首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 237 毫秒
1.
We have computed the time dependence of the H2 rovibrational emission spectrum from molecular outflows. This emission arises in shock waves generated by the impact of jets, associated with low-mass star formation, on molecular gas. The shocks are unlikely to have attained a state of equilibrium, and so their structure will exhibit both C- and J-type characteristics. The rotational excitation diagram is found to provide a measure of the age of the shock; in the case of the outflow observed in Cepheus A West by the ISO satellite, the shock age is found to be approximately 1.5×103 yr. Emission by other species, such as NH3 and SiO, is also considered, as are the intensities of the fine-structure transitions of atoms and ions.  相似文献   

2.
We present the results of modelling of the H2 emission from molecular outflow sources, induced by shock waves propagating in the gas. We emphasize the importance of proper allowance for departures from equilibrium owing to the finite flow velocity of the hot, compressed gas, with special reference to the excitation, dissociation and reformation of H2. The salient features of our computer code are described. The code is applied to interpreting the spectra of the outflow sources Cepheus A West and HH43. Particular attention is paid to determining the cooling times in shocks whose speeds are sufficient for collisional dissociation of H2 to take place; the possible observational consequences of the subsequent reformation of H2 are also examined. Because molecular outflow sources are intrinsically young objects, J-type shocks may be present in conjunction with magnetic precursors, which have a C-type structure. We note that very different physical and dynamical conditions are implied by models of C- and J-type shocks which may appear to fit the same H2 excitation diagram.  相似文献   

3.
Long-slit spectra of the molecular outflow Herbig–Haro (HH) 46/47 have been taken in the J and K near-infrared bands. The observed H2 line emission confirms the existence of a bright and extended redshifted counter-jet outflow south-west of HH 46. In contrast with the optical appearance of this object, we show that this outflow seems to be composed of two different emission regions characterized by distinct heliocentric velocities. This implies an acceleration of the counter-jet.
The observed [Fe  ii ] emission suggests an average extinction of 7–9 visual magnitudes for the region associated with the counter-jet.
Through position–velocity diagrams, we show the existence of different morphologies for the H2 and [Fe  ii ] emission regions in the northern part of the HH 46/47 outflow. We have detected for the first time high-velocity (−250 km s−1) [Fe  ii ] emission in the region bridging HH 46 to HH 47A. The two strong peaks detected can be identified with the optical positions B8 and HH 47B.
The H2 excitation diagrams for the counter-jet shock suggest an excitation temperature for the gas of T ex≈2600 K . The lack of emission from the higher energy H2 lines, such as the 4–3 S(3) transition, suggests a thermal excitation scenario for the origin of the observed emission. Comparison of the H2 line ratios with various shock models yielded useful constraints about the geometry and type of these shocks. Planar shocks can be ruled out whereas curved or bow shocks (both J- and C-type) can be parametrized to fit our data.  相似文献   

4.
The results of a survey searching for outflows using near-infrared imaging are presented. Targets were chosen from a compiled list of massive young stellar objects associated with methanol masers in linear distributions. Presently, it is a widely held belief that these methanol masers are found in (and delineate) circumstellar accretion discs around massive stars. If this scenario is correct, one way to test the disc hypothesis is to search for outflows perpendicular to the methanol maser distributions. The main objective of the survey was to obtain wide-field near-infrared images of the sites of linearly distributed methanol masers using a narrow-band 2.12-μm filter. This filter is centred on the  H2 v = 1–0 S(1)  line; a shock diagnostic that has been shown to successfully trace CO outflows from young stellar objects. 28 sources in total were imaged of which 18 sources display H2 emission. Of these, only two sources showed emission found to be dominantly perpendicular to the methanol maser distribution. Surprisingly, the H2 emission in these fields is not distributed randomly, but instead the majority of sources are found to have H2 emission dominantly parallel to their distribution of methanol masers. These results seriously question the hypothesis that methanol masers exist in circumstellar discs. The possibility that linearly distributed methanol masers are instead directly associated with outflows is discussed.  相似文献   

5.
Anomalous molecular line profile shapes are the strongest indicators of the presence of the infall of gas that is associated with star formation. Such profiles are seen for well-known tracers, such as HCO+, CS and H2CO. In certain cases, optically thick emission lines with appropriate excitation criteria may possess the asymmetric double-peaked profiles that are characteristic of infall. However, recent interpretations of the HCO+ infall profile observed towards the protostellar infall candidate B335 have revealed a significant discrepancy between the inferred overall column density of the molecule and that which is predicted by standard dark cloud chemical modelling.
This paper presents a model for the source of the HCO+ emission excess. Observations have shown that, in low-mass star-forming regions, the collapse process is invariably accompanied by the presence of collimated outflows; we therefore propose the presence of an interface region around the outflow in which the chemistry is enriched by the action of jets. This hypothesis suggests that the line profiles of HCO+, as well as other molecular species, may require a more complex interpretation than can be provided by simple, chemically quiescent, spherically symmetric infall models.
The enhancement of HCO+ depends primarily on the presence of a shock-generated radiation field in the interface. Plausible estimates of the radiation intensity imply molecular abundances that are consistent with those observed. Further, high-resolution observations of an infall-outflow source show HCO+ emission morphology that is consistent with that predicted by this model.  相似文献   

6.
To better understand the environment surrounding CO emission clumps in the Keyhole Nebula, we have made images of the region in H2 1–0 S(1) (2.122-μm) emission and polycyclic aromatic hydrocarbon (PAH) emission at 3.29 μm. Our results show that the H2 and PAH emission regions are morphologically similar, existing as several clumps, all of which correspond to CO emission clumps and dark optical features. The emission confirms the existence of photodissociation regions (PDRs) on the surface of the clumps. By comparing the velocity range of the CO emission with the optical appearance of the H2 and PAH emission, we present a model of the Keyhole Nebula whereby the most negative velocity clumps are in front of the ionization region, the clumps at intermediate velocities are in it and those which have the least negative velocities are at the far side. It may be that these clumps, which appear to have been swept up from molecular gas by the stellar winds from η  Car, are now being overrun by the ionization region and forming PDRs on their surfaces. These clumps comprise the last remnants of the ambient molecular cloud around η Car.  相似文献   

7.
We present a comprehensive near-infrared study of two molecular bow shocks in two protostellar outflows, HH 99 in R Coronae Australis and VLA 1623A (HH 313) in Rho Ophiuchi. New, high-resolution, narrow-band images reveal the well-defined bow shock morphologies of both sources. These are compared with two-dimensional MHD modelling of molecular bows from which we infer flow inclination angles, shock speeds and the magnetic field in the pre-shock gas in each system. With combined echelle spectroscopy and low-resolution K -band spectra we further examine the kinematics and excitation of each source. Bow shock models are used to interpret excitation (CDR) diagrams and estimate the extinction and, in the case of VLA 1623, the ortho–para ratio associated with the observed H2 population. For the first time, morphology, excitation and kinematics are fitted with a single bow shock model.
Specifically, we find that HH 99 is best fitted by a C-type bow shock model (although a J-type cap is probably responsible for the [Fe  ii ] emission). The bow is flowing away from the observer (at an angle to the line of sight of ∼45°) at a speed of roughly 100 km s−1. VLA 1623A is interpreted in terms of a C-type bow moving towards the observer (at an angle to the line of sight of ∼75°) at a speed of ∼80 km s−1. The magnetic field associated with HH 99 is thought to be orientated parallel to the flow axis; in VLA 1623A the field is probably oblique to the flow axis, since this source is clearly asymmetric in our H2 images.  相似文献   

8.
We discuss wide-field near-infrared (near-IR) imaging of the NGC 1333, L1448, L1455 and B1 star-forming regions in Perseus. The observations have been extracted from a much larger narrow-band imaging survey of the Taurus–Auriga–Perseus complex. These H2 2.122-μm observations are complemented by broad-band K imaging, mid-IR imaging and photometry from the Spitzer Space Telescope , and published submillimetre CO   J = 3–2  maps of high-velocity molecular outflows. We detect and label 85 H2 features and associate these with 26 molecular outflows. Three are parsec-scale flows, with a mean flow lobe length exceeding 11.5 arcmin. 37 (44 per cent) of the detected H2 features are associated with a known Herbig–Haro object, while 72 (46 per cent) of catalogued HH objects are detected in H2 emission. Embedded Spitzer sources are identified for all but two of the 26 molecular outflows. These candidate outflow sources all have high near-to-mid-IR spectral indices (mean value of  α∼ 1.4  ) as well as red IRAC 3.6–4.5 μm and IRAC/MIPS 4.5–24.0 μm colours: 80 per cent have [3.6]–[4.5] > 1.0 and [4.5]–[24] > 1.5. These criteria – high α and red [4.5]–[24] and [3.6]–[4.5] colours – are powerful discriminants when searching for molecular outflow sources. However, we find no correlation between α and flow length or opening angle, and the outflows appear randomly orientated in each region. The more massive clouds are associated with a greater number of outflows, which suggests that the star formation efficiency is roughly the same in each region.  相似文献   

9.
We present measurements of several near-infrared emission lines from the nearby galaxy NGC 253. We have been able to measure four H2 lines across the circumnuclear starburst, from which we estimate the ortho- to para- ratio of excited H2 to be ∼2. This indicates that the bulk of the H2 emission arises from photodissociation regions (PDRs), rather than from shocks. This is the case across the entire region of active star formation.
As the H2 emission arises from PDRs, it is likely that the ratio of H2 to Brγ (the bright hydrogen recombination line) is a measure of the relative geometry of O and B stars and PDRs. Towards the nucleus of NGC 253 the geometry is deduced to be tightly clustered O and B stars in a few giant H  II regions that are encompassed by PDRs. Away from the nuclear region, the geometry becomes that of PDRs bathed in a relatively diffuse ultraviolet radiation field.
The rotation curves of 1–0 S(1) and Brγ suggest that the ionized gas is tracing a kinetic system different from that of the molecular gas in NGC 253, particularly away from the nucleus.  相似文献   

10.
Two Bok globules, L1253 (CB246) and CB34, have been mapped in the C2S (21–10) transition and in the NH3 (1, 1) and NH3 (2, 2) inversion transitions, respectively. By comparing the C2S map of L1253 (CB246) with the NH3 map of the same globule from Lemme et al., a clumped onion structure results as a consequence of the chemical and dynamical evolution of the object. From the derived parameters it appears that both L1253 (CB246) and CB34 are close to virial equilibrium.  相似文献   

11.
We have detected the   v = 1 → 0 S(1) (λ= 2.1218 μm)  and   v = 2 → 1 S(1) (λ= 2.2477 μm)  lines of H2 in the Galactic Centre, in a  90 × 27 arcsec2  region between the north-eastern boundary of the non-thermal source Sgr A East, and the giant molecular cloud (GMC)  M−0.02 − 0.07  . The detected  H2 v = 1 → 0  S(1) emission has an intensity of  1.6–21 × 10−18 W m−2 arcsec−2  and is present over most of the region. Along with the high intensity, the large linewidths  (FWHM = 40–70 km s−1)  and the  H2 v = 2 → 1 S(1)  to   v = 1 → 0 S(1)  line ratios (0.3–0.5) can be best explained by a combination of C-type shocks and fluorescence. The detection of shocked H2 is clear evidence that Sgr A East is driving material into the surrounding adjacent cool molecular gas. The H2 emission lines have two velocity components at ∼+50 and  ∼0 km s−1  , which are also present in the NH3(3, 3) emission mapped by McGary, Coil & Ho. This two-velocity structure can be explained if Sgr A East is driving C-type shocks into both the  GMC M−0.02 − 0.07  and the northern ridge of McGary et al.  相似文献   

12.
A model is constructed of the material in front of the star Cygnus OB2 no. 12 in which dense cores are embedded in diffuse clumps of gas. The model reproduces the measured abundances of C2 and CO, and predicts a column density of 91010 cm2 for HCO+.  相似文献   

13.
We present hydrodynamic simulations of molecular outflows driven by jets with a long period of precession, motivated by observations of arc-like features and S-symmetry in outflows associated with young stars. We simulate images of not only H2 vibrational and CO rotational emission lines, but also of atomic emission. The density cross-section displays a jaw-like cavity, independent of precession rate. In molecular hydrogen, however, we find ordered chains of bow shocks and meandering streamers which contrast with the chaotic structure produced by jets in rapid precession. A feature particularly dominant in atomic emission is a stagnant point in the flow that remains near the inlet and alters shape and brightness as the jet skims by. Under the present conditions, slow jet precession yields a relatively high fraction of mass accelerated to high speeds, as also attested to in simulated CO line profiles. Many outflow structures, characterized by HH 222 (continuous ribbon), HH 240 (asymmetric chains of bow shocks) and RNO 43N (protruding cavities), are probably related to the slow-precession model.  相似文献   

14.
We have computed optical absorption-line profiles of CH+ and CH, as predicted by a model of a C-type shock propagating in a diffuse interstellar cloud. Both these species are produced in the shock wave in the reaction sequence that is initiated by C+(H2, H)CH+. Whilst CH+ flows at the ion speed, CH, which forms in the dissociative recombination reaction CH+3(e, H2)CH, flows at a speed which is intermediate between those of the ions and the neutrals. The predicted velocity shift between the CH+ and CH line profiles is found to be no more than approximately 2 km s−1, which is smaller than has previously been assumed. We also investigate OH and HCO+, finding that the correlation between their column densities, recently observed in the diffuse interstellar medium, can be reproduced by the model.  相似文献   

15.
The formation of H2 on a pristine olivine surface [forsterite (010)] is investigated computationally. Calculations show that the forsterite surface catalyzes H2 formation by providing chemisorption sites for H atoms. The chemisorption route allows for stepwise release of the reaction exothermicity and stronger coupling to the surface, which increases the efficiency of energy dissipation. This suggests that H2 formed on a pristine olivine surface should be much less rovibrationally excited than H2 formed on a graphite surface. Gas-phase H atoms impinging on the surface will first physisorb relatively strongly  ( E phys= 1240 K)  . The H atom can then migrate via desorption and re-adsorption, with a barrier equal to the adsorption energy. The barrier for a physisorbed H atom to become chemisorbed is equal to the physisorption energy, therefore there is almost no gas-phase barrier to chemisorption. An impinging gas-phase H atom can easily chemisorb  ( E chem= 12 200 K)  , creating a defect where a silicate O atom is protonated and a single electron resides on the surface above the adjacent magnesium ion. This defect directs any subsequent impinging H atoms to chemisorb strongly (39 800 K) on the surface electron site. The two adjacent chemisorbed atoms can subsequently recombine to form H2 via a barrier (5610 K) that is lower than the chemisorption energy of the second H atom. Alternatively, the adsorbed surface species can react with another incoming H atom to yield H2 and regenerate the surface electron site. This double chemisorption 'relay mechanism' catalyzes H2 formation on the olivine surface and is expected to attenuate the rovibrational excitation of H2 thus formed.  相似文献   

16.
We demonstrate that a wide range of molecular hydrogen excitation can be observed in protostellar outflows at wavelengths in excess of 5 μm. Cold H2 in DR 21 is detected through the pure rotational transitions in the ground vibrational level (0–0). Hot H2 is detected in pure rotational transitions within higher vibrational levels (1–1, 1–2, etc.). Although this emission is relatively weak, we have detected two 1–1 lines in the DR 21 outflow with the ISO SWS instrument. We thus investigate molecular excitation over energy levels corresponding to the temperature range 1015–15 722 K, without the uncertainty introduced by differential extinction when employing near-infrared data.
This gas is thermally excited. We uncover a rather low H2 excitation in the DR 21 West Peak. The line emission cannot be produced from single C-shocks or J-shocks; a range of shock strengths is required. This suggests that bow shocks and/or bow-generated supersonic turbulence is responsible. We are able to distinguish this shock-excited gas from the fluoresced gas detected in the K band, providing support for the dual-excitation model of Fernandes, Brand & Burton.  相似文献   

17.
The multi-transitional observations of CS molecules towards the NGC 2071 core have been re-analysed by using a tri-dimensional Monte Carlo radiative transfer code. Better agreement with the observations is made by an introduction of clumpiness to this model than by smoothly varying density to the 1D microturbulent one. The best-fitting model shows that, when a unique density is assumed for clumps, the volume filling factor of the clumps varies as r −2 with an average of ∼5 per cent over the entire core, and that the H2 number density and the CS abundance of the clump relative to H2 are ∼ 2 × 106 cm−3 and ∼ 6 × 10−10, respectively. The radial density gradient ∝ r −2 obtained from our clumpy core model is steeper than that (∝ r −1.3) obtained from the microturbulent model. Since all clumps are subject to random bulk motions in this 3D clumpy macroturbulent model, synthesized line profiles do not show self-absorption dips even for opaque transitions and the resulting linewidth is in good accordance with the observations.  相似文献   

18.
We study the prospects for observing H2 emission during the assembly of primordial molecular cloud kernels. The primordial molecular cloud cores, which resemble those at the present epoch, can emerge around  1+ z ∼20  according to recent numerical simulations. The kernels form inside the cores, and the first stars will appear inside the kernels. A kernel typically contracts to form one of the first generation stars with an accretion rate that is as large as ∼0.01 M yr−1. This occurs owing to the primordial abundances, which result in a kernel temperature of order 1000 K, and the collapsing kernel emits H2 line radiation at a rate ∼1035 erg s−1. Predominantly   J =5-3   ( v =0)  rotational emission of H2 is expected. At redshift  1+ z ∼20  , the expected flux is ∼0.01 μJy for a single kernel. While an individual object is not observable by any facilities available in the near future, the expected assembly of primordial star clusters on subgalactic scales can result in fluxes at the sub-mJy level. This is marginally observable with ASTRO-F and ALMA. We also examine the rotational   J =2-0   ( v =0)  and vibrational   δv =1  emission lines. The former may possibly be detectable with ALMA.  相似文献   

19.
The first star formation in the Universe is expected to take place within small protogalaxies, in which the gas is cooled by molecular hydrogen. However, if massive stars form within these protogalaxies, they may suppress further star formation by photodissociating the H2. We examine the importance of this effect by estimating the time-scale on which significant H2 is destroyed. We show that photodissociation is significant in the least massive protogalaxies, but becomes less so as the protogalactic mass increases. We also examine the effects of photodissociation on dense clumps of gas within the protogalaxy. We find that while collapse will be inhibited in low-density clumps, denser ones may survive to form stars.  相似文献   

20.
We report the first infrared proper motion measurements of the HerbigHaro objects in OMC-1 using a 4-yr time baseline. The [Fe  ii ]-emitting bullets are moving of the order of 0.08 arcsec per year, or at about 170 km s1. The direction of motion is similar to that inferred from their morphology. The proper motions of H2-emitting wakes behind the [Fe  ii ] bullets, and of newly found H2 bullets, are also measured. H2 bullets have smaller proper motion than [Fe  ii ] bullets, while H2 wakes with leading [Fe  ii ] bullets appear to move at similar speeds to their associated bullets. A few instances of variability in the emission can be attributed to dense, stationary clumps in the ambient cloud being overrun, setting up a reverse-oriented bullet. Differential motion between [Fe  ii ] bullets and their trailing H2 wakes is not observed, suggesting that these are not separating, and also that they have reached a steady-state configuration over at least 100 yr. The most distant bullets have, on average, larger proper motions, but are not consistent with free expansion. Nevertheless, an impulsive, or short-lived (<<1000 yr), duration for their origin seems likely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号