首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Published photoelectric measurements over a wide wavelength range (0.36–18 µm) are used to study the continuum spectrum of the star Θ1 Ori C. The model that assumes the following three radiation sources is consistent with observations: (1) a zero-age main-sequence O7 star (object 1) of mass M 1=20M , radius R 1=7.4R , effective temperature T 2=37 000 K, and absolute bolometric magnitude $M\mathop {bol}\limits^1 = - 7\mathop .\limits^m 7$ ; (2) object 2 with M 2=15M , R 2=16.2R , T 2=4000 K, and $M\mathop {bol}\limits^2 = - 5\mathop .\limits^m 1$ ; and (3) object 3 with R 310 700 R , T 3=190 K, and $M\mathop {bol}\limits^3 = - 0\mathop .\limits^m 6$ . The visual absorption toward the system is $A_V = 0\mathop .\limits^m 95$ and obeys a normal law. The nature of objects 2 and 3 has not been elucidated. It can only be assumed that object 2 is a companion of the primary star, its spectral type is K7, and it is in the stage of gravitational contraction. Object 3 can be a cocoon star and a member of the system, but can also be a dust envelope surrounding the system as a whole.  相似文献   

2.
Speckle interferometric binary system HD375; Is it a sub-giant binary?   总被引:1,自引:0,他引:1  
Atmospheric modeling is used to build synthetic spectral energy distributions (SEDs) for the individual components of the speckle interferometric binary system HD375. These synthetic SEDs are combined together for the entire system and compared with its observed SED in an iterative procedure to achieve the best fit. Kurucz blanketed models and the measurements of magnitude differences were used to build these SEDs. The input physical parameters for building these best fitted synthetic SEDs represent adequately enough properties of the system. These parameters are: T eff a = 6100 ± 50 K, T eff b = 5940 ± 50 K, log g a = 4.01 ± 0.10, log g b = 3.98 ± 0.10, R a = 1.93 ± 0.20R , R b = 1.83 ± 0.20R , M v a = 3 · m 26 ± 0.40, M v b = 3 · m 51 ± 0.50, L a = 4.63 ± 0.80 L , and L b = 3.74 ± 0.70 L , in accordance with the new estimated parallax π = 12.02 ± 0.60 mas. A modified orbit of the system is built and compared with earlier orbits, and the masses of the two components are calculated as M a = 1.35M and M b = 1.25M . Based on the estimated physical and geometrical parameters of the system, which are confirmed by synthetic photometry, we suggest that the two components are evolved subgiant (F8.5 IV and G0 IV) stars with the age of 3.5 Gyr, formed by fragmentation.  相似文献   

3.
4.
We present the results of spectroscopic and photometric observations for three hot southern-hemisphere post-AGB objects, Hen 3-1347 = IRAS 17074-1845, Hen 3-1428 = IRAS 17311-4924, and LSS 4634 = IRAS 18023-3409. In the spectrograms taken with the 1.9-m telescope of the South African Astronomical Observatory (SAAO) in 2012, we have measured the equivalent widths of the most prominent spectral lines. Comparison of the new data with those published previously points to a change in the spectra of Hen 3-1428 and LSS 4634 in the last 20 years. Based on ASAS data, we have detected rapid photometric variability in all three stars with an amplitude up to 0 · m 3-0 · m 4 in the V band. A similarity between the patterns of variability for the sample stars and other hot protoplanetary nebulae is pointed out. We present the results of UBV observations for Hen 3-1347, according to which the star undergoes rapid irregular brightness variations with maximum amplitudes ΔV = 0 · m 25, ΔB = 0 · m 25, and ΔU = 0 · m 30 and shows color-magnitude correlations. Based on archival data, we have traced the photometric history of the stars over more than 100 years. Hen 3-1347 and LSS 4634 have exhibited a significant fading on a long time scale. The revealed brightness and spectrum variations in the stars, along with evidence for their enhanced mass, may be indicative of their rapid post-AGB evolution.  相似文献   

5.
We use vector spherical harmonics for a kinematic analysis of the proper motions of stars from the Hipparcos, Tycho-2, and UCAC3 catalogues in the northern and southern Galactic hemispheres. We have found that the statistically reliable values of the Ogorodnikov-Milne model parameters M 32 + and M 32 ? have different signs in different hemispheres. This is a consequence of the Galaxy??s rotational retardation with distance from the principal Galactic plane. Based on various samples of stars from the above catalogues, we have obtained the following estimate for the magnitude of the vertical gradient of Galactic rotation velocity in the solar neighborhoods: (20.1 ± 2.9) < |?V??/?z| < (49.2 ± 0.8) km s?1 kpc?1. Another result that is revealed by our analysis of the parameters M 13 ? and M 13 + in different Galactic hemispheres is that the vertical gradient of expansion velocity for the stellar system ?V R /? z is positive in the northern hemisphere and negative in the southern one. This suggests that the expansion velocity V R increases with distance fromthe Galactic plane. We show that both these gradients give rise to an apparent acceleration of the solar motion along the x and y axes of the rectangular Galactic coordinate system. Our analysis of the parameters M 21 ? and M 12 + shows no significant differences in both hemispheres and has allowed us to determine the Oort parameters, to estimate the Galactic rotation velocity and period in the solar neighborhood, and to calculate the ratio of the epicyclic frequency to the angular velocity of Galactic rotation in the solar neighborhood. The derived diagonal elements of the velocity field deformation tensor suggest that the orientation of the rectangular Galactic coordinate system in space must be determined by taking into account not only the geometrical factors but also the dynamical ones. All these results agree well with these quantities estimated over the entire sphere by various authors.  相似文献   

6.
We present the results of our spectroscopic observations of the eclipsing binary SZ Cam performed with the 1-m (Zeiss-1000) and 6-m (BTA) telescopes at the Special Astrophysical Observatory of the Russian Academy of Sciences in 2000 and 2003. Based on our results and published data, we have calculated new values for the component mass ratio, q = 0.72 ± 0.02, the radial velocity of SZ Cam relative to the Solar system barycenter, V 0 =?10.6 ± 2.0 km s?1, and the semi-amplitudes of the radial velocity curves for both components, K 1 = 192.0 ± 2.6 and K 2 = 266.4 ± 2.5 km s?1. The orbital semimajor axes and masses of the components have been determined: α1 = 10.4R , α2 = 14.5R , M 1 = 16.7M , M 2 = 12.0M . New light elements and parameters of the radial velocity curve for the third body have been obtained. The mass of the secondary component of the third body M 2 3b is discussed. Its lower limit is estimated to be M 2 3b = 1.4M .  相似文献   

7.
We present the results of the reduction of our photometric and spectroscopic observations for the eclipsing binary SZ Cam performed with the telescopes at the Astronomical Observatory of the Ural Federal University and the Special Astrophysical Observatory of the Russian Academy of Sciences in 1996–2014. Based on an 11-year-long photometric monitoring of SZ Cam, we have obtained new elements of its photometric orbit and parameters of its components. We have detected low-amplitude periodic light variations in SZ Cam that are possibly related to the ellipsoidal shape of the components of the spectroscopic binary third body. Based on published data and our new spectroscopy, we have found new values for the mass ratio, q = 0.72 ± 0.01, and parameters of the radial velocity curves of the components, V 0 = ?3.6 ± 1.7 km s?1, K 1 = 190.2 ± 1.9 km s?1, and K 2 = 263.0 ± 2.4 km s?1. The component masses have been estimated to be M 1 = 16.1 M and M 2 = 11.6 M . We have obtained new light elements and parameters of the radial velocity curves for the third body, V 0 3b = 4.2 ± 0.6 km s?1 and K 1 3b = 26.6 ± 0.8 km s?1. We have improved the period of the relative orbit of SZ Cam and the third body, P orb = 55.6 ± 1.5 yr.  相似文献   

8.
We analyzed the X-ray data obtained by the Chandra telescope for the galaxy cluster CL0024+17 (z = 0.39). The mean temperature of the cluster is estimated (kT = 4.35 ?0.44 +0.51 keV) and the surface brightness profile is derived. We generated the mass and density profiles for dark matter and gas using numerical simulations and the Navarro-Frenk-White dark matter density profile (Navarro et al., 1995) for a spherically symmetric cluster in which gas is in hydrostatic equilibrium with the cluster field. The total mass of the cluster is estimated to be M 200 = 3.51 ?0.47 +0.38 × 10 Sun 14 within a radius of R 200 = 1.24 ?0.17 +0.12 Mpc of the cluster center. The contribution of dark matter to the total mass of the cluster is estimated as ${{M_{200_{DM} } } \mathord{\left/ {\vphantom {{M_{200_{DM} } } {M_{tot} }}} \right. \kern-0em} {M_{tot} }} = 0.89$ .  相似文献   

9.
We show that hydrostatically equilibrium models for the thin photospheres of helium stars based on new opacities κR (OPAL and OP) can be constructed only for masses M<5M . The parameter Г=κL/4πGMc, defined as the ratio of light pressure to gravity, exceeds a critical value of 1.0 for larger masses, which must result in mass outflow under light pressure. This mass limit matches the observed lower limit for the masses of Wolf-Rayet stars (M WR>5M )), which is an additional argument that the Wolf-Rayet stellar cores are actually helium stars. By solving the equation of radiative transfer in extended atmospheres, we construct a semiempirical model for a WN5 star (M WN5=10M )) with a helium core and an expanding envelope, whose physical and geometric parameters are known mainly from light-curve solution for the eclipsing binary V444 Cyg (WN5+06): outflow rate $\dot M \approx 1.0 \times 10^{ - 5} M_ \odot yr^{ - 1} $ , terminal velocity V ≈2000 km s?1, and expanding-envelope optical depth τenv≈25. The temperature at the outer boundary of the photosphere of a helium star surrounded by such an envelope is approximately 130 kK higher than that in the absence of an envelope, being T ph≈240 kK. Because of the high temperatures, the absorption coefficients at the corresponding photospheric levels are smaller than those in models with no envelope; therefore, the photosphere turns out to be in hydrostatic equilibrium and stable against light pressure (Гmax≈0.9). As a way out of this conflicting situation (an expanding envelope together with a hydrostatically equilibrium photosphere), we propose a model of discrete mass outflow, which is also supported by the observed cloudy structure of the envelopes in this type of stars. To quantitatively estimate parameters of the nonuniform outflow model requires detailed gas-dynamical calculations.  相似文献   

10.
The photometric perturbationsB h (l) arising from both tidal and rotational distortion of a close eclipsing binary have been given in two previous papers (Livaniou, 1977; Rovithis-Livaniou, 1977). The aim of the present paper will be to find the eclipse perturbationsB 2m =B 2m, tid +B 2m, rot of a close binary exhibiting partial eclipses. This will be done giving the suitable combinations of theB h (l) 's and will make easier the application to real stars. After a very brief introduction, Section 2 gives both theB 2m, tid andB 2m, rot for uniformly bright discs; while in Sections 3 and 4 they are given for linear and quadratic limb-darkening, respectively. Finally, Section 5 gives a brief discussion of the results.  相似文献   

11.
We present the results of our photometric UBV JHKLM observations in 2008?C2011 for the classical symbiotic star V1413 Aql. At the end of 2008, the hot component of V1413 Aql experienced the next strong outburst (??V > 2 · m 5). According to the photometric criterion (B-V ?? 0 · m 9 ± 0 · m 2), the star was in an active state even in the period preceding the strong 2008 outburst. Two eclipsing minima of the same amplitude were observed for V1413 Aql in 2010 and 2011. Our analysis of the 2011 eclipse has allowed us to estimate the sizes of the components with respect to the orbital semimajor axis if the system is seen edge-on: the radius of the cool component is R g/a = 0.28 and the radius of the hot component is R h/a = 0.17. However, judging by the B-V color index, the eclipse may be noncentral.  相似文献   

12.
Theoretical estimates of the rates of radial pulsation period change in Galactic Cepheids with initial masses 5.5 M M ZAMS ≤ 13 M , chemical composition X = 0.7, Z = 0.02 and periods 1.5 day ≤ Π ≤ 100 day are obtained from consistent stellar evolution and nonlinear stellar pulsation computations. Pulsational instability was investigated for three crossings of the instability strip by the evolutionary track in the HR diagram. The first crossing occurs at the post-main sequence helium core gravitational contraction stage which proceeds in the Kelvin-Helmholtz timescale whereas the second and the third crossings take place at the evolutionary stage of thermonuclear core helium burning. During each crossing of the instability strip the period of radial pulsations is a quadratic function of the stellar evolution time. Theoretical rates of the pulsation period change agree with observations but the scatter of observational estimates of \(\dot \Pi\) noticeably exceeds the width of the band \(\left( {\delta \log \left| {\dot \Pi } \right| \leqslant 0.6} \right)\) confining evolutionary tracks in the period-period change rate diagram. One of the causes of the large scatter with very high values of \(\dot \Pi\) in Cepheids with increasing periods might be the stars that cross the instability strip for the first time. Their fraction ranges from 2% for M ZAMS = 5.5 M to 9% for M ZAMS = 13 M and variables α UMi and IX Cas seem to belong to such objects.  相似文献   

13.
The main results of a study of a catalogue of physical parameters of 1041 spectroscopic binaries are presented. The distribution of spectroscopic binaries over all main parametersM 1, a, e, M1/M2, P, and certain dependencies between some of them have been found.
  1. It appears that among bright (m v?3 m –5 m ) stars withM?1M , about 40% are apparently spectroscopic binaries with comparable masses of components.
  2. The majority of spectroscopic binaries with the ratio of the large semiaxis of the orbit to the radius of the primarya/R 1?20, have eccentricities close to zero. This is probably a consequence of the tidal circularization of orbits of close binaries by viscous friction.
  3. The discovery of duplicity of double-line spectroscopic binaries is possible only if the semiamplitude of radial velocityK 1 is almost 10 times higher than the semiamplitude of the radial velocity of a single-line spectroscopic binary of the same mass.
  4. Double-line spectroscopic binaries witha/R ?6(M 1/M )1/3,M 1M 2?1.5M are almost almost absent, and the number of stars witha/R ?6(M 1/M )1/3,M 1≈1.5M is relatively low.
  5. The distribution of unevolved SB stars over the large semiaxis may be described by the expression d(N d/Nt)≈0.2 d loga for 6(M 1/M )1/3?a/R ?100.
  6. The intial mass-function for primaries of spectroscopic binaries is the same Salpeter function dN d≈M 1 ?2.35 dM 1 for 1?M 1/M ?30.
  7. It is possible to explain the observed ratio of the number of single-line spectroscopic binaries to the number of double-line binaries if one assumes that the average initial mass ratio is close to 1 and that the mass of the postmass-exchange remnant of the primary exceeds the theoretical one and/or that half of the angular momentum of the system is lost during mass-exchange.
  8. The above-mentioned distributions ofM 1 anda and assumptions on the mass of remnant and/or momentum loss also allow us to explain the observed shapes of dN/dM, dN/dq, and dN/da distributions after some selection effects are taken into account.
  相似文献   

14.
The photometric JHKLM observations of the symbiotic novae V1016 Cyg and HM Sge in 1978–1999 are presented. Parameters of the cool stars themselves and the dust envelopes are estimated. The periods of 470±5 days (for V1016 Cyg) and 535±5 days (for HM Sge) are reliably determined from the entire set of our photometric J data for V1016 Cyg and HM Sge. In addition, monotonic light and color variations are observed on a time scale of several thousand days, with the increase in infrared brightness occurring with the simultaneous decrease in infrared color indices; i.e., the dust envelopes in which both components of the systems were embedded before the outburst of their hot sources in 1964 and 1975, respectively, had continued to disperse until late 1999. The amplitudes of these variations for HM Sge are almost twice those for V1016 Cyg. For HM Sge, the dust envelope reached a maximum density near JD 2447500 and then began to disperse. In the case of V1016 Cyg, a maximum density of the dust envelope was probably reached near JD 2444800, and its dispersal has been continuing for about 20 years. Thus, in both symbiotic novae, their dust envelopes reached a maximum density approximately eight years after the outburst of the hot component and then began to disperse. An analysis of the color-magnitude (J–K, J) diagram reveals that grains in the dust envelopes of V1016 Cyg and HM Sge are similar in their optical properties to impure silicates. The observed [J–K, K–L] color variations for the symbiotic novae under study can be explained in terms of the simple model we chose by variations in the Mira's photospheric temperature from 2400 to 3000 K and in the dust-envelope optical depth from 1 to 3 at a wavelength of 1.25 µm for a constant grain temperature. The observed J–K and K–L color indices for both symbiotic novae, while decreasing, tend to the values typical of Miras. The dust envelopes of both symbiotic novae are optically thick. The dust envelope around HM Sge is, on the average, twice as dense as that around V1016 Cyg; the Mira in V1016 Cyg is slightly cooler (~2800–2900 K) than that in HM Sge (~2600–2700 K). The dust-envelope density decreases as the Mira's temperature increases. The absolute bolometric magnitudes are $ - 5\mathop .\limits^m 1 \pm 0\mathop .\limits^m 15$ for V 1016 Cyg and $5\mathop .\limits^m 27 \pm 0\mathop .\limits^m 17$ for HM Sge. Their distances are 2.8±0.6 and 1.8±0.4 kpc, respectively; the luminosities and radii of their cool components (Miras) are 8.6×103 L , 1×104 L , 500R , and 540R . The radii of their dust envelopes are 1400R and 1500R ; the masses are (3?3.3) × 10?5M and (4?8) × 10?5M The dust envelope of V1016 Cyg disperses slower than that of HM Sge by almost a factor of 25.  相似文献   

15.
We calibrated the absolute magnitudes M V , M J , $M_{K_{s}}$ and M g of red clump stars in terms of colours. M V and M g are strongly dependent on colour, while the dependence of M J and $M_{K_{s}}$ on colour is rather weak. The calibration of the absolute magnitudes M V and $M_{K_{s}}$ is tested on 101 RC stars in the field SA 141. The Galactic model parameters estimated with this sample are in good agreement with earlier studies.  相似文献   

16.
We present the results of photometric observations of a bright cataclysmic variable TT Ari with an orbital period of 0.13755 days. CCD observations were carried out with the Russian-Turkish RTT 150 telescope in 2001 and 2004 (13 nights). Multi-color photoelectric observations of the system were obtained with the Zeiss 600 telescope of SAO RAS in 1994–1995 (6 nights). In 1994–1995, the photometric period of the system was smaller than the orbital one (0 . d 132 and 0 . d 134), whereas it exceeded the latter (0 . d 150 and 0 . d 148) in 2001, 2004. An additional period exceeding the orbital one (0 . d 144) is detected in 1995 modulations. We interpret it as indicating the elliptic disc precession in the direction of the orbital motion. In 1994, the variability in colors shows periods close to the orbital one (0 . d 136, b-v), as well as to the period indicating the elliptic disk precession (0 . d 146, w-b). We confirm that during the epochs characterized by photometric periods shorter than the orbital one, the quasi-periodic variability of TT Ari at time scales about 20 min is stronger than during epochs with long photometric periods. In general, the variability of the system can be described as a “red” noise with increased amplitudes of modulations at characteristic time scales of 10–40 min.  相似文献   

17.
Highly accurate W BV R photometric measurements of the eclipsing binary HP Aur were performed in 2002–2003 with the 48-cm AZT-14 reflector at the Tien-Shan High-Altitude Observatory to determine the rate of apsidal motion. A consistent system of physical and geometrical parameters of the components and the binary as a whole has been constructed for the first time by analyzing these new measurements together with other published data: we determined their radii (R1 = 1.05R, R2 = 0.82R) and luminosities (L1 = 1.10L, L2 = 0.46L), spectral types (G2V + G8V) and surface gravities (log g1 = 4.38, log g2 = 4.51), age (t = 9.5 × 109 yr), and the distance to the binary (d = 197 pc). We detected an ultraviolet excess in the spectra of both components, \(\Delta (W - B) \simeq - 0\mathop .\limits^m 25\), that is probably attributable to a metal deficiency in the atmospheres of these stars. In this system of two solar-type stars, we found a third body with the mass M3 sin i 3 3 = 0.17M that revolved with the period P3 = 13.7 yr around the eclipsing binary in a highly eccentric elliptical orbit: e3 = 0.70 and A3 sin i3 ? 7 AU. The orbit of the eclipsing binary itself was shown to be also elliptical, but with a low eccentricity (e = 0.0025(5)), while apsidal motion with a period Uobs > 80 yr was observed at a theoretically expected period Uth ≈ 92 yr. At least 20 to 30 more years of photoelectric measurements of this star will be required to reliably determine Uobs.  相似文献   

18.
The conditions under which a head-on collision between a disk galaxy and a spherical galaxy can lead to ring formation are investigated, using the impulsive approximation. The spherical galaxy is modeled as a polytrope of indexn=4 and radiusR S and the disk galaxy as an exponential disk whose surface density is given by \(\sigma (r) = \sigma _c e^{ - 4r/R_D } \) , where σ c is the central density andR D is the radius of the disk. The formation and properties of the rings are closely related to the fractional change in binding energy of the disk galaxy, given by ΔU/?U?=γ D β D , where (GM S 2 R D )/(V 2 M D R S 2 ),M S andM D being the masses of the spherical and disk galaxies, respectively, and β D ≡β D (n, σ, ?,i) is a function of the models of the two galaxies, the ratio of the radii of the two galaxies ?=R S /R D , and the angle of inclinationi, of the disk to the direction of relative motion of the two galaxies. Calculations are made for the caseR S =R D . Since practically the entire mass of the spherical galaxy, for the chosen model, lies within 1/3 of its radius, the radius of the spherical galaxy is effectively \(\tfrac{1}{3}\) that of the disk galaxy. It is found that as a result of the collision, the innermost and the outer parts of the disk galaxy are not much affected, but the intermediate region expands and gets evacuated, leading to the crowding of stars in a preferential region forming a ring structure. The rings are best formed for a normal, on-axis collision. For this case, rings form when ΔU/|U| lies between \(\tfrac{1}{2}\) and 2, while they are very sharp and bright when ΔU/|U| lies between \(\tfrac{1}{2}\) and 1. Within this range, as ΔU/|U| increases, the rings become sharper and their positions shift outwards with respect to the centre of the disk galaxy. The relationship $$\gamma _D = 0.0016 + 0.045s_{{\text{max}}}^2 ,$$ wheres max is the radial distance of the density maximum of the ring from the centre of the disk galaxy (measured in terms of the radius of the disk galaxy as unit) enables us to finds max from γ D and vice versa, and interpret some prominent ring galaxies. The effect of introducing a bulge to the disk is to distribute the tidal disruptive effects more evenly and, hence, reduce the sharpness of the ring.  相似文献   

19.
Mass is a fundamental parameter, but the masses are not well known for most hot subdwarfs. We propose a method of determining the masses of hot subdwarfs. Using this method, we studied the masses of hot subdwarfs from the ESO supernova Ia progenitor survey and the Hamburg quasar survey. The study shows that most of the subdwarf B stars have masses between 0.42 and 0.54 M , whilst most sdO stars are in the range 0.40~0.55 M . Comparing our study to the theoretical mass distributions of Han et al. (Mon. Not. R. Astron. Soc. 341:669, 2003), we found that sdO stars with mass less than ~0.5 M may evolve from sdB stars, whilst most high-mass (>0.5 M ) sdO stars result from mergers directly.  相似文献   

20.
We investigated the properties of galaxy clusters in the region of the Hercules supercluster using observational data from the SDSS and 2MASS catalogs and the NED. We have selected 13 galaxy clusters with a total dynamical mass of 4.82 × 1015 M in a 100 × 45 Mpc supercluster region in the plane of the sky (0.030 < z < 0.041). In addition, our sample includes eight clusters from the immediate neighborhoods of the superclusters and ten field clusters at the same z. The derived properties of the rich Hercules supercluster are shown in comparison with the data for the poor Leo supercluster. The main parameters of the virialized galaxy cluster regions in the near infrared (K s ) for the Hercules supercluster differ from those for the Leo supercluster: the number of galaxies and the total luminosity (to a limiting magnitude of ?21 · m 5) increase with cluster mass (L K,200M 200 0.91±0.07 and N 200M 200 0.94±0.07 ), but the dependences are steeper by 0.28 and 0.22. In the virialized cluster regions, the fraction of early-type galaxies selected by the bulge contribution, concentration index, and u t= r color is, on average, 66% (60% in Leo, 70% in the field) among the galaxies brighter than ?23 · m 3 and 54% (51% in Leo, 61% in the field) among the galaxies brighter than ?22 · m 3. The fraction of early-type galaxies in the superclusters does not change with galaxy cluster mass and luminosity. The composite luminosity function of the rich Hercules supercluster is described by a Schechter function and does not differ from the luminosity function of the poor Leo supercluster for the luminosity interval [?26 m , ?21 · m 5] but differs from the field luminosity function at the same z determined from ten galaxy clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号