首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effects of simulated saltwater intrusions on the growth and survival of the freshwater angiosperm,Vallisneria americana Michx., from the Caloosahatchee estuary (southwest Florida, USA) were examined experimentally using indoor mesocosms. Intrusions were simulated by raising salinity in the mesocosms to 18‰ for varying durations and then returning the salinity to 3‰. In separate experiments, exposures of short duration (1, 5, 11, and 20 d) and long duration (20, 30, 50, and 70 d) were examined. Plants held at a constant 3‰ served as controls. Mortality was proportional to the duration of exposure. Statistically significant (p<0.05) losses of blades and shoots occurred at exposures of 20 d or longer, although during a l-mo recovery period at 3‰ viable plants survived the 70-d exposure to 18‰. Expressed as a percentage of initial levels, the extent of recovery after 1 mo was proportional to duration of exposure.V. americana can survive the salinity stress associated with most intrusions of salt water in the upper Caloosahatchee estuary.  相似文献   

2.
Hurricanes and other major storms cause acute changes in salinity within Florida's streams and rivers. Winddriven tidal surges that increase salinities may have long-lasting effects on submersed aquatic vegetation (SAV) and the associated fauna. We investigated potential effects of salinity pulses on SAV in Kings Bay, Florida, by subjecting the three most common macrophytes,Vallisneria americana, Myriophyllum spicatum., andHydrilla verticillata, to simulated salinity pulses. In Kings Bay, we documented changes in salinity during three storms in September 2004 and measured biomass and percent cover before and after these storms. During experiments, macrophytes were exposed to salinities of 5‰, 15‰, or 25‰ for 1, 2, or 7 d, with a 28-d recovery period in freshwater. Relative to controls, plants subjected to salinities of 5‰ exhibited few significant decreases in growth and no increase in mortality. All three species exhibited decreased growth in salinities of 15‰ or 25‰.H. verticillata, exhibited 100% mortality at 15‰ and 25‰, irrespective of the duration of exposure.M. spicatum andV. american exhibited increased mortality after 7-d exposures to 15‰ or any exposure to 25‰ Maximum daily salinities in Kings Bay approached or exceeded 15‰ after each of the three storms, with pulses generally lasting less than 2 d. Total aboveground biomass and percent cover of vascular plants, were reduced following the storms.M. spicatum exhibited an 83% decrease in aboveground biomass and an 80% decrease in percent cover.H. verticillata exhibited a 47% and 15% decline in biomass and percent cover, respectively.V. americana, exhibited an 18% increase in aboveground biomass and a 37% increase in percent cover, which suggests greater tolerance of salinity pulses and release from competition with the invasiveH. verticillata andM. spicatum. Our results indicate that rapid, storm-induced pulses of high salinity can have important consequences for submersed aquatic vegetation, restoration efforts, and management of invasive species.  相似文献   

3.
Cyprinodon variegatus (sheepshead minnow), a common coastal resident of the western Atlantic Ocean and Gulf of Mexico, can live in ambient salinities ranging from 0‰ to greater than 140‰. Fish in this study were obtained from a Gulf of Mexico salt marsh near Cedar Key, Florida. This study examined the ability of individual C. variegatus to regulate plasma osmolality under the influence of a cycling salinity regime. Individuals of C. variegatus were exposed for 21 d to one of seven cyclical salinity regimes. Each cycle lasted for 2 d, with salinity varied between 10‰ and 30‰ each day. Plasma osmolality of fish from each group was determined on five dates during the course of the experiment. C. variegatus efficiently regulated plasma osmolality, even when fishes were exposed to large fluctuations in salinity. Fish previously exposed to large salinity fluctuations regulated plasma osmolality better than fish that previously had experienced no change or small changes in salinity. Increasing salinity had a greater impact on osmoregulation than did decreasing salinity.  相似文献   

4.
We tested the hypothesis that strontium:calcium (Sr:Ca) in otoliths are reflective of environmental salinity experienced by two estuarine fishes during early life. Laboratory and field experiments were performed to examine the effects of salinity and temperature on Sr:Ca in otoliths of black drum (Pogonias cromis) and red drum (Sciaenops ocellatus). Otolith Sr:Ca of juveniles reared at four salinities (5‰, 15‰, 25‰, 35‰) differed significantly forP. cromis while no salinity effect was observed forS. ocellatus. Otolith Sr:Ca of both species were not affected by temperature (23°C and 30°C), suggesting that partitioning of Sr in otoliths of these taxa is constant over the temperature range examined. A field verification trial was conducted forP. cromis and a positive relationship between otolith Sr:Ca and ambient salinity was observed, even though the percent variability explained was modest. A series of Sr:Ca point measurements were taken from the core to the edge of the otoliths of wildP. cromis andS. ocellatus, and otolith Sr:Ca chronologies of both species showed conspicuous declines during the first few months of life. While Sr:Ca chronologies of both species suggest that ingress is associated with a reduction in otolith Sr:Ca, inconsistencies in laboratory and field experiments intimate that Sr uptake in the otolith may be insensitive to salinity and regulated by other factors (aqueous chemistry, ontogenetic shifts in habitat, or physiology). Results from early life history transects of otolith Sr:Ca conform to expected patterns of estuarine ingress-egress during early life and indicate that the approach may be useful for detecting large-scale habitat transitions (marine to estuarine habitats).  相似文献   

5.
Many studies have determined the physical dynamics of salt-water movement into riverine systems, but few studies have elucidated the role of periodic salinity incursions in affecting primary succession in active deltaic wetlands. The emergence of the neighboring Atchafalaya and Wax Lake Deltas, since a record Mississippi River flood in 1973, has created a unique area of land building and primary succession within the deteriorating wetland landscape of Louisiana. The vegetation in these deltas experiences the extremes of allogenic (riverine and tidal flooding, sedimentation, storm disturbance) and autogenic (herbivory, plant competition) forces. The rapid decline of the dominant vegetation,Sagittaria latifolia Willd. (Broadleaf Arrowhead), in the Atchafalaya Delta, and the continued dominance of this species in the Wax Lake Delta prompted us to investigate whether periodic salinity incursions were an additional stress on this species. The objectives of our study were to determine if salinity differences occurred between these deltas, describe the forces that controlled salinity incursions, and the level of salt exposure that adversely affected the growth ofS. latifolia. Continuous measurements of salinity and water level at six sites, revealed that salinity pulses (up to 7.0‰) were common in the Atchafalaya Delta; the Wax Lake Delta was not prone to elevated salinities. Salinity incursions in the Atchafalaya Delta were related to water level set-up, which was forced by strong (>10 m s−1) easterly and southerly winds prior to cold front passages. The movement of distant tropical storms in the Gulf of Mexico produced salinity incursions of longer duration than cold fronts. In a greenhouse experiment, the growth ofS. latifolia was impaired by salinity concentrations of 6.0‰ within 13 d; flooding treatments (20 cm) compounded the loss of aboveground tissue by the end of the experiment. Results from the field and greenhouse studies, compared with historic evidence of elevated salinities in the Atchafalaya delta, indicate that periodic salinity incursions, combined with additional stresses such as flooding and vertebrate herbivory, influence the distribution or presence ofS. latifolia in the Atchafalaya Delta.  相似文献   

6.
The regulatory effect of salinity on nitrogen dynamics in estuarine sediments was investigated in the Randers Fjord estuary, Denmark, using sediment slurries and intact sediment cores and applying 15N-isotope techniques. Sediment was sampled at three representative stations varying in salinity, and all experiments were run at 0‰, 10‰, 20‰, and 30‰. The sediment NH4 + adsorption capacity decreased markedly at all stations when salinity was increased from 0‰ to 10‰; further increase showed little effect. In situ nitrification and denitrification also decreased with increasing salinities, with the most pronounced reduction of approximately 50% being observed when the salinity was raised from 0‰ to 10‰. The salinity-induced reduction in NH4 + adsorption capacity and stimulation of NH4 + efflux has previously been argued to cause a reduction in nitrification activity since the nitrifying bacteria become limited by NH4 + availability at higher salinities. However, using a potential nitrification assay where NH4 + was added in excess, it was demonstrated that potential nitrification activity also decreased with increasing salinity, indicating that the inhibitory salinity effect may also be a physiological effect on the microorganisms. This hypothesis was supported by the finding that denitrification based on NO3 from the overlying water (Dw), which is independent of the nitrification process, and hence NH4 + availability, also decreased with increasing salinity. We conclude that changes in salinity have a significant effect on nitrogen dynamics in estuarine sediments, which must be considered when nitrogen transformations are measured and evaluated.  相似文献   

7.
Variation of temperature and salinity in the lower 22 km stretch of the Gautami-Godavari estuary are reported during four different seasons; hot-weather, south-west monsoon, post-monsoon and winter seasons. The seasonal variation in temperature is small, with a high of about 30°C during hot-weather season and a low of about 26°C during winter season. Unlike temperatures, the salinities in the estuary show large seasonal fluctuations. During south-west monsoon surface salinities were low (0 to 8‰) due to high fresh water run off into the estuary. During hot-weather season surface salinities of 25 to 30‰ were observed due to negligible fresh water run off.  相似文献   

8.
In September 2004, the Loxahatchee River Estuary was affected by Hurricanes Frances and Jeanne, which resulted in a monthly rainfall record of 610 mm and abnormally high freshwater discharges to the system. The occurrence, density, and biomass ofSyringodium filiforme in the Loxahatchee River Estuary declined significantly following the September 2004 storms based on 15 mo of pre-hurricane monitoring and 12 mo of post-hurricane monitoring. Throughout posthurricane monitoring,S. filiforme showed no sign of recovery, thoughHalophila johnsonii increased considerably during the post-hurricane period. Freshwater discharges resulting from the September 2004 hurricanes lowered minimum daily salinity values to near zero and increased standard deviation of daily salinity values to 11‰. Extremely low minimum daily salinity values and high daily salinity fluctuations likely resulted in the observed decline ofS. filiforme. We advise the use of minimum daily salinity values when assessing seagrass habitat suitability or when modeling the effects of alternative water management scenarios.  相似文献   

9.
The eastern Alaska Beaufort Sea coast is characterized by numerous shallow (2–5 m) estuarine lagoons, fed by streams and small rivers that drain northward from the Brooks Range through the arctic coastal plain, and bounded seaward by barrier islands and shoals. Millions of birds from six continents nest and forage during the summer period in this region using the river deltas, lagoons, and shoreline along with several species of anadromous and marine fish. We examined biogeochemical processes linking the benthic community to the overall food web structure of these poorly studied but pristine estuaries, which are largely covered by 1.8 m of ice for 10 months annually. In summer, these lagoons are relatively warm with brackish salinities (5–10°C, S = 10–25) compared to more open coastal waters (0–5°C, S > 27). The stable isotopic composition of organic materials in sediments (i.e., benthic particulate organic matter) and water column suspended particulate organic matter from both streams and lagoons are largely indistinguishable and reflect strong terrestrial contributions, based upon δ13C and δ15N values (−25.6‰ to −27.4‰ and 1.4‰ to 3.3‰, respectively). By comparison, shifts toward more heavy isotope-enriched organic materials reflecting marine influence are observed on the adjacent coastal shelf (−24.8‰ to −25.4‰ and 3.4‰ to 5.3‰, respectively). The isotopic composition of lagoon fauna is consistent with a food web dominated by omnivorous detritovores strongly dependent on microbial processing of terrestrial sources of carbon. Biomagnification of 15N in benthic organisms indicate that the benthic food web in lagoons support up to four trophic levels, with carnivorous gastropod predators and benthic fishes (δ15N values up to 14.4‰) at the apex.  相似文献   

10.
Species of submerged aquatic vegetation (SAV) are frequently used in the management of estuarine systems to set restoration goals, nutrient load reduction goals, and water quality targets. As human need for water increases, the amount of freshwater required by estuaries has become an increasingly important issue. While the, science of establishing the freshwater needs of estuaries is not well developed, recent attempts have emphasized the freshwater requirements of fisheries. We evaluate the hypothesis that SAV can be used to establish freshwater inflow needs. Salinity tolerance data from laboratory and field studies of SAV in the Caloosahatchee estuary, Florida, are used to estimate a minimum flow required to maintain the salt-tolerant freshwater species,Vallisneria americana, at the head of the estuary and a maximum flow required to prevent mortality, of the marine speciesHalodule wrightii at its mouth. ForV. americana, laboratory experiments showed that little or no growth occurred between 10‰ and 15‰ In the field, lower shoot densities (<400 shoots m?2) were associated with salinities greater than 10‰. Results forH. wrightii were more variable than forV. americana. Laboratory experiments indicated that mortality could occur at salinities <6‰, with little growth occurring between 6‰ and 12‰. Field data indicated that higher blade densities (>600 blades m?2) tend to occur at salinities greater than 12‰ Relationships between salinity in the estuary and discharge from the Caloosahatchee River indicated that flows>8.5 m3 s?1 would produce tolerable salinity (<10‰) forV. americana and flows<89 m3 s?1 would avoid lethal salinities (<6‰) forH. wrightii.  相似文献   

11.
Organisms tend to inhabit predictable portions of estuaries along salinity gradients between the ocean inlets (salinity > 35 psu) and the freshwater tributaries (salinity = 0). Previous studies have suggested that the continuous change in biological community structure along this gradient is relatively rapid at certain salinities. This is the basis for estuarine salinity zonation schemes similar to the classic Venice System (i.e., 0–0.5, 0.5–5, 5–18, 18–30, 30–40, > 40). An extensive database (n > 16,000 samples) of frequency of occurrence of nekton was used to assess evidence for estuarine salinity zones in two southwest Florida estuaries: Tampa Bay and Charlotte Harbor. Rapid change in nekton community structure occurred at each end of the estuarine salinity gradient, with comparatively slow (but steady) change in between. There was little strong evidence for estuarine salinity zones at anything other than low salinities (0.1–1). As previously suggested by other authors, estuaries may be regarded as ecoclines, because they form areas of relatively slow but progressive ecological change. The ends of the estuarine salinity gradient appear to be ecotones (areas of rapid change) at the interfaces with adjacent freshwater and marine habitats. This study highlights the rapid change that occurs in nekton community structure at low salinities, which is of relevance to those managing freshwater inflow to estuaries.  相似文献   

12.
Gold ore-forming fluids of the Tanami region, Northern Australia   总被引:1,自引:0,他引:1  
Fluid inclusion studies have been carried out on major gold deposits and prospects in the Tanami region to determine the compositions of the associated fluids and the processes responsible for gold mineralization. Pre-ore, milky quartz veins contain only two-phase aqueous inclusions with salinities ≤19 wt% NaCl eq. and homogenization temperatures that range from 110 to 410°C. In contrast, the ore-bearing veins typically contain low to moderate salinity (<14 wt% NaCl eq.), H2O + CO2 ± CH4 ± N2-bearing fluids. The CO2-bearing inclusions coexist with two-phase aqueous inclusions that exhibit a wider range of salinities (≤21 wt% NaCl eq.). Post-ore quartz and carbonate veins contain mainly two-phase aqueous inclusions, with a last generation of aqueous inclusions being very CaCl2-rich. Salinities range from 7 to 33 wt% NaCl eq. and homogenization temperatures vary from 62 to 312°C. Gold deposits in the Tanami region are hosted by carbonaceous or iron-rich sedimentary rocks and/or mafic rocks. They formed over a range of depths at temperatures from 200 to 430°C. The Groundrush deposit formed at the greatest temperatures and depths (260–430°C and ≤11 km), whereas deposits in the Tanami goldfield formed at the lowest temperatures (≥200°C) and at the shallowest depths (1.5–5.6 km). There is also evidence in the Tanami goldfield for late-stage isothermal mixing with higher salinity (≤21 wt% NaCl eq.) fluids at temperatures between 100 and 200°C. Other deposits (e.g., The Granites, Callie, and Coyote) formed at intermediate depths and at temperatures ranging from 240 to 360°C. All ore fluids contained CO2 ± N2 ± CH4, with the more deeply formed deposits being enriched in CH4 and higher level deposits being enriched in CO2. Fluids from deposits hosted mainly by sedimentary rocks generally contained appreciable quantities of N2. The one exception is the Tanami goldfield, where the quartz veins were dominated by aqueous inclusions with rare CO2-bearing inclusions. Calculated δ 18O values for the ore fluids range from 3.8 to 8.5‰ and the corresponding δD values range from −89 to −37‰. Measured δ 13C values from CO2 extracted from fluid inclusions ranged from −5.1 to −8.4‰. These data indicate a magmatic or mixed magmatic/metamorphic source for the ore fluids in the Tanami region. Interpretation of the fluid inclusion, alteration, and structural data suggests that mineralization may have occurred via a number of processes. Gold occurs in veins associated with brittle fracturing and other dilational structures, but in the larger deposits, there is also an association with iron-rich rocks or carbonaceous sediments, suggesting that both structural and chemical controls are important. The major mineralization process appears to be boiling/effervescence of a gas-rich fluid, which leads to partitioning of H2S into the vapor phase resulting in gold precipitation. However, some deposits also show evidence of desulfidation by fluid–rock interaction and/or reduction of the ore-fluid by fluid mixing. These latter processes are generally more prevalent in the higher crustal-level deposits.  相似文献   

13.
We examined the contrasting, effects of floods and droughts produced by large changes in local climatology on vegetation patterns in Nueces marsh, a semi-arid subtropical salt marsh in south Texas from 1995 to 2005. Climate variations during the study included an initial 4-yr period of moderate conditions, followed by a 2-yr interval of drought, and a recent 4-yr wet period that included large-scale floods. Variation in freshwater inflow, rainfall, and potential evapotranspiration were used in conjunction with field measurements of salinity, inorganic nitrogen, and vegetation structure collected at sites located at varying distances from Nueces Bay. Tidal creek salinities varied with Nueces Bay salinity, with strength of effect inversely related to distance from the bay. Mean (±standard deviation) pore water salinities ranged from 59±54‰ at two high, marsh stations farthest from the bay (10.1 km distant) to 30±21‰ in soil at a low marsh site closest to the bay (0.5 km distant). Mean pore water ammonium was also higher at stations most distant from the bay; nitrate + nitrite did not exhibit a high marsh to low marsh gradient. Nueces Bay salinity decreased substantially when the 10-d cumulative mean daily Nueces River flows exceeded 10 m3 s−1. During periods of low and moderate flood frequency (flows mostly below 10 m3 s−1), vegetation assemblages were dominated by stress-tolerant clonal plants. A catastrophic flood, which immersed vegetation for several weeks between July and September 2002, resulted in extensive plant mortality, but within months, unvegetated areas were rapidly colonized by the obligate annualSalicornia bigelovii. With the end of major flooding by late 2004, plant community structure began a return to pre-drought assemblages at high and middle marsh stations by summer 2005. At the low marsh station, new conditions favored clonal dominants (Spartina alterniflora andBorrichia frutescens), with the latter replacingSalicornia virginica as the dominant species. Our results support the theory that the importance of competition and abiotic stress in determining community composition are inversely related.  相似文献   

14.
Salinities occupied by different life stages of bay anchovy (Anchoa mitchilli) were compared over annual cycles at 128 stations in 12 Florida estuaries. The comparison included eight stations in an oligotrophic, groundwater-based estuary in which all life stages were rare or absent. At other stations, adults, eggs, and early larvae occurred in intermediate to high salinities (10-30 psu) with no apparent central salinity tendency. The larva-juvenile transition was marked by an upstream shift to lower salinities (0-15 psu), also with no central salinity tendency. Mean salinities of the juvenile catch were strongly dependent on the salinities of the sampling effort. This dependence was strongest in estuaries that had weak horizontal salinity gradients. Weak salinity gradients were either natural or resulted from estuarine dams. After using nonlinear regression to account for the interaction between effort salinity and catch salinity, catch salinities were found to be similar from year to year within estuaries, but widely different among estuaries, with interestuarine differences ranging as high as 10–13 psu. Lower salinities were occupied by juveniles in estuaries that had long freshwater turnover times. Inherent geomorphic and inflow-related effects on the distribution of prey resources, coupled with an ontogenetic diet shift, are proposed as the explanation for both the habitat shift and the strong interestuarine variability in salinity at capture.  相似文献   

15.
Sea-level rise is anticipated to alter hydrologic and salinity regimes of coastal wetlands. We conducted a mesocosm experiment to determine species-level responses to 12 sea-level rise scenarios. Both hydrologic regime (−10, +5, and +20 cm flooding depth) and salinity level (fresh, 2‰, 4‰ and 6‰) were interactively manipulated. Within these various sea-level rise scenarios, we sought to determine the effects of hydrologic regime, salinity level, and the interaction of these two stresses on the productivity ofPanicum hemitomon, Sagittaria lancifolia, andSpartina patens, which are dominant macrophytes of fresh, intermediate, and brackish marsh types, respectively, in coastal Louisiana and the southeastern coastal plain. We found that altered hydrologic regimes and increased salinity levels differentially affected edaphic conditions and species-level productivity. Increases in flooding depth were most detrimental toS. patens. Salinity levels greater than 4‰ resulted in mortality ofP. hemitomon, and salinity levels of 6‰ resulted in reduced growth and eventual death, ofS. lancifolia. The effects of elevated salinity levels onP. hemitomon andS. lancifolia were exacerbated when coupled with increased flooding levels. Although soil organic matter was shown to increase in all vegetative conditions, increases were dependent upon the productivity of the species under the different hydrologic regimes and salinity levels withP. hemitomon displaying tremendous potential to increase soil organic matter under fresh conditions, especially when coupled with moderate flooding. The results of this study indicate that as plant communities are subjected to long-term changes in hydrology and salinity levels, community productivity and sustainability ulimately will be determined by species-level tolerances in conjunction with species interactions.  相似文献   

16.
More than 140 middle-small sized deposits or minerals are present in the Weishan-Yongping ore concentration area which is located in the southern part of a typical Lanping strike-slip and pull-apart basin. It has plenty of mineral resources derived from the collision between the Indian and Asian plates. The ore-forming fluid system in the Weishan-Yongping ore concentration area can be divided into two subsystems, namely, the Zijinshan subsystem and Gonglang arc subsystem. The ore-forming fluids of Cu, Co deposits in the Gonglang arc fluid subsystem have δD values between −83.8‰ and −69‰, δ18O values between 4.17‰ and 10.45‰, and δ13C values between −13.6‰ and 3.7‰, suggesting that the ore-forming fluids of Cu, Co deposits were derived mainly from magmatic water and partly from formation water. The ore-forming fluids of Au, Pb, Zn, Fe deposits in the Zijinshan subsystem have δD values between −117.4‰ and −76‰, δ18O values between 5.32‰ and 9.56‰, and Δ13C values between −10.07‰ and −1.5‰. The ore-forming fluids of Sb deposits have δD values between −95‰ and −78‰, δ18O values between 4.5‰ and 32.3‰, and Δ13C values between −26.4‰ and −1.9‰. Hence, the ore-forming fluids of the Zijinshan subsystem must have been derived mainly from formation water and partly from magmatic water. Affected by the collision between the Indian and Asian plates, ore-forming fluids in Weishan-Yongping basin migrated considerably from southwest to northeast. At first, the Gonglang arc subsystem with high temperature and high salinity was formed. With the development of the ore-forming fluids, the Zijinshan subsystem with lower temperature and lower salinity was subsequently formed. Translated from Mineral Deposits, 2006, 25(1): 60–70 [译自: 矿床地质]  相似文献   

17.
The El Cobre deposit is located in eastern Cuba within the volcanosedimentary sequence of the Sierra Maestra Paleogene arc. The deposit is hosted by tholeiitic basalts, andesites and tuffs and comprises thick stratiform barite and anhydrite bodies, three stratabound disseminated up to massive sulphide bodies produced by silicification and sulphidation of limestones or sulphates, an anhydrite stockwork and a siliceous stockwork, grading downwards to quartz veins. Sulphides are mainly pyrite, chalcopyrite and sphalerite; gold occurs in the stratabound ores. Fluid inclusions measured in sphalerite, quartz, anhydrite and calcite show salinities between 2.3 and 5.7 wt% NaCl eq. and homogenisation temperatures between 177 and 300°C. Sulphides from the stratabound mineralisation display δ 34S values of 0‰ to +6.0‰, whilst those from the feeder zone lie between −1.4‰ and +7.3‰. Sulphides show an intra-grain sulphur isotope zonation of about 2‰; usually, δ 34S values increase towards the rims. Sulphate sulphur has δ 34S in the range of +17‰ to +21‰, except two samples with values of +5.9‰ and +7.7‰. Sulphur isotope data indicate that the thermochemical reduction of sulphate from a hydrothermal fluid of seawater origin was the main source of sulphide sulphur and that most of the sulphates precipitated by heating of seawater. The structure of the deposit, mineralogy, fluid inclusion and isotope data suggest that the deposit formed from seawater-derived fluids with probably minor supply of magmatic fluids.  相似文献   

18.
We evaluate if the distribution and abundance ofThalassia testudinum, Syringodium filiforme, andHalodule wrightii within Biscayne Bay, Florida, are influenced by salinity regimes using, a combination of field surveys, salinity exposure experiments, and a seagrass simulation model. Surveys conducted in June 2001 revealed that whileT. testudinum is found throughout Biscayne Bay (84% of sites surveyed),S. filiforme andH wrightii have distributions limited mainly to the Key Biscayne area.H. wrightii can also be found in areas influenced by canal discharge. The exposure of seagrasses to short-term salinity pulses (14 d, 5–45‰) within microcosms showed species-specific susceptibility to the salinity treatments. Maximum growth rates forT testudinum were observed near oceanic salinity values (30–40‰) and lowest growth rates at extreme values (5‰ and 45‰).S. filiforme was the most susceptible seagrass species; maximum growth rates for this species were observed at 25‰ and dropped dramatically at higher and lower salinity.H. wrightii was the most tolerant, growing well at all salinity levels. Establishing the relationship between seagrass abundance and distribution and salinity is especially relevant in South Florida where freshwater deliveries into coastal bays are influenced by water management practices. The seagrass model developed by Fong and Harwell (1994) and modified here to include a shortterm salinity response function suggests that freshwater inputs and associated decreases in salinity in nearshore areas influence the distribution and growth of single species as well as modify competitive interactions so that species replacements may occur. Our simulations indicate that although growth rates ofT. testudinum decrease when salinity is lowered, this species can still be a dominant component of nearshore communities as confirmed by our surveys. Only when mean salinity values are drastically lowered in a hypothetical restoration scenario isH. wrightii able to outcompeteT. testudinum.  相似文献   

19.
The Xihuashan tungsten deposit, Jiangxi province, China, is a world-class vein-type ore deposit hosted in Cambrian strata and Mesozoic granitic intrusions. There are two major sets of subparallel ore-bearing quartz veins. The ore mineral assemblage includes wolframite and molybdenite, with minor amounts of arsenopyrite, chalcopyrite, and pyrite. There are only two-phase aqueous-rich inclusions in wolframite but at least three major types of inclusions in quartz: two- or three-phase CO2-rich inclusions, two-phase pure CO2 inclusions and two-phase aqueous inclusions, indicating boiling. Fluid inclusions in wolframite have relatively higher homogenization temperatures and salinities (239–380°C, 3.8–13.7 wt.% NaCl equiv) compared with those in quartz (177–329°C, 0.9–8.1 wt.% NaCl equiv). These distinct differences suggest that those conventional microthermometric data from quartz are not adequate to explain the ore formation process. Enthalpy–salinity plot shows a linear relationship, implying mixing of different sources of fluids. Although boiling occurred during vein-type mineralization, it seems negligible for wolframite deposition. Mixing is the dominant mechanism of wolframite precipitation in Xihuashan. δ34S values of the sulfides range from −1.6 to +0.1‰, indicative of a magmatic source of sulfur. δ18O values of wolframite are relatively homogeneous, ranging from +4.8‰ to +6.3‰. Oxygen isotope modeling of boiling and mixing processes also indicates that mixing of two different fluids was an important mechanism in the precipitation of wolframite.  相似文献   

20.
The isotopic composition of dissolved boron, in combination with the elemental concentrations of B, Cl and salinities in freshwater-seawater mixed samples taken from the estuary of the Changjiang River, the largest one in China, was investigated in detail in this study. Brackish water and seawater samples from the estuary of the Changjiang River were collected during low water season in November, 1998. Boron isotopic compositions were determined by the Cs2BO^+2-graphite technique with a analytical uncertainty of 0.2‰ for NIST SRM 951 and an average analytical uncertainty of 0.8‰ for the samples. The isotopic compositions of boron, expressed in δ^11B, and boron concentrations in the Changjiang River at Nanjing and seawater from the open marine East Sea, China, are characterized by δ^11B values of -5.4‰ and 40.0‰, as well as 0.0272 and 4.43 mg B/L, respectively. Well-defined correlations between δ^11B values, B concentrations and Cl concentrations are interpreted in terms of binary mixing between fiver input water and East Sea seawater by a process of straightforward dilution. The offsets of δ^11B values are not related to the contents of clastic sediment and to the addition of boron. These relationships favor a conservative behavior of boron at the estuarine of the Changjiang River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号