首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
We investigate in this paper the dynamics of Born-Infeld (B-I) type dark energy model with scalar potential $V_{0}e^{-\beta\varphi^{2}}$ , and consider the new statefinder diagnostic to differentiate B-I type dark energy model from LCDM which corresponds to statefinder pair {r,s}={1,0}. We study the existence of attractor solution in this model and the evolving trajectory of r?s in our model with this scalar potential. It is numerically shown that the evolving trajectory of r?s is quite different from those of other dark energy models.  相似文献   

2.
A new model of dark energy namely “ghost dark energy model” has recently been suggested to interpret the positive acceleration of cosmic expansion. The energy density of ghost dark energy is proportional to the hubble parameter. In this paper we perform the statefinder diagnostic tool for this model both in flat and non-flat universe. We discuss the dependency of the evolutionary trajectories in sr and qr planes on the interaction parameter between dark matter and dark energy as well as the spatial curvature parameter of the universe. Eventually, in the light of SNe+BAO+OHD+CMB observational data, we plot the evolutionary trajectories in sr and qr planes for the best fit values of the cosmological parameters and compare the interacting ghost model with other dynamical dark energy models. We show that the evolutionary trajectory of ghost dark energy in statefinder diagram is similar to holographic dark energy model. Finally, it has been shown that from the viewpoint of statefinder analysis, the ghost dark energy model has a better agreement with observations compare with holographic and new holographic dark energy models.  相似文献   

3.
We report on ab initio coupled-cluster calculations of the interaction potential energy surface for the HCNH+–He complex. The aug-cc-pVTZ Gaussian basis, to which is added a set of bond functions placed at mid-distance between HCNH+ center of mass and He atom is used. The HCNH+ bonds length are set to their values at the equilibrium geometry, i.e., r e [HC]=1.0780 Å, r e [CN]=1.1339 Å and r e [NH]=1.0126 Å. The interaction energy presents a global minimum located $266.9~\mathrm{cm^{-1}}$ below the HCNH+–He dissociation limit. Using the interaction potential obtained, we have computed rotational excitation cross sections in the close-coupling approach and downward rate coefficients at low temperature (T≤120 K). It is expected that the data worked out in this study may be beneficial for further astrophysical investigations as well as laboratory experiments.  相似文献   

4.
We constrain holographic dark energy (HDE) with time varying gravitational coupling constant in the framework of the modified Friedmann equations using cosmological data from type Ia supernovae, baryon acoustic oscillations, cosmic microwave background radiation and X-ray gas mass fraction. Applying a Markov Chain Monte Carlo (MCMC) simulation, we obtain the best fit values of the model and cosmological parameters within 1σ confidence level (CL) in a flat universe as: $\varOmega_{b}h^{2}=0.0222^{+0.0018}_{-0.0013}$ , $\varOmega_{c}h^{2}=0.1121^{+0.0110}_{-0.0079}$ , $\alpha_{G}\equiv \dot{G}/(HG) =0.1647^{+0.3547}_{-0.2971}$ and the HDE constant $c=0.9322^{+0.4569}_{-0.5447}$ . Using the best fit values, the equation of state of the dark component at the present time w d0 at 1σ CL can cross the phantom boundary w=?1.  相似文献   

5.
Statefinder diagnostic is a useful method which can differ one dark energy model from the others. The Statefinder pair {r,s} is algebraically related to the equation of state of dark energy and its first time derivative. We apply in this paper this method to the dilaton dark energy model based on Weyl-Scaled induced gravitational theory. We investigate the effect of the coupling between matter and dilaton when the potential of dilaton field is taken as the Mexican hat form. We find that the evolving trajectory of our model in the r?s diagram is quite different from those of other dark energy models.  相似文献   

6.
The present work deals with a spatially homogeneous and anisotropic Kantowski-Sachs space time filled with two minimally interacting fluids; dark matter and a hypothetical anisotropic fluid as the holographic dark energy components. To obtain an exact solution of the Einstein’s field equations, we used the assumption of linearly varying deceleration parameter. We have investigated geometric and kinematic properties of the model and the role of the anisotropic holographic dark energy in the evolution of the Kantowski-Sachs universe. Under the suitable condition, it is observed that the anisotropy parameter of the universe and the skewness parameter of the holographic dark energy approaches to zero for large cosmic time and the universe can achieve flatness for some particular moments throughout its entire lifetime. Results show that the coincidence parameter $( \Re= \frac{\rho_{\varLambda}}{\rho_{M}} )$ increases with increasing time and a big rip type future singularity will occur for this model. We have also applied the statefinder diagnostics method to study the behavior of different stages of the universe and to differentiate the proposed dark energy model from the ΛCDM model. Since in this model, the universe has a finite life time and passes through a significant time when the dark energy and the matter energy densities are roughly comparable, so considering $\frac{1}{ \Re_{0}} <\Re < \Re_{0}$ , where ?0 is any fixed ratio, we have calculated the fraction of total life time of the universe when the universe passes through the coincidental stage for this future singularity. The results are found to be consistent with recent cosmological observations.  相似文献   

7.
We consider the holographic dark energy model in which the model parameter c 2 evolves slowly with time. First we calculate the evolution of EoS parameter as well as the deceleration parameter in this generalized version of holographic dark energy (GHDE). Depending on the parameter c 2, the phantom regime can be achieved earlier or later compare with original version of holographic dark energy. The evolution of energy density of GHDE model is investigated in terms of parameter c 2. We also show that the time-dependency of c 2 can effect on the transition epoch from decelerated phase to accelerated expansion. Finally, we perform the statefinder diagnostic for GHDE model and show that the evolutionary trajectories of the model in sr plane are strongly depend on the parameter c 2.  相似文献   

8.
In this work, we have considered the flat FRW model of the universe in (n+2)-dimensions filled with the dark matter and the magnetic field. We present the Hubble parameter in terms of the observable parameters Ω m0 and H 0 with the redshift z and the other parameters like B 0, ω, μ 0, δ, n, w m . The natures of magnetic field B, deceleration parameter q and $\operatorname{Om}$ diagnostic have also been analyzed for accelerating expansion of the universe. From Stern data set (12 points), we have obtained the bounds of the arbitrary parameters by minimizing the χ 2 test. The best-fit values of the parameters are obtained by 66 %, 90 % and 99 % confidence levels. Now to find the bounds of the parameters (B 0,ω) and to draw the statistical confidence contour, we fixed four parameters μ 0, δ, n, w m . Here the parameter n determines the higher dimensions and we perform comparative study between three cases: 4D (n=2), 5D (n=3) and 6D (n=4) respectively. Next due to joint analysis with BAO observation, we have also obtained the bounds of the parameters (B 0,ω) by fixing other parameters μ 0, δ, n, w m for 4D, 5D and 6D. The best fit of distance modulus for our theoretical model and the Supernova Type Ia Union2 sample are drawn for different dimensions.  相似文献   

9.
Motivated by the holographic principle, it has been suggested that the dark energy density may be inversely proportional to the area A of the event horizon of the universe. However, such a model would have a causality problem. In this work, we consider the entropy-corrected version of the holographic dark energy model in the non-flat FRW universe and we propose to replace the future event horizon area with the inverse of the Ricci scalar curvature. We obtain the equation of state (EoS) parameter ω Λ, the deceleration parameter q and WD¢\Omega_{D}' in the presence of interaction between Dark Energy (DE) and Dark Matter (DM). Moreover, we reconstruct the potential and the dynamics of the tachyon, K-essence, dilaton and quintessence scalar field models according to the evolutionary behavior of the interacting entropy-corrected holographic dark energy model.  相似文献   

10.
Dark energy models inspired by the cosmological holographic principle are studied in homogeneous isotropic spacetime with a general choice for the dark energy density \(\rho_{d}=3(\alpha H^{2}+\beta\dot{H})\) . Special choices of the parameters enable us to obtain three different holographic models, including the holographic Ricci dark energy (RDE) model. Effect of interaction between dark matter and dark energy on the dynamics of those models are investigated for different popular forms of interaction. It is found that crossing of phantom divide can be avoided in RDE models for β>0.5 irrespective of the presence of interaction. A choice of α=1 and β=2/3 leads to a varying Λ-like model introducing an IR cutoff length Λ ?1/2. It is concluded that among the popular choices an interaction of the form Q m suits the best in avoiding the coincidence problem in this model.  相似文献   

11.
We prove here that Newton’s universal gravitation and momentum conservation laws together reproduce Weinberg’s relation. It is shown that the Hubble parameter H must be built in this relation, or equivalently the age of the Universe t. Using a wave-to-particle interaction technique we then prove that the speed of light c decreases with cosmological time, and that c is proportional to the Hubble parameter H. We see the expansion of the Universe as a local effect due to the LAB value of the speed of light c 0 taken as constant. We present a generalized red shift law and find a predicted acceleration for photons that agrees well with the result from Pioneer 10/11 anomalous acceleration. We finally present a cosmological model coherent with the above results that we call the Mass-Boom. It has a linear increase of mass m with time as a result of the speed of light c linear decrease with time, and the conservation of momentum mc. We obtain the baryonic mass parameter equal to the curvature parameter, Ω m k , so that the model is of the type of the Einstein static, closed, finite, spherical, unlimited, with zero cosmological constant. This model is the cosmological view as seen by photons, neutrinos, tachyons etc. in contrast with the local view, the LAB reference. Neither dark matter nor dark energy is required by this model. With an initial constant speed of light during a short time we get inflation (an exponential expansion). This converts, during the inflation time, the Planck’s fluctuation length of 10?33 cm to the present size of the Universe (about 1028 cm, constant from then on). Thereafter the Mass-Boom takes care to bring the initial values of the Universe (about 1015 gr) to the value at the present time of about 1055 gr.  相似文献   

12.
FRW universe in RS II braneworld model filled with a combination of dark matter and dark energy in the form of modified Chaplygin gas (MCG) is considered. It is known that the equation of state (EoS) for MCG is a three-variable equation determined by A, α and B. The permitted values of these parameters are determined by the recent astrophysical and cosmological observational data. Here we present the Hubble parameter in terms of the observable parameters Ω m0, Ω x0, H 0, redshift z and other parameters like A, B, C and α. From Stern data set (12 points), we have obtained the bounds of the arbitrary parameters by minimizing the χ 2 test. The best-fit values of the parameters are obtained by 66 %, 90 % and 99 % confidence levels. Next due to joint analysis with BAO and CMB observations, we have also obtained the bounds of the parameters (B,C) by fixing some other parameters α and A. The best fit value of distance modulus μ(z) is obtained for the MCG model in RS II brane, and it is concluded that our model is perfectly consistent with the union2 sample data.  相似文献   

13.
Europa's surface is chemically altered by radiolysis from energetic charged particle bombardment. It has been suggested that hydrated sulfuric acid (H2SO4·nH2O) is a major surface species and is part of a radiolytic sulfur cycle, where a dynamic equilibrium exists between continuous production and destruction of sulfur polymers Sx, sulfur dioxide SO2, hydrogen sulfide H2S, and H2SO4·nH2O. We measured the rate of sulfate anion production for cyclo-octal sulfur grains in frozen water at temperatures, energies, and dose rates appropriate for Europa using energetic electrons. The measured rate is GMixture(SO42−)=fSulfur (r0/r)βG1 molecules (100 eV)−1, where fSulfur is the sulfur weight fraction, r is the grain radius, r0=50 μm, β≈1.9, and G1=0.4±0.1. Equilibrium column densities N are derived for Europa's surface and follow the ordering N(H2SO4) » N(S)>N(SO2)>N(H2S). The lifetime of a sulfur atom on Europa's surface for radiolysis to H2SO4 is τ(−S)=120(r/r0)β years. Rapid radiolytic processing hides the identity of the original source of the sulfurous material, but Iogenic plasma ion implantation and an acidic or salty ocean are candidate sources. Sulfate salts, if present, would be decomposed in <3800 years and be rapidly assimilated into the sulfur cycle.  相似文献   

14.
In Brans-Dicke theory of gravity, from the nature of the scalar field-potential considered, the dark energy, dark matter, radiation densities predicted by different observations and the closedness of the universe considered, we can fix our ω BD , the Brans-Dicke parameter, keeping only the thing in mind that from different solar system constrains it must be greater than 5×105. Once we have a value, satisfying the required lower boundary, in our hand we proceed for setting unknown parameters of the different dark energy models’ EoS parameter. In this paper we work with three well known red shift parametrizations of dark energy EoS. To constrain their free parameters for Brans Dicke theory of gravity we take twelve point red shift vs Hubble’s parameter data and perform χ 2 test. We present the observational data analysis mechanism for Stern, Stern+BAO and Stern+BAO+CMB observations. Minimising χ 2, we obtain the best fit values and draw different confidence contours. We analyze the contours physically. Also we examine the best fit of distance modulus for our theoretical models and the Supernovae Type Ia Union2 sample. For Brans Dicke theory of gravity the difference from the mainstream confidence contouring method of data analysis id that the confidence contours evolved are not at all closed contours like a circle or a ellipse. Rather they are found to be open contours allowing the free parameters to float inside a infinite region of parameter space. However, negative EoSs are likely to evolve from the best fit values.  相似文献   

15.
The Hubble constant is split into two terms H = H1 + H2 , where H1 is a decreasing function due to the Big Bang and the subsequent gravitational interaction that slows the expansion of the Universe and H2 is an increasing function that corresponds to dark energy which accelerates this expansion. For T = 13.7 Gyr we prove that H2(T) > 5 m/(yr AU). This is a quite large number and thus the impact of dark energy, which is spread almost everywhere uniformly, should be observable not only on large scales, but also in our Solar system. In particular, we show that Earth, Mars and other planets were closer to the Sun 4.5 Gyr ago. The recession speed ≈5.3 m/yr of the Earth from the Sun seems to be just right for an almost constant influx of solar energy from the origin of life on Earth up to the present over which time the Sun’s luminosity has increased approximately linearly. This presents further support for the Anthropic Principle. Namely, the existence of dark energy guarantees very stable conditions for the development of intelligent life on Earth over a period of 3.5 Gyr.  相似文献   

16.
17.
Here we investigate the holographic dark energy model in the framework of FRW cosmology where the Newtonian gravitational constant, G, is varying with cosmic time. Using the complementary astronomical data which support the time dependency of G, the evolutionary treatment of EoS parameter and energy density of dark energy model are calculated in the presence of time variation of G. It has been shown that in this case, the phantom regime can be achieved at the present time. We also calculate the evolution of G-corrected deceleration parameter for holographic dark energy model and show that the dependency of G on the comic time can influence on the transition epoch from decelerated expansion to the accelerated phase. Finally we perform the statefinder analysis for G-corrected holographic model and show that this model has a shorter distance from the observational point in sr plane compare with original holographic dark energy model.  相似文献   

18.
We consider a spherically symmetric general relativistic perfect fluid in its comoving frame. It is found that, by integrating the local energy momentum conservation equation, a general form of g 00 can be obtained. During this study, we get a cue that an adiabatically evolving uniform density isolated sphere having ρ(r,t)=ρ 0(t), should comprise “dust” having p 0(t)=0; as recently suggested by Durgapal and Fuloria (J. Mod. Phys. 1:143, 2010) In fact, we offer here an independent proof to this effect. But much more importantly, we find that for the homogeneous and isotropic Friedmann-Robertson-Walker (FRW) metric having p(r,t)=p 0(t) and ρ(r,t)=ρ 0(t), \(g_{00} = e^{-2p_{0}/(p_{0} +\rho_{0})}\). But in general relativity (GR), one can choose an arbitrary tt ?=f(t) without any loss of generality, and thus set g 00(t ?)=1. And since pressure is a scalar, this implies that p 0(t ?)=p 0(t)=0 in the Big-Bang model based on the FRW metric. This result gets confirmed by the fact the homogeneous dust metric having p(r,t)=p 0(t)=0 and ρ(r,t)=ρ 0(t) and the FRW metric are exactly identical. In other words, both the cases correspond to the same Einstein tensor \(G^{a}_{b}\) because they intrinsically have the same energy momentum tensor \(T^{a}_{b}=\operatorname {diag}[\rho_{0}(t), 0,0, 0]\).  相似文献   

19.
20.
In this paper, we study an interacting holographic dark energy model in the framework of fractal cosmology. The features of fractal cosmology could pass ultraviolet divergencies and also make a better understanding of the universe in different dimensions. We discuss a fractal FRW universe filled with the dark energy and cold dark matter interacting with each other. It is observed that the Hubble parameter embraces the recent observational range while the deceleration parameter demonstrates an accelerating universe and a behavior similar to \(\Lambda \mbox{CDM}\). Plotting the equation of state shows that it lies in phantom region for interaction mode. We use \(\mathit{Om}\)-diagnostic tool and it shows a phantom behavior of dark energy which is a condition of avoiding the formation of black holes. Finally we execute the StateFinder diagnostic pair and all the trajectories for interacting and non-interacting state of the model meet the fixed point \(\Lambda \mbox{CDM}\) at the start of the evolution. A behavior similar to Chaplygin gas also can be observed in statefinder plane. We find that new holographic dark energy model (NHDE) in fractal cosmology expressed the consistent behavior with recent observational data and can be considered as a model to avoid the formation of black holes in comparison with the main model of NHDE in the simple FRW universe. It has also been observed that for the interaction term varying with matter density, the model generates asymptotic de-Sitter solution. However, if the interaction term varies with energy density, then the model shows Big-Rip singularity. Using our modified CAMB code, we observed that the interacting model suppresses the CMB spectrum at low multipoles \(l<50\) and enhances the acoustic peaks. Based on the observational data sets used in this paper and using Metropolis-Hastings method of MCMC numerical calculation, it seems that the best value with \(1\sigma \) and \(2\sigma \) confidence interval are \(\Omega _{m0}=0.278^{+0.008~+0.010} _{-0.007~-0.009}\), \(H_{0}=69.9^{+0.95~+1.57}_{-0.95~-1.57}\), \(r_{c}=0.08^{+0.02~+0.027}_{-0.002~-0.0027}\), \(\beta =0.496^{+0.005~+0.009} _{-0.005~-0.009}\), \(c= 0.691^{+0.024~+0.039}_{-0.025~-0.037}\) and \(b^{2}=0.035\) according to which we find that the proposed model in the presence of interaction is compatible with the recent observational data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号