首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Observations of the Galactic Centre show evidence of one or two disc-like structures of very young stars orbiting the central supermassive black hole within a distance of a few 0.1 pc. A number of analyses have been carried out to investigate the dynamical behaviour and consequences of these discs, including disc thickness and eccentricity growth as well as mutual interaction and warping. However, most of these studies have neglected the influence of the stellar cusp surrounding the black hole, which is believed to be one to two orders of magnitude more massive than the disc(s).
By means of N -body integrations using our bhint code, we study the impact of stellar cusps of different compositions. We find that although the presence of a cusp does have an important effect on the evolution of an otherwise isolated flat disc, its influence on the evolution of disc thickness and warping is rather mild in a two-disc configuration. However, we show that the creation of highly eccentric orbits strongly depends on the graininess of the cusp (i.e. the mean and maximum stellar masses). While Chang recently found that full cycles of Kozai resonance are prevented by the presence of an analytic cusp, we show that relaxation processes play an important role in such highly dense regions and support short-term resonances. We thus find that young disc stars on initially circular orbits can achieve high eccentricities by resonant effects also in the presence of a cusp of stellar remnants, yielding a mechanism to create S-stars and hypervelocity stars.
Furthermore, we discuss the underlying initial mass function (IMF) of the young stellar discs and find no definite evidence for a non-canonical IMF.  相似文献   

2.
We present new models for the formation of disc galaxies that improve upon previous models by following the detailed accretion and cooling of the baryonic mass, and by using realistic distributions of specific angular momentum. Under the assumption of detailed angular momentum conservation, the discs that form have density distributions that are more centrally concentrated than an exponential. We examine the influence of star formation, bulge formation, and feedback on the outcome of the surface brightness distributions of the stars. Low angular momentum haloes yield disc galaxies with a significant bulge component and with a stellar disc that is close to exponential, in good agreement with observations. High angular momentum haloes, on the other hand, produce stellar discs that are much more concentrated than an exponential, in clear conflict with observations. At large radii, the models reveal distinct truncation radii in both the stars and the cold gas. The stellar truncation radii result from our implementation of star formation threshold densities, and are in excellent agreement with observations. The truncation radii in the density distribution of the cold gas reflect the maximum specific angular momentum of the gas that has cooled. We find that these truncation radii occur at H  i surface densities of roughly 1 M pc−2, in conflict with observations. We examine various modifications to our models, including feedback, viscosity, and dark matter haloes with constant-density cores, but show that the models consistently fail to produce bulge less discs with exponential surface brightness profiles. This signals a new problem for the standard model of disc formation: if the baryonic component of the protogalaxies out of which disc galaxies form has the same angular momentum distribution as the dark matter, discs are too compact.  相似文献   

3.
Observations of the Galactic Centre show evidence of disc-like structures of very young stars orbiting the central supermassive black hole within a distance of a few 0.1 pc. While it is widely accepted that about half of the stars form a relatively flat disc rotating clockwise on the sky, there is a substantial ongoing debate on whether there is a second, counter-clockwise disc of stars.
By means of N -body simulations using our bhint code, we show that two highly inclined stellar discs with the observed properties cannot be recognized as two flat circular discs after 5 Myr of mutual interaction. Instead, our calculations predict a significant warping of the two discs, which we show to be apparent among the structures observed in the Galactic Centre. While the high eccentricities of the observed counter-clockwise orbits suggest an eccentric origin of this system, we show the eccentricity distribution in the inner part of the more massive clockwise disc to be perfectly consistent with an initially circular disc in which stellar eccentricities increase due to both non-resonant and resonant relaxation.
We conclude that the relevant question to ask is therefore not whether there are two discs of young stars, but whether there were two such discs to begin with.  相似文献   

4.
We use Spitzer IRAC 3.6 and 4.5 μm near-infrared data from the Spitzer Infrared Nearby Galaxies Survey (SINGS), optical B, V and I and Two-Micron All-Sky Survey K s-band data to produce mass surface density maps of M81. The IRAC 3.6- and 4.5-μm data, whilst dominated by emission from old stellar populations, are corrected for small-scale contamination by young stars and polycyclic aromatic hydrocarbon emission. The I -band data are used to produce a mass surface density map by a   B − V   colour correction, following the method of Bell and de Jong. We fit a bulge and exponential disc to each mass map, and subtract these components to reveal the non-axisymmetric mass surface density. From the residual mass maps, we are able to extract the amplitude and phase of the density wave, using azimuthal profiles. The response of the gas is observed via dust emission in the 8-μm IRAC band, allowing a comparison between the phase of the stellar density wave and gas shock. The relationship between this angular offset and radius suggests that the spiral structure is reasonably long-lived and allows the position of corotation to be determined.  相似文献   

5.
Young massive stars in the central parsec of our Galaxy are best explained by star formation within at least one, and possibly two, massive self-gravitating gaseous discs. With help of numerical simulations, we here consider whether the observed population of young stars could have originated from a large angle collision of two massive gaseous clouds at   R ≃ 1 pc  from Sgr A*. In all the simulations performed, the post-collision gas flow forms an inner, nearly circular gaseous disc and one or two eccentric outer filaments, consistent with the observations. Furthermore, the radial stellar mass distribution is always very steep,  Σ*∝ R −2  , again consistent with the observations. All of our simulations produce discs that are warped by between 30° and 60°, in accordance with the most recent observations. The three-dimensional velocity structure of the stellar distribution is sensitive to initial conditions (e.g. the impact parameter of the clouds) and gas cooling details. For example, the runs in which the inner disc is fed intermittently with material possessing fluctuating angular momentum result in multiple stellar discs with different orbital orientations, contradicting the observed data. In all the cases the amount of gas accreted by our inner boundary condition is large, enough to allow Sgr A* to radiate near its Eddington limit over ∼105 yr. This suggests that a refined model would have physically larger clouds (or a cloud and a disc such as the circumnuclear disc) colliding at a distance of a few parsecs rather than 1 pc as in our simulations.  相似文献   

6.
It appears that most stars are born in clusters, and that at birth most stars have circumstellar discs which are comparable in size to the separations between the stars. Interactions between neighbouring stars and discs are therefore likely to play a key role in determining disc lifetimes, stellar masses, and the separations and eccentricities of binary orbits. Such interactions may also cause fragmentation of the discs, thereby triggering the formation of additional stars.   We have carried out a series of simulations of star–disc interactions using an SPH code which treats self-gravity, hydrodynamic and viscous forces. We find that interactions between discs and stars provide a mechanism for removing energy from, or adding energy to, the orbits of the stars, and for truncating the discs. However, capture during such encounters is unlikely to be an important binary formation mechanism.   A more significant consequence of such encounters is that they can trigger fragmentation of the disc, via tidally and compressionally induced gravitational instabilities, leading to the formation of additional stars and substellar objects. When the disc spins and stellar orbits are randomly oriented, encounters lead to the formation of new companions to the original star in 20 per cent of encounters. If most encounters are prograde and coplanar, as suggested by simulations of dynamically triggered star formation, then new companions are formed in approximately 50 per cent of encounters.  相似文献   

7.
The study of young stellar populations has revealed that most stars are in binary or higher order multiple systems. In this study, the influence on the stellar initial mass function (IMF) of large quantities of unresolved multiple massive stars is investigated by taking into account the stellar evolution and photometrically determined system masses. The models, where initial masses are derived from the luminosity and colour of unresolved multiple systems, show that even under extreme circumstances (100 per cent binaries or higher order multiples), the difference between the power-law index of the mass function (MF) of all stars and the observed MF is small (≲0.1). Thus, if the observed IMF has the Salpeter index  α= 2.35  , then the true stellar IMF has an index not flatter than  α= 2.25  . Additionally, unresolved multiple systems may hide between 15 and 60 per cent of the underlying true mass of a star cluster. While already a known result, it is important to point out that the presence of a large number of unresolved binaries amongst pre-main-sequence stars induces a significant spread in the measured ages of these stars even if there is none. Also, lower mass stars in a single-age binary-rich cluster appear older than the massive stars by about 0.6 Myr.  相似文献   

8.
Recent observations point to the presence of structured dust grains in the discs surrounding young brown dwarfs, thus implying that the first stages of planet formation take place also in the substellar regime. Here, we investigate the potential for planet formation around brown dwarfs and very low-mass stars according to the sequential core accretion model of planet formation. We find that, for a brown dwarf mass 0.05 M, our models predict a maximum planetary mass of  ∼5   M  , orbiting with semimajor axis ∼ 1 au. However, we note that the predictions for the mass–semimajor axis distribution are strongly dependent upon the models chosen for the disc surface density profiles and the assumed distribution of disc masses. In particular, if brown dwarf disc masses are of the order of a few Jupiter masses, Earth-mass planets might be relatively frequent, while if typical disc masses are only a fraction of Jupiter mass, we predict that planet formation would be extremely rare in the substellar regime. As the observational constraints on disc profiles, mass dependencies and their distributions are poor in the brown dwarf regime, we advise caution in validating theoretical models only on stars similar to the Sun and emphasize the need for observational data on planetary systems around a wide range of stellar masses. We also find that, unlike the situation around solar-like stars, Type II migration is totally absent from the planet formation process around brown dwarfs, suggesting that any future observations of planets around brown dwarfs would provide a direct measure of the role of other types of migration.  相似文献   

9.
Measuring solar-like oscillations in an ensemble of stars in a cluster, holds promise for testing stellar structure and evolution more stringently than just fitting parameters to single field stars. The most-ambitious attempt to pursue these prospects was by Gilliland et al. who targeted 11 turn-off stars in the open cluster M67 (NGC 2682), but the oscillation amplitudes were too small (<20 μmag) to obtain unambiguous detections. Like Gilliland et al. we also aim at detecting solar-like oscillations in M67, but we target red giant stars with expected amplitudes in the range 50–  500 μmag  and periods of 1 to 8 h. We analyse our recently published photometry measurements, obtained during a six-week multisite campaign using nine telescopes around the world. The observations are compared with simulations and with estimated properties of the stellar oscillations. Noise levels in the Fourier spectra as low as  27 μmag  are obtained for single sites, while the combined data reach  19 μmag  , making this the best photometric time series of an ensemble of red giant stars. These data enable us to make the first test of the scaling relations (used to estimate frequency and amplitude) with an homogeneous ensemble of stars. The detected excess power is consistent with the expected signal from stellar oscillations, both in terms of its frequency range and amplitude. However, our results are limited by apparent high levels of non-white noise, which cannot be clearly separated from the stellar signal.  相似文献   

10.
We analyse the observed distribution of Eddington ratios  ( L / L Edd)  as a function of supermassive black hole mass for a large sample of nearby galaxies drawn from the Sloan Digital Sky Survey. We demonstrate that there are two distinct regimes of black hole growth in nearby galaxies. The first is associated with galaxies with significant star formation [   M */star formation rate (SFR) ∼  a Hubble time] in their central kiloparsec regions, and is characterized by a broad lognormal distribution of accretion rates peaked at a few per cent of the Eddington limit. In this regime, the Eddington ratio distribution is independent of the mass of the black hole and shows little dependence on the central stellar population of the galaxy. The second regime is associated with galaxies with old central stellar populations (   M */SFR ≫  a Hubble time), and is characterized by a power-law distribution function of Eddington ratios. In this regime, the time-averaged mass accretion rate on to black holes is proportional to the mass of stars in the galaxy bulge, with a constant of proportionality that depends on the mean stellar age of the stars. This result is once again independent of black hole mass. We show that both the slope of the power law and the decrease in the accretion rate on to black holes in old galaxies are consistent with population synthesis model predictions of the decline in stellar mass loss rates as a function of mean stellar age. Our results lead to a very simple picture of black hole growth in the local Universe. If the supply of cold gas in a galaxy bulge is plentiful, the black hole regulates its own growth at a rate that does not further depend on the properties of the interstellar medium. Once the gas runs out, black hole growth is regulated by the rate at which evolved stars lose their mass.  相似文献   

11.
We study the formation of galaxies in a Λ cold dark matter (ΛCDM) universe using high-resolution hydrodynamical simulations with a multiphase treatment of gas, cooling and feedback, focusing on the formation of discs. Our simulations follow eight isolated haloes similar in mass to the Milky Way and extracted from a large cosmological simulation without restriction on spin parameter or merger history. This allows us to investigate how the final properties of the simulated galaxies correlate with the formation histories of their haloes. We find that, at   z = 0  , none of our galaxies contains a disc with more than 20 per cent of its total stellar mass. Four of the eight galaxies nevertheless have well-formed disc components, three have dominant spheroids and very small discs, and one is a spheroidal galaxy with no disc at all. The   z = 0  spheroids are made of old stars, while discs are younger and formed from the inside-out. Neither the existence of a disc at   z = 0  nor the final disc-to-total mass ratio seems to depend on the spin parameter of the halo. Discs are formed in haloes with spin parameters as low as 0.01 and as high as 0.05; galaxies with little or no disc component span the same range in spin parameter. Except for one of the simulated galaxies, all have significant discs at   z ≳ 2  , regardless of their   z = 0  morphologies. Major mergers and instabilities which arise when accreting cold gas is misaligned with the stellar disc trigger a transfer of mass from the discs to the spheroids. In some cases, discs are destroyed, while in others, they survive or reform. This suggests that the survival probability of discs depends on the particular formation history of each galaxy. A realistic ΛCDM model will clearly require weaker star formation at high redshift and later disc assembly than occurs in our models.  相似文献   

12.
We present   UBV  I c   CCD photometry of the young open cluster Be 59 with the aim to study the star formation scenario in the cluster. The radial extent of the cluster is found to be ∼10 arcmin (2.9 pc). The interstellar extinction in the cluster region varies between   E ( B − V ) ≃ 1.4  to 1.8 mag. The ratio of total-to-selective extinction in the cluster region is estimated as  3.7 ± 0.3  . The distance of the cluster is found to be  1.00 ± 0.05 kpc  . Using near-infrared (NIR) colours and slitless spectroscopy, we have identified young stellar objects (YSOs) in the open cluster Be 59 region. The ages of these YSOs range between <1 and ∼2 Myr, whereas the mean age of the massive stars in the cluster region is found to be ∼2 Myr. There is evidence for second-generation star formation outside the boundary of the cluster, which may be triggered by massive stars in the cluster. The slope of the initial mass function, Γ, in the mass range  2.5 < M /M≤ 28  is found to be  −1.01 ± 0.11  which is shallower than the Salpeter value (−1.35), whereas in the mass range  1.5 < M /M≤ 2.5  the slope is almost flat. The slope of the K -band luminosity function is estimated as  0.27 ± 0.02  , which is smaller than the average value (∼0.4) reported for young embedded clusters. Approximately 32 per cent of Hα emission stars of Be 59 exhibit NIR excess indicating that inner discs of the T Tauri star (TTS) population have not dissipated. The Midcourse Space Experiment (MSX) and IRAS-HIRES images around the cluster region are also used to study the emission from unidentified infrared bands and to estimate the spatial distribution of optical depth of warm and cold interstellar dust.  相似文献   

13.
In regions of very high dark matter density such as the Galactic Centre, the capture and annihilation of WIMP dark matter by stars has the potential to significantly alter their evolution. We describe the dark stellar evolution code D ark S tars , and present a series of detailed grids of WIMP-influenced stellar models for main-sequence stars. We describe the changes in stellar structure and main-sequence evolution which occur as a function of the rate of energy injection by WIMPs, for masses of  0.3–2.0 M  and metallicities   Z = 0.0003–0.02  . We show what rates of energy injection can be obtained using realistic orbital parameters for stars at the Galactic Centre, including detailed consideration of the velocity and density profiles of dark matter. Capture and annihilation rates are strongly boosted when stars follow elliptical rather than circular orbits. If there is a spike of dark matter induced by the supermassive black hole at the Galactic Centre, single solar mass stars following orbits with periods as long as 50 yr and eccentricities as low as 0.9 could be significantly affected. Binary systems with similar periods about the Galactic Centre could be affected on even less eccentric orbits. The most striking observational effect of this scenario would be the existence of a binary consisting of a low-mass protostar and a higher mass evolved star. The observation of low-mass stars and/or binaries on such orbits would either provide a detection of WIMP dark matter, or place stringent limits on the combination of the WIMP mass, spin-dependent nuclear-scattering cross-section, halo density and velocity distribution near the Galactic Centre. In some cases, the derived limits on the WIMP mass and spin-dependent nuclear-scattering cross-section would be of comparable sensitivity to current direct-detection experiments.  相似文献   

14.
Using the MegaCam imager on the Canada–France–Hawaii Telescope, we have resolved individual stars in the outskirts of the nearby large spiral galaxy M81 (NGC 3031) well below the tip of the red giant branch of metal-poor stellar populations over  ∼60 × 58 kpc2  . In this paper, we report the discovery of new young stellar systems in the outskirts of M81. The most prominent feature is a chain of clumps of young stars distributed along the extended southern H  i tidal arm connecting M 81 and NGC 3077. The colour–magnitude diagrams of these stellar systems show plumes of bright main sequence stars and red supergiant stars, indicating extended events of star formation. The main sequence turn-offs of the youngest stars in the systems are consistent with ages of ∼40 Myr. The newly reported stellar systems show strong similarities with other known young stellar systems in the debris field around M81, with their properties best explained by these systems being of tidal origin.  相似文献   

15.
We present a simple physical mechanism that can account for the observed stellar mass spectrum for masses M ∗≳0.5 M . The model depends solely on the competitive accretion that occurs in stellar clusters where each star's accretion rate depends on the local gas density and the square of the accretion radius. In a stellar cluster, there are two different regimes depending on whether the gas or the stars dominate the gravitational potential. When the cluster is dominated by cold gas, the accretion radius is given by a tidal-lobe radius. This occurs as the cluster collapses towards a ρ  ∝  R −2 distribution. Accretion in this regime results in a mass spectrum with an asymptotic limit of γ =−3/2 (where Salpeter is γ =−2.35) . Once the stars dominate the potential and are virialized, which occurs first in the cluster core, the accretion radius is the Bondi–Hoyle radius. The resultant mass spectrum has an asymptotic limit of γ =−2 with slightly steeper slopes ( γ ≈−2.5) if the stars are already mass-segregated. Simulations of accretion on to clusters containing 1000 stars show that, as expected, the low-mass stars accumulate the majority of their masses during the gas-dominated phase whereas the high-mass stars accumulate the majority of their masses during the stellar-dominated phase. This results in a mass spectrum with a relatively shallow γ ≈3/2 power law for low-mass stars and a steeper power law for high-mass stars −2.5≲ γ ≤−2 . This competitive accretion model also results in a mass-segregated cluster.  相似文献   

16.
We present models in which the photoevaporation of discs around young stars by an external ultraviolet source (as computed by Adams et al.) is coupled with the internal viscous evolution of the discs. These models are applied to the case of the Orion Nebula Cluster (ONC), where the presence of a strong ultraviolet field from the central OB stars, together with a detailed census of circumstellar discs and photoevaporative flows, is well established. In particular we investigate the constraints that are placed on the initial disc properties in the ONC by the twin requirement that most stars possess a disc on a scale of a few astronomical unit (au), but that only a minority (<20 per cent) are resolved by Hubble Space Telescope ( HST ) at a scale of 50 au. We find that these requirements place very weak constraints on the initial radius distribution of circumstellar discs: the resulting size distribution readily forgets the initial radius distribution, owing to the strong positive dependence of the photoevaporation rate on disc radius. Instead, the scarcity of large discs reflects the relative scarcity of initially massive discs (with mass  >0.1 M  ). The ubiquity of discs on a small scale, on the other hand, mainly constrains the time-span over which the discs have been exposed to the ultraviolet field (<2 Myr). We argue that the discs that are resolved by HST represent a population of discs in which self-gravity was important at the time that the dominant central OB star switched on, but that, according to our models, self-gravity is unlikely to be important in these discs at the present time. We discuss the implications of our results for the so-called proplyd lifetime problem.  相似文献   

17.
18.
Star clusters are born in a highly compact configuration, typically with radii of less than about 1 pc roughly independently of mass. Since the star formation efficiency is less than 50 per cent by observation and because the residual gas is removed from the embedded cluster, the cluster must expand. In the process of doing so it only retains a fraction f st of its stars. To date there are no observational constraints for f st, although N -body calculations by Kroupa, Aarseth & Hurley suggest it to be about 20–30 per cent for Orion-type clusters. Here we use the data compiled by Testi et al., Testi, Palla & Natta and Testi, Palla & Natta for clusters around young Ae/Be stars and by de Wit et al. and de Wit et al. around young O stars and the study of de Zeeuw et al. of OB associations and combine these measurements with the expected number of stars in clusters with primary Ae/Be and O stars, respectively, using the empirical correlation between maximal stellar mass and star cluster mass of Weidner & Kroupa. We find that   f st < 50  per cent with a decrease to higher cluster masses/more massive primaries. The interpretation would be that cluster formation is very disruptive. It appears that clusters with a birth stellar mass in the range  10–103 M  keep at most 50 per cent of their stars.  相似文献   

19.
In this paper we discuss the characteristics of the stellar content of the galactic bulge excluding the stars within a few parsec from the galactic center. The bulge clusters and the field stars are comparedto the disk population. A scenario with a flattened bulge extending toabout 3–4 Kpc from the galactic center is presented. There is evidencefor an old bulge stellar population, decoupled from the disk. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
We examine the effects of dynamical evolution in clusters on planetary systems or protoplanetary discs orbiting the components of binary stars. In particular, we look for evidence that the companions of host stars of planetary systems or discs could have their inclination angles raised from zero to between the threshold angles (39.23° and 140.77°) that can induce the Kozai mechanism. We find that up to 20 per cent of binary systems have their inclination angles increased to within the threshold range. Given that half of all extrasolar planets could be in binary systems, we suggest that up to 10 per cent of extrasolar planets could be affected by this mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号