:2,自引:0,他引:2  
Using a simplified model the statistical equilibrium and radiative transfer equations of E-type-CH3OH are solved for Orion KL and SgrB2. According to our calculation results and the observation data taken by Matsakiset al. (1980) and Morimotoet al. (1985a, b), the physical conditions of both sources are estimated. In theJ 2-J 1 E methanol maser region of Orion KL, the density, kinetic temperature, dust temperature, and the fractional abundance are 0.8–2×106 cm–3, 150, 30–90 K, 0.8–8×10–6. In the 4–1-30 E and 5–1-40 E methanol maser region of Sgr B2 the correspondance physical conditions above are 104 cm3, 45, 23 K, and 7×10–7, respectively.  相似文献   

15.
Power spectra based on Pioneer 6 interplanetary magnetic field data in early 1966 exhibit a frequency dependence of f –2 in the range 2.8 × 10–4 to 1.6 × 10–2 cps for periods of both quiet and disturbed field conditions. Both the shape and power levels of these spectra are found to be due to the presence of directional discontinuities in the microstructure (< 0.01 AU) of the interplanetary magnetic field. Power spectra at lower frequencies, in the range of 2.3 × 10–6 to 1.4 × 10–4 cps, reflect the field macrostructure (> 0.1 AU) and exhibit a frequency dependence roughly between f –1 and f –3/2. The results are related to theories of galactic cosmic-ray modulation and are found to be consistent with recent observations of the modulation.  相似文献   

16.
Flood/drought series during the past 1000 yrs in the Yangtze Delta, China, was reconstructed based on historical documents and local chronologies. Continuous wavelet transform was applied to detect the periodicity and variability of the flood/drought series. Research results indicate that: (1) Larger fluctuations of climatic changes in the Tibetan Plateau result in higher wavelet variance of flood/drought in the Yangtze Delta, for example, during 1400–1700, the proxy indicators indicate that the annual temperature in Tibet experienced larger variability and that this time interval exactly corresponds to the time when the higher and significant wavelet variance occurred; (2) Periods featured by colder temperature in the Tibetan Plateau usually correspond to periods characterized by higher wetness with higher probability of flood events; (3) Variability of heating features of the Tibetan Plateau exerted great influences on intensity and onset of Indian monsoon and south Asian summer monsoon, and these atmospheric activities are in direct connection with precipitation in Eastern China. Current global warming may alter the snow mass of Tibetan Plateau and then alters the heating features of Tibetan Plateau, which may in turn impact flood/drought conditions in the Yangtze Delta.  相似文献   

17.
On the basis of Sobolev's method, the population of 30 levels of hydrogen atom is determined allowing for the radiative and collision processes of the heating and ionization of the medium with velocity gradient gradv=10–9–10–11s–1, electron temperatureT e=104 K-2×104 K and electron densityN e=1010 cm–3–1011 cm–3. The central source radiation is characterized by a power spectrum with spectral indices varying from 0 to 2. A region of possible physical conditions is found where the thermal diffuse radiation of the envelope exceeds the emission in the Balmer H line.  相似文献   

18.
Although several proxies have been proposed to trace the course of environmental and climatological fluctuations, precise paleoclimate records from the tropics, notably from Africa are still sorely lacking today. Stable carbon isotopes (δ13C) in tree rings are an attractive record of climate. In this study, the patterns and climatic signals of δ13C ratios were determined on tree rings of deciduous (Acacia senegal, Acacia tortilis, Acacia seyal) and an evergreen (Balanites aegyptiaca) species, from a semi-arid Acacia Woodland in Ethiopia. δ13C inter-annual patterns are synchronous among the co-occurring species. A declining trend with time was observed in δ13C, notably for B. aegyptiaca, which could be due to anthropogenic increases in atmospheric CO2 concentration and decrease in atmospheric δ13C. Tree ring δ13C values of all the species revealed significant negative correlation with precipitation amount but not with temperature and relative humidity. The δ13C series of the deciduous species shows a higher correlation (r = − 0.70 to − 0.78) with precipitation than the evergreen species (r = − 0.55). A master δ13C series, composed of the average of the three Acacia species, displayed stronger significant correlation (r = − 0.82) than any of the individual species δ13C series. The weak relationship between temperature and δ13C in this study indicates that photosynthetic rate is not a significant factor. Moisture stress, however, may have a direct impact on the stomatal conductance and explain the strong negative relationship between δ13C and precipitation. The results demonstrate the potential of δ13C in tree rings to reflect physiological responses to environmental changes as a vehicle for paleoclimatic reconstruction, which is important to understand tree response to past and future climate change.  相似文献   

19.
Sixty-two spectrograms of the supergiant P Cyg, obtained with the Coudé spectrograph of the 2 m RCC telescope at NAO (National Astronomical Observatory, Bulgaria) were used in order to study the behaviour (we mean the displacements of the absorption components only) of the Hei spectrum of this star. Twelve lines from four series (23 P 0–n3S, 23P0 –n 3 D, 2 1 P 0 –n 1 D, and 21 S–n 1 P 0) were examined. It was established that all observed cases can be reduced to a few (three or four) which are typical. These cases are stated in the form of the comparison between the hydrogen and helium lines. All profiles were rectified and their complex structure was taken into consideration. The fixed peculiarities were explained by an optical depth effect.  相似文献   

20.
On a plate obtained with the 2-m RC telescope at the Bulgarian National Observatory about 1400 stars in the spiral arm S4 of the Andromeda galaxy were measured. The limit of completeness is 20 . m 2 (B magnitudes). In the central part of S4 (Figure 3) a pronounced gradient of star luminosity and density is found (Figures 6 and 7a). Here the stars become fainter at about 2 m and their surface density decreases tenfold at the distance 1 kpc from the inner edge of the arm. We have interpreted the decline of star maximum brightness from this edge as age gradient and have evaluated from it the velocity of star formation propagation across the arm, which is about 60 km s–1. If the Andromeda galaxy has trailing spiral arms and the pitch angle of S4 is about 25° in its central part, the pattern velocity p7–14 km s–1 kpc–1. This value is close to that obtained earlier with the help of the Cepheids in the same part of S4 (Efremov, 1980). The absence of a pronounced asymmetry in the star distribution across the arm in the OB82 region may be connected with the position of the strongest dust lanes in front of the stellar spiral arm here. We have stressed that in one part of the same spiral arm there may be a pronounced age gradient, and there may be no such gradient in the near-by one. In spite of the known difficulties in understanding the structure of the Andromeda galaxy it is possible to draw some conclusions which are important for the theory of spiral arms. The detailed investigations of the nearest galaxies are, therefore, most useful for understanding the spiral structure nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号