首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upper Silurian and Lower Devonian rocks on Somerset Island were derived from Boothia Uplift, a linear tectonic belt that underwent a pronounced period of positive movement commencing in the Pridolian. The lower part of the clastic wedge is a succession of predominantly intertidal to supratidal dolomite and siltstone 150–400 m thick (Somerset Island Formation). Markov analysis documents the presence of tidal cycles in these rocks. The succession changes eastward, away from the uplift, into subtidal marine limestone indistinguishable from that of the underlying Read Bay Formation. The Somerset Island Formation grades vertically and laterally westward into alluvial deposits of the Peel Sound Formation, which consists of red sandstoné of braided river and possibly eolian origin, and two fanglomerate members. A variety of fluvial fining-upward and thinning-upward cycle types has been documented by Markov analysis of a lower sand member of the formation. The Peel Sound reaches a maximum thickness of 600 m in northern Somerset Island.Paleocurrent analysis of crossbedding indicates eastward transport directions in the fluvial rocks, except for cosets of very large scale crossbeds (up to 6 m thick) in the northwestern part of the island, which indicate northwesterly flow. The large sets are interpreted as the deposits of eolian dunes, or of sand waves in a large trunk river which carried clastic detritus northward, parallel to Boothia Uplift.The Peel Sound Formation and its lateral facies equivalents on Prince of Wales Island, west of Boothia Uplift, contain coarser conglomerates and a higher sandstone/carbonate ratio, indicating deposition under higher energy conditions than are thought to have prevailed in Somerset Island. Relief may have been greater and depositional slope steeper in the west, an asymmetry in Boothia Uplift that is reflected in the present-day structural style of a narrow zone of tilting and reverse faulting in the west, and a broad zone of gentle folding and normal faulting in the east. The similarity in structural and stratigraphic asymmetry indicates a genetic link, which is further suggested by the presence of syndepositional folds and unconformities at a few localities within the clastic wedge.An estimate of the volume of sediment removed from Boothia Uplift indicates that approximately one third can be accounted for in the present clastic wedge on either side of the Uplift. Either the Lower Paleozoic formations were attenuated over the Uplift, or rivers such as the hypothetical trunk river were effective in the dispersal of material beyond the region of the clastic wedge.  相似文献   

2.
Vegetation is a major driver of fluvial dynamics in modern rivers, but few facies models incorporate its influence. This article partially fills that gap by documenting the stratigraphy, architecture and palaeobotany of the Lower Pennsylvanian Boss Point Formation of Atlantic Canada, which contains some of the Earth's earliest accumulations of large woody debris. Braided‐fluvial systems occupied channel belts of varied scale within valleys several tens of metres deep and more than 12 km wide, and their deposits predominantly consist of sandy and gravelly bedforms with subordinate accretionary macroforms, high flow‐strength sand sheets and rippled abandonment facies. Discrete accumulations of clastic detritus and woody debris are up to 6 m thick and constitute at least 18% of the in‐channel deposits; they represent lags at the base of large and small channels, fills of minor channels and sandy macroforms that developed in central positions in the upper parts of channel fills. Sandstones with roots and other remnants of in situ vegetation demonstrate that vegetated islands were present, and the abundance of discrete channel fills suggests that the formation represents an anabranching, island‐braided sandbed river, the earliest example documented to date. Although some sphenopsid and lycopsid remains are present, most woody fragments are derived from cordaitalean trees, and the evolution of this group late in the Mississippian is inferred to have exerted a significant influence on fluvial morphodynamic patterns. The formation records a landscape in which active channel belts alternated with well‐drained floodplains colonized by dense, mature forests and local patches of pioneering, disturbance‐tolerant vegetation. Lakes and poorly drained floodplains dominated by carbonate and organic deposition, respectively, were also present. A large supply of woody debris triggered channel blockage and avulsion, and active channel margins and islands within the channel belts were initially colonized by pioneer vegetation and subsequently stabilized by large trees. A similar alternation of stable and unstable conditions is observed in modern braided rivers actively influenced by vegetation.  相似文献   

3.
The Upper Jurassic Guará Formation comprises an 80–200 m thick continental succession exposed in the western portion of the Rio Grande do Sul State (Brazil). It comprises four distinct facies associations: (i) simple to locally composite crescentic aeolian dune sets, (ii) aeolian sand sheets, (iii) distal floodflows, and (iv) fluvial channels. The vertical stacking of the facies associations defines several 5–14 m thick wetting-upward cycles. Each cycle starts with aeolian dune sets followed by aeolian sand sheets deposits and culminating in either fluvial channels or distal flood strata. Within some cycles, aeolian sand sheets are absent and fluvial deposits rest directly above aeolian dune facies. The transitions from one facies association to another are abrupt and marked by erosive surfaces that delineate distinct episodes of sediment accumulation. The origin of both the wetting-upward cycles and the erosive surfaces was controlled by the ground-water table level, dry sand availability and aeolian and fluvial sediment transport capacity variations, related to climatic fluctuations between relatively arid and humid conditions. Preservation of the fluvial–aeolian deposits reflects an overall relative water table rise driven by subsidence.  相似文献   

4.
Sedimentological studies of a 30 m thick coastal cliff section within the Middle Proterozoic Eriksfjord Formation in western South Greenland reveals three distinct types of fluvial sand sheet deposits that reflect perennial streams (Type I), semi-perennial streams (Type II), and ephemeral flash floods (Type III). Perennial river sand sheets are characterised by co-sets of medium-scale trough cross-beds, interbedded with isolated medium- and large-scale, high-angle, tabular cross-beds. Indications of desiccation or subaerial exposure are absent. Semi-perennial fluvial sand sheets consist predominantly of low-angle cross-beds, interbedded with isolated sets of high-angle tabular cross-beds with common reactivation surfaces. Horizontal lamination and climbing ripple lamination form subordinate structures. Associated with the sand sheets are adhesion structures and 0.05–0.4 m thick sets of wind ripple-lamination indicating periods of subaerial exposure and aeolian reworking. High-energy ephemeral flash flood sand sheets consist almost exclusively of planar-parallel lamination and climbing ripple lamination with some isolated sets of low-angle cross-bedding. Scouring and internal truncation surfaces are common. The three types of sand sheets are considered to reflect deposition under changing climatic conditions, varying from humid to arid or semi-arid. Aeolian deposits are preserved within the sand sheets showing characteristics of dominantly perennial flow punctuated by shorter periods of desiccation (Type II), while sand sheets showing features typical of arid and or semi-arid flow conditions (Type III) contain no preserved aeolian deposits. This selective preservation is interpreted to be a result of the combined effect of groundwater table level and fluvial style which in turn are inferred to have been controlled by the climatic regime. The deposits show that during pre-vegetational times the preservation of aeolian deposits, under certain conditions, may be more optimal in fluvial systems formed in a humid climate than in fluvial systems formed under semi-arid or arid circumstances. The occurrence of aeolian deposits within a Precambrian succession of fluvial deposits therefore, need not be an indication of the most arid environmental conditions.  相似文献   

5.
Facies studies of well cores from the Bunter Sandstone Formation in the Tønder area, Denmark indicate, that the formation is composed of two desert sand plain sequences associated with sabkha and inland basin (lake?) mudstones. The lower desert sand plain sequence consists of subaerial sand flat deposits overlain by aeolian sand sheet and dune facies topped by interbedded aeolian and ephemeral river deposits. The upper desert sand plain sequence consists of ephemeral river deposits partly interbedded with and overlain by sabkha and inland basin mudstones. Two shoreline sandstones occur in the uppermost part. Both sequences are interpreted mainly in terms of tectonic subsidence of the basin and related upheavals of the source regions. The lower sequence represents a rather continuous progradation of the desert sand plain followed by a rapid transgression of the waters from the inland basin. The upper sequence represents brief periods of fluvial progradation followed by a gradual retreat of the river plain. The most distal part of the sand plain was finally reworked by weak wave-action.  相似文献   

6.
Deposits of Late Pleistocene age were investigated near the Fynselv river on the southwestern coast of Jameson Land. East Greenland. The deposits are of fluvial, deltaic shallow marine and glacigenic origin. Four stratigraphic units are recorded. Unit I consists of deltaic and shallow marine deposits reflecting a relative sea level of at least 20 m above the present. Elevated fluvial deposits represent the subaerial part of the depositional system. The system existed during full interglacial and subarctic conditions as indicated by remains or flora and Fauna and unit I is correlated with the Langelandselv interglaciation (isotopic substage 5e). Unit II consists of a till deposited by a glacier in the Scoresby Sund Fjord during the beginning of the Early Weichselian referred to as the Aucellaelv stade. The glacier probably melted in a marine environment. Unit III represents a marine delta system during the Hugin Sø interstade. and reveals a relative sea level of at least 62 m above the present. Unit IV consists of till and kame deposits assumed to be deposited by a glacier in the Scoresby Sund Fjord during the Flakkerhuk stade. probably a Late Weichselian glacier advance.  相似文献   

7.
Volcanic terrains such as magmatic arcs are thought to display the most complex surface environments on Earth. Ancient volcaniclastics are notoriously difficult to interpret as they describe the interplay between a single or several volcanoes and the environment. The Early Miocene Tepoztlán Formation at the southern edge of the Transmexican Volcanic Belt belongs to the few remnants of this ancestral magmatic arc, and therefore is thought to represent an example of the initial phase of evolution of the Transmexican Volcanic Belt. Based on geological mapping, detailed logging of lithostratigraphic sections, palaeocurrent data of sedimentary features and anisotropy of magnetic susceptibility, mapping of two‐dimensional panels from outcrop to field scale, and geochronological data in an area of ca 1000 km2, three periods in the evolution of the Tepoztlán Formation were distinguished, which lasted around 4 Myr and are representative of a volcanic cycle (edifice growth phases followed by collapse) in a magmatic arc setting. The volcaniclastic sediments accumulated in proximal to medial distances on partly coalescing aprons, similar to volcanic ring plains, around at least three different stratovolcanoes. These volcanoes resulted from various eruptions separated by repose periods. During the first phase of the evolution of the Tepoztlán Formation (22·8 to 22·2 Ma), deposition was dominated by fluvial sediments in a braided river setting. Pyroclastic material from small, andesitic–dacitic composite volcanoes in the near vicinity was mostly eroded and reworked by fluvial processes, resulting in sediments ranging from cross‐bedded sand to an aggradational series of river gravels. The second phase (22·2 to 21·3 Ma) was characterized by periods of strong volcanic activity, resulting in voluminous accumulations of lava and tuff, which temporarily overloaded and buried the original fluvial system with its detritus. Continuous build‐up of at least three major volcanic centres further accentuated the topography and, in the third phase (21·3 to 18·8 Ma), mass flow processes, represented by an increase of debris flow deposits, became dominant, marking a period of edifice destruction and flank failures.  相似文献   

8.
The December 26, 2004 Sumatra tsunami caused severe damage at the coasts of the Indian ocean. We report results of a sedimentological study of tsunami run-up parameters and the sediments laid down by the tsunami at the coast of Tamil Nadu, India, and between Malindi and Lamu, Kenya. In India, evidence of three tsunami waves is preserved on the beaches in the form of characteristic debris accumulations. We measured the maximum run-up distance at 580 m and the maximum run-up height at 4.85 m. Flow depth over land was at least 3.5 m. The tsunami deposited an up to 30 cm thick blanket of moderately well to well-sorted coarse and medium sand that overlies older beach deposits or soil with an erosional unconformity. The sand sheet thins inland without a decrease of grain-size. The deposits consist frequently of three layers. The lower one may be cross-bedded with foresets dipping landward and indicating deposition during run-up. The overlying two sand layers are graded or parallel-laminated without indicators of current directions. Thus, it remains undecided whether they formed during run-up or return flow. Thin dark laminae rich in heavy minerals frequently mark the contacts between successive layers. Benthic foraminifera indicate an entrainment of sediment by the tsunami from water depths less than ca. 30 m water depth. On the Indian shelf these depths are present at distances of up to 5 km from the coast. In Kenya only one wave is recorded, which attained a run-up height of 3 m at a run-up distance of ca. 35 m from the tidal water line at the time of the tsunami impact. Only one layer of fine sand was deposited by the tsunami. It consists predominantly of heavy minerals supplied to the sea by a nearby river. The sand layer thins landward with a minor decrease in grain-size. Benthic foraminifera indicate an entrainment of sediment by the tsunami from water depths less than ca. 30 m water depth, reaching down potentially to ca. 80 m. The presence of only one tsunami-related sediment layer in Kenya, but three in India, reflects the impact of only one wave at the coast of Kenya, as opposed to several in India. Grain-size distributions in the Indian and Kenyan deposits are mostly normal to slightly positively skewed and indicate that the detritus was entrained by the tsunami from well sorted pre-tsunami deposits in nearshore, swash zone and beach environments.  相似文献   

9.
Eighteen coastal-plain depositional sequences that can be correlated to shallow- to deep-water clinoforms in the Eocene Central Basin of Spitsbergen were studied in 1 × 15 km scale mountainside exposures. The overall mud-prone (>300 m thick) coastal-plain succession is divided by prominent fluvial erosion surfaces into vertically stacked depositional sequences, 7–44 m thick. The erosion surfaces are overlain by fluvial conglomerates and coarse-grained sandstones. The fluvial deposits show tidal influence at their seaward ends. The fluvial deposits pass upwards into macrotidal tide-dominated estuarine deposits, with coarse-grained river-dominated facies followed further seawards by high- and low-sinuosity tidal channels, upper-flow-regime tidal flats, and tidal sand bar facies associations. Laterally, marginal sandy to muddy tidal flat and marsh deposits occur. The fluvial/estuarine sequences are interpreted as having accumulated as a series of incised valley fills because: (i) the basal fluvial erosion surfaces, with at least 16 m of local erosional relief, are regional incisions; (ii) the basal fluvial deposits exhibit a significant basinward facies shift; (iii) the regional erosion surfaces can be correlated with rooted horizons in the interfluve areas; and (iv) the estuarine deposits onlap the valley walls in a landward direction. The coastal-plain deposits represent the topset to clinoforms that formed during progradational infilling of the Eocene Central Basin. Despite large-scale progradation, the sequences are volumetrically dominated by lowstand fluvial deposits and especially by transgressive estuarine deposits. The transgressive deposits are overlain by highstand units in only about 30% of the sequences. The depositional system remained an estuary even during highstand conditions, as evidenced by the continued bedload convergence in the inner-estuarine tidal channels.  相似文献   

10.
Pleistocene deposits containing the disarticulated skeleton of a mammoth, and associated faunal and floral remains, were discovered in July 1990 at Upper Strensham, Worcestershire. The environmental evidence from the fauna and flora together with limited geological evidence, indicates that the deposits accumulated within a low energy fluvial environment with a surrounding marsh and restricted tree cover on, or close to, the floodplain. The patchy occurrence of trees in a species-rich grassland is discussed, and the climatic significance of the fauna and flora is considered. The Strensham site lies within the valley of the River Avon, which is known to contain at least five altitudinally distinct river terraces. The deposits at Strensham lie beneath a terraced surface that cannot be accommodated within the existing framework of terrace development in the valley, and evidence is presented which may suggest that these deposits form a previously unrecognised fluvial unit, the Strensham Member of the Avon Valley Formation. Amino-acid age estimates from shells taken from the fossiliferous sediments of the Strensham Member suggest a correlation with Oxygen Isotope Stage 7. This correlation suggests that the temperate deposits at this site should be correlated with the temperate phase recorded at Marsworth, Buckinghamshire and Stoke Goldington in the valley of the Great Ouse.  相似文献   

11.
12.
MARTIN KIRK 《Sedimentology》1983,30(5):727-742
The fluvial sandstone beneath the Mill Coal in the Westphalian ‘A’ of Scotland erosively overlies a lake mudstone. Slightly erosive surfaces within the sandstone, traceable for over 200 m, are used to divide it into two types of major sedimentary units termed type A and type B. Type A sand units are approximately 200 m wide, up to 7 m thick, convex upward, and lenticular in all directions. The constituent cosets overlap to the ENE and dip mainly at 1–2° downcurrent (NNW), but locally at 10–15°. Where thickest, type A sand units display a vertical facies sequence commencing with trough cross-bedded and massive sandstone, overlain by a thick zone of ripple cross-lamination, a thin zone of trough cross-beds, and a variably eroded silt drape up to 0.4 m thick. Attenuated lateral margins are dominated by flat bedded sandstone with primary current lineation. Type A sand units are interpreted as deposits which were accreted on to a large fluvial bar during successive flood events. The bar is thought to have had a similar topographic significance to sand waves described from the Brahmaputra and slip face bounded bars observed in the South Saskatchewan river. Palaeocurrents measured from trough cross-bed sets 0.3–1.0 m thick within type B sand units indicate flow to the WSW, perpendicular to the palaeoflow direction measured from type A units. In sections perpendicular to the WSW flow direction type B units are lenticular, and in ENE-WSW trending sections they can be traced for over 80 m at a constant thickness. Type B sand units are interpreted as the product of low stage channels which flowed across bar fronts and tops. The sandstone described herein is interpreted as a braided-type river deposit but is atypical, because it is fine grained and has an internal structure dominated by ripple cross-lamination and upper phase plane beds. The palaeoriver is thought to have been of low sinuosity, 7–10 m deep, with a high suspended load and large rapidly fluctuating discharge. At low stage a braided-type flow pattern developed around submerged bars. The regime of the palaeoriver was probably controlled by the fine sediment grain size and humid tropical climate.  相似文献   

13.
The fluvial environment of Early Holocene small‐ to middle‐sized lowland rivers in northwest Europe is mostly unstudied due to a lack of preserved and accessible deposits. A rescue excavation in the Scheldt valley in northern Belgium offered the opportunity to study a Boreal alluvial succession in detail. The results of palaeoecological and sedimentological analyses (diatoms, pollen, botanical macro‐remains, molluscs, grain size) characterize the biotic and physical environment in the middle reach of this medium‐sized river system. Although the Early Holocene in the Scheldt Basin has often been portrayed as a period of fluvial stability with marshy conditions and diffuse discharge, this study showed evidence of point bar formation by a small, low‐energy meandering river between ~9.5 and ~8.8 cal. ka BP. The point bar was at least temporarily vegetated and shows a shift from herbaceous riparian vegetation to an open willow‐dominated alluvial forest. This evidence points to a more open vegetation and a more energetic environment than traditionally described for rivers of this size and age. A link to the 9.3 ka BP cooling event is suggested and possible reasons for the scarcity of records of this type of deposits are discussed.  相似文献   

14.
主要通过岩心观察、粒度分析、参数计算、录测井分析等手段,充分吸收国内外河流研究成果,结合研究区区域地质背景,揭示垦东凸起北坡馆上段沉积相模式。得到以下认识:研究区馆上段地层为河流相沉积,从沉积物特征和平面形态角度可以将研究区馆上段河流沉积理解为介于辫状河及曲流河之间的过渡河型。其平均河道弯曲度大于1.7,垂向层序表现为泥多砂少,具有曲流河的特征;但沉积层序顶部常直接覆盖河漫/洪泛平原沉积,特别是河道内砂坝发育造成河道分汊河,砂坝沉积物粒度特征反映受洪水控制的震荡性特点而与曲流河有重要差别。本文借用在水利学界和地貌学界广为使用的分汊河概念建立了研究区馆上段沉积相模式,包括河床、堤岸、河漫/洪泛平原、废弃河道等4个亚相,组成下粗上细的正旋回。其中,河道砂坝是其主要砂体,顶部常被洪泛平原直接覆盖;决口扇是仅次于河道砂坝的第二大砂体。  相似文献   

15.
This study reviews the Quaternary alluvial stratigraphy in three semi-arid river basins of western India i.e., lower Luni (Rajasthan), and Mahi and Sabarmati (Gujarat alluvial plains). On the basis of OSL chronologies, it is shown that the existing intra-valley lithostratigraphic correlations require a revision. The sand, gravel and mud facies are present during various times in the three basins, however, the fluvial response to climate change, and the resulting facies associations, was different in the Thar desert as compared to that at the desert margin; this makes purely lithostratigraphic correlations unviable. It is further shown that the rivers in the Thar desert were more sensitive to climate change and had small response times and geomorphic thresholds as compared to the desert-margin rivers. This is illustrated during the early OIS 1, when the Luni river in the Thar desert was dynamic and showed frequent variations in fluvial styles such as gravel bedload braided streams, sand-bed ephemeral streams and meandering streams, all followed by incision during the early Holocene. The coeval deposits in Sabarmati, however, only show a meandering, floodplain-dominated river. Late Quaternary alluvial deposits in these basins unconformably overlie some older deposits that lack any absolute chronology. Based on the facies types and their associations, and the composition and architecture of the multistoried gravel sheets in the studied sections, it is suggested that older deposits are of pre-Quaternary age. This hypothesis implies the presence of a large hiatus incorporating much of the Quaternary period in the exposed sections  相似文献   

16.
Inclined heterolithic stratification in the Lower Cretaceous McMurray Formation, exposed along the Steepbank River in north‐eastern Alberta, Canada, accumulated on point bars of a 30 to 40 m deep continental‐scale river in the fluvial–marine transition. This inclined heterolithic stratification consists of two alternating lithologies, sand and fine‐grained beds. Sand beds were deposited rapidly by unidirectional currents and contain little or no bioturbation. Fine‐grained beds contain rare tidal structures, and are intensely bioturbated by low‐diversity ichnofossil assemblages. The alternations between the sand and fine‐grained beds are probably caused by strong variations in fluvial discharge; that are believed to be seasonal (probably annual) in duration. The sand beds accumulated during river floods, under fluvially dominated conditions when the water was fresh, whereas the fine‐grained beds accumulated during the late stages of the river flood and deposition continued under tidally influenced brackish‐water conditions during times of low‐river flow (i.e. the interflood periods). These changes reflect the annual migration in the positions of the tidal and salinity limits within the fluvial–marine transition that result from changes in river discharge. Sand and fine‐grained beds are cyclically organized in the studied outcrops forming metre‐scale cycles. A single metre‐scale cycle is defined by a sharp base, an upward decrease in sand‐bed thickness and upward increases in the preservation of fine‐grained beds and the intensity of bioturbation. Metre‐scale cycles are interpreted to be the product of a longer term (decadal) cyclicity in fluvial discharge, probably caused by fluctuations in ocean or solar dynamics. The volumetric dominance of river‐flood deposits within the succession suggests that accumulation occurred in a relatively landward position within the fluvial–marine transition. This study shows that careful observation can reveal much about the interplay of processes within the fluvial–marine transition, which in turn provides a powerful tool for determining the palaeo‐environmental location of a deposit within the fluvial–marine transition.  相似文献   

17.
山西二叠系河流沉积特征   总被引:3,自引:0,他引:3  
山西西部二叠系沉积环境以河流为主,除曲流河外,还有为数不多的辫状河与交织河。曲流河以发育曲流沙坝、洪泛平原和决口扇为其特征。辫状河发育河道沙坝沉积,洪泛平原沉积不太发育。交织河以河道稳定为特征,伴有沼泽沉积,是理想的成煤环境。  相似文献   

18.
嫩江现代河流沉积体岩相及内部构形要素分析   总被引:10,自引:0,他引:10       下载免费PDF全文
王俊玲  任纪舜 《地质科学》2001,36(4):385-394
嫩江是松辽盆地北部一条多河型河流。本文以黑龙江省富裕县塔哈乡大马岗嫩江现代河流沉积露头为例,运用Miall结构要素分析法对嫩江现代河流沉积体岩相类型、层次界面及内部构形要素进行了系统研究,表明大马岗沉积体主要由块状层理细砾相、大型及小型低角度槽状交错层理细砂相、同沉积变形层理细砂相、波状交错层理细砂相、薄层状粉砂质泥与细砂互层相、微波状层理粉砂相、块状层理泥质粉砂相、水平层理泥相、块状层理粉砂质泥相等16种岩相构成,不同岩相空间分布变化差异较大。在大马岗沉积体内部识别出1~5级层次界面,划分出具有成因意义的7种构形要素:河道、砾质坝、侧向加积沉积体、单一侧积砂层、纹层砂席、砂底形及越岸细粒沉积,这种构形要素的划分丰富了Miall的分类方案。  相似文献   

19.
Sedimentological outcrop analysis and sub‐surface ground‐penetrating radar (GPR) surveys are combined to characterize the three‐dimensional sedimentary architecture of Quaternary coarse‐grained fluvial deposits in the Neckar Valley (SW Germany). Two units characterized by different architectural styles are distinguished within the upper part of the gravel body, separated by an erosional unconformity: (i) a lower unit dominated by trough‐shaped depositional elements with erosional, concave‐up bounding surfaces that are filled by cross‐bedded sets of mainly openwork and filled framework gravel; and (ii) an upper unit characterized by gently inclined sheets of massive and openwork gravels with thin, sandy interlayers that show lateral accretion on a lower erosional unconformity. The former is interpreted as confluence scour pool elements formed in a multi‐channel, possibly braided river system, the latter as extensive point bar deposits formed by the lateral migration of a meandering river channel. The lateral accretion elements are locally cut by chute channels mainly filled by gravels rich in fines, and by fine‐grained abandoned channel fills. The lateral accretion elements are associated with gravel dune deposits characterized by steeply inclined cross‐beds of alternating open and filled framework gravel. Floodplain fines with a cutbank and point bar morphology cover the gravel deposits. The GPR images, revealing the three‐dimensional geometries of the depositional elements and their stacking patterns, confirm a change in sedimentary style between the two stratigraphic units. The change occurred at the onset of the Holocene, as indicated by 14C‐dating of wood fragments, and is related to a re‐organization of the fluvial system that probably was driven by climatic changes. The integration of sedimentological and GPR results highlights the heterogeneity of the fluvial deposits, a factor that is important for modelling groundwater flow in valley‐fill aquifers.  相似文献   

20.
The start of deglaciation is recorded in the Minas Basin region of Nova Scotia by the deltaic, glaciofluvial and glaciomarine sediments of the Five Islands Formation. Shell dates on bottomset beds of a delta at Spencers Island range from 14,300 to 12,600, 14C yearsB.P. The time of complete deglaciation of Nova Scotia is still unknown; the uncertainty is at least partially due to evidence for a climatic oscillation at the end of the Late Wisconsinan. Peat beds were deposited during the interval between 12,700 and 10,500 B.P. They overlie previous glacial and fluvial deposits and are overlain by deposits of various origins. Pollen in these peat beds records the migration of spruce into the region indicating climatic warming, and a subsequent deterioration of climate is recorded by the return of tundra-like flora. The peat beds are truncated by a variety of deposits, including fluvial gravel and sand, lacustrine sand, silt and clay, and diamictons. Periglacial landforms and structures have been observed in some of these deposits. At Collins Pond, on the shore of Chedabucto Bay, a diamicton overlying a peat bed is characterized by strong fabrics parallel to the trend of other ice-flow landforms in the region. The evidence suggests that at least some of these deposits are glacigenic, indicating that glaciers were active in Nova Scotia until about 10,000 B.P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号