首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 666 毫秒
1.
Data on variations in the content of the 14C cosmogenic isotope in tree rings and the Earth’s atmosphere (Δ14C) make it possible to study the behavior of solar activity (SA) in previous centuries and millenniums. The latter is related to the fact that SA temporal variations result in a change in the IMF (Interplanetary Magnetic Field) parameters and, as a consequence, in the galactic cosmic ray (GCR) flux, under the action of which the 14C isotope is produced in the Earth’s atmosphere. This makes it possible to study SA history based on data on the 14C isotope content in tree rings. However, in this case we have several difficulties related to climate change. Climate changes result in carbon redistribution between natural reservoirs, which is reflected in radiocarbon data and results in solar signal distortion. The effect of variations in the global temperature and carbon dioxide concentration on the reconstruction of the heliospheric modulation potential and Wolf numbers from the late 14th century to the early 19th century is considered. It has been shown that the radiocarbon data do not make it possible to conclude that SA during the Maunder minimum was extremely low as compared to SA during the Dalton minimum.  相似文献   

2.
Data on the content of the 14C cosmogenic isotope in tree rings, which were obtained as a result of laboratory measurements, are often used when solar activity (SA) is reconstructed for previous epochs, in which direct observations are absent. However, these data contain information not only about SA variations but also about changes in the Earth climatic parameters, such as the global temperature and the CO2 content in the Earth’s atmosphere. The effect of these variations on the 14C isotope content in different natural reservoirs after the last glacial termination to the middle of the Holocene is considered. The global temperature and the CO2 content increased on this time interval. In this case the 14C absolute content in the atmosphere increased on this time interval, even though the 14С to 12С isotope concentration ratio (as described by the Δ14С parameter) decreased. These variations in the radiocarbon absolute content can be caused by its redistribution between natural reservoirs. It has been indicated that such a redistribution is possible only when the rate of carbon exchange between the ocean and atmosphere depends on temperature. The values of the corresponding temperature coefficient for the 17–10 ka BC time interval, which make it possible to describe the carbon redistribution between the ocean and atmosphere, have been obtained.  相似文献   

3.
Direct and indirect data on variations in cosmic rays, solar activity, geomagnetic dipole moment, and climate from the present to 10–12ka ago (the Holocene Epoch), registered in different natural archives (tree rings, ice layers, etc.), have been analyzed. The concentration of cosmogenic isotopes, generated in the Earth’s atmosphere under the action of cosmic ray fluxes and coming into the Earth archives, makes it possible to obtain valuable information about variations in a number of natural processes. The cosmogenic isotopes 14C in tree rings and 10Be in ice layers, as well as cosmic rays, are modulated by solar activity and geomagnetic field variations, and time variations in these concentrations gives information about past solar and geomagnetic activities. Since the characteristics of natural reservoirs with cosmogenic 14C and 10Be vary with climate changes, the concentrations of these isotopes also inform about climate changes in the past. A performed analysis indicates that cosmic ray flux variations are apparently the most effective natural factor of climate changes on a large time scale.  相似文献   

4.
Evidence of the solar activity modulation of the Earth’s climate has been observed on several parameters, from decadal to millennial time scales. Several proxies have been used to reconstruct the paleoclimate as well as the solar activity. The paleoclimate reconstructions are based on direct and/or indirect effects of global and regional climate conditions. The solar activity reconstructions are based on the production of the 14C isotope due to the interaction of cosmic ray flux and the Earth’s atmosphere. Because trees respond to climate conditions and store 14C, they have been used as proxies for both for climate and solar activity reconstructions. The imprints of solar activity cycles dating back to 10,000 years ago have been observed on tree-ring samples using 14C data, and those dating back to 20 million years ago have been analyzed using fossil tree-growth rings. All this corresponds to the Cenozoic era. However, solar activity imprints on tree rings from earlier than that era have not been investigated yet. In this work, we showed that tree rings from the Mesozoic Era (of ~200 million years ago) recorded 11- and 22-year cycles, which may be related to solar activity cycles, and that were statistically significant at the 95 % confidence level. The fossil wood was collected in the southern region of Brazil. Our analysis of the fossils' tree-ring width series power spectra showed characteristics similar to the modern araucaria tree, with a noticeable decadal periodicity. Assuming that the Earth’s climate responds to solar variability and that responses did not vary significantly over the last ~200 million years, we conclude that the solar–climate connection was likely present during the Mesozoic era.  相似文献   

5.
Radiocarbon: A chronological tool for the recent past   总被引:2,自引:2,他引:0  
The past few hundred years have seen large fluctuations in atmospheric 14C concentration. In part, these have been the result of natural factors, including the climatic changes of the Little Ice Age, and the Spörer and Maunder solar activity minima. In addition, however, changes in human activity since the middle of the 19th century have released 14C-free CO2 to the atmosphere. Moreover, between c. 1955 and c. 1963, atmospheric nuclear weapon testing resulted in a dramatic increase in the concentration of 14C in the atmosphere. This was followed by a significant decrease in atmospheric 14C as restrictions on nuclear weapon testing began to take effect and as rapid exchange occurred between the atmosphere and other carbon reservoirs. The large fluctuations in atmospheric 14C that occurred prior to 1955 mean that a single radiocarbon date may yield an imprecise calibrated age consisting of several possible age ranges. This difficulty may be overcome by obtaining a series of 14C dates from a sequence and either wiggle-matching these dates to a radiocarbon calibration curve or using additional information on dated materials and their surrounding environment to narrow the calibrated age ranges associated with each 14C date. For the period since 1955 (the bomb-pulse period), significant differences in atmospheric 14C levels between consecutive years offer the possibility of dating recent samples with a resolution of from one to a few years. These approaches to dating the recent past are illustrated using examples from peats, lake and salt marsh sediments, tree rings, marine organisms and speleothems.  相似文献   

6.
Within a project on climate in Europe during the past few hundred years we have collected a record on stable isotope ratios 13C/12C and 18O/16O in tree ring cellulose from pine trees in northern Finland. The records cover the time interval 1600–2002 AD and have an annual time resolution. The carbon stable isotope record from northernmost Finland correlates quite strongly with local growth period temperature. Statistical analysis of the carbon and oxygen stable isotope records reveals variations in the periods around 100, 11 and 3 years. A century scale connection between the 13C/12C record and solar activity is most evident. These results based on stable isotope records support previous evidences of a centennial solar-climatic link obtained for northern Finland using tree ring data.  相似文献   

7.
A joint analysis of paleodata on variations in cosmic ray fluxes, solar activity, geomagnetic field, and climate during the period from ~10000 to ~100000 years ago has been performed. Data on the time variations in the concentration of 14C and 10Be cosmogenic isotopes, which are generated in the Earth’s atmosphere under the action of cosmic ray fluxes modulated by solar activity and geomagnetic field variations, were used to detect variations in solar activity and the geomagnetic dipole. Information about climate changes has been obtained mainly from variations in the concentration of stable isotopes in the natural archives. A performed analysis indicates that the variations in cosmic ray fluxes under the action of variations in the geomagnetic field and solar activity are apparently one of the most effective natural factors of long-term climate changeability on a large time scale.  相似文献   

8.
This work reports the first high-precision 14C-AMS dating of holocellulose from a Brazilian subtropical species for the period 1927–1997, with the goal to identify suitable Southern American tree species that will serve as benchmarks for improving the calibration of the 14C time-scale for the Southern Hemisphere (SH). The tree rings analyzed here came from a single tree of Paraná pine (Araucaria angustifolia) growing at 22°50′S, 46°04′W (Camanducaia, Minas Gerais, Brazil). A slight depletion of atmospheric 14C after 1927 AD was observed, due to the Suess effect. Our 14C results also showed the rise and rapid decrease of atmospheric 14C concentrations associated with the detonation of nuclear weapons during the late 50s, and its subsequent uptake by other large C sinks. Current 14C data can be used for the study of the global carbon cycle, forensic sciences applications, and the determination of the age and growth rate of tropical trees without annual ring patterns. The remarkable overall agreement of our tree-ring/14C data with the SH Zone 1–2 compilation dataset shows this subtropical tree species' potential to refine the 14C calibration curve.  相似文献   

9.
Temperature variations at Lake Qinghai, northeastern Qinghai–Tibet plateau, were reconstructed based on four high-resolution temperature indicators of the δ18O and the δ13C of the bulk carbonate, total carbonate content, and the detrended δ15N of the organic matter. There are four obvious cold intervals during the past 600 years at Lake Qinghai, namely 1430–1470, 1650–1715, 1770–1820, and 1920–1940, synchronous with those recorded in tree rings at the northeast Qinghai–Tibet plateau. The intervals of 1430–1470, 1650–1715, and 1770–1820 are consistent with the three coldest intervals of the Little Ice Age. These obvious cold intervals are also synchronous with the minimums of the sunspot numbers during the past 600 years, suggesting that solar activities may dominate temperature variations on decadal scales at the northeastern Qinghai–Tibet plateau.  相似文献   

10.
Understanding climate change is an active topic of research. Much of the observed increase in global surface temperature over the past 150 years occurred prior to the 1940s and after the 1980s. The main causes invoked are solar variability, changes in atmospheric greenhouse gas content or sulfur due to natural or anthropogenic action, or internal variability of the coupled ocean–atmosphere system. Magnetism has seldom been invoked, and evidence for connections between climate and magnetic field variations have received little attention. We review evidence for correlations which could suggest such (causal or non-causal) connections at various time scales (recent secular variation ∼ 10–100 yr, historical and archeomagnetic change ∼ 100–5000 yr, and excursions and reversals ∼ 103–106 yr), and attempt to suggest mechanisms. Evidence for correlations, which invoke Milankovic forcing in the core, either directly or through changes in ice distribution and moments of inertia of the Earth, is still tenuous. Correlation between decadal changes in amplitude of geomagnetic variations of external origin, solar irradiance and global temperature is stronger. It suggests that solar irradiance could have been a major forcing function of climate until the mid-1980s, when “anomalous” warming becomes apparent. The most intriguing feature may be the recently proposed archeomagnetic jerks, i.e. fairly abrupt (∼ 100 yr long) geomagnetic field variations found at irregular intervals over the past few millennia, using the archeological record from Europe to the Middle East. These seem to correlate with significant climatic events in the eastern North Atlantic region. A proposed mechanism involves variations in the geometry of the geomagnetic field (f.i. tilt of the dipole to lower latitudes), resulting in enhanced cosmic-ray induced nucleation of clouds. No forcing factor, be it changes in CO2 concentration in the atmosphere or changes in cosmic ray flux modulated by solar activity and geomagnetism, or possibly other factors, can at present be neglected or shown to be the overwhelming single driver of climate change in past centuries. Intensive data acquisition is required to further probe indications that the Earth's and Sun's magnetic fields may have significant bearing on climate change at certain time scales.  相似文献   

11.
The time dependence of the14C content of bristlecone pine wood samples dated by their tree rings and grown during the last 8000 years was examined. The14C values as measured by the La Jolla Radiocarbon Laboratory were used for the investigation.Two different smoothing techniques were used for constructing values for equal time intervals. In this manner the introduction of regularities, that could have resulted from applied mathematical techniques, could be excluded.There is good evidence for non-random features in the power spectrum, in particular for a 200-year periodicity.The regularities in the power spectrum are further indications supporting the assumption that the14C variations reflect a property of the sun.  相似文献   

12.
Present-day data on 14C and 10Be concentration in natural archives have been statistically analyzed. It has been established that it is difficult to extract information about solar activity variations on long (several Myr and longer) and, especially, short (to 30 years) time scales using radiocarbon data. It has been indicated that beryllium series bear reliable information about short-term, secular, and, probably, 1000-year variations in solar activity. Moreover, 10Be concentration in polar ice can also be used to study the internal dynamics of solar activity. It has been concluded that beryllium data are more promising than radiocarbon ones from the viewpoint of solar paleoastrophysics.  相似文献   

13.
Information about variations in solar activity and climate on the time intervals from 130 years to four–five last centuries, including results of instrumental measurements (Wolf numbers, actinometry, thermometry) and indirect indicators (ice core acidity, NO 3 ? ion concentration in polar ice, temperature tree-ring reconstructions), has been analyzed for the Northern Hemisphere and its high-latitude part. It has been obtained that the observed relation between secular variations in solar activity and near-Earth temperature resulted from the effect of the corresponding variation in aerosol transparency of the stratosphere on terrestrial climate. It has been also indicated that long-term variations in the aerosol content of the stratosphere can, in turn, be related to secular cycles in atmospheric ionization caused by variations in fluxes of ionizing cosmic particles.  相似文献   

14.
A high-precision tree-ring record of the atmospheric14C levels between 1820 and 1954 is presented. Good agreement is obtained between measured and model calculated 19th and 20th century atmospheric Δ14C levels when both fossil fuel CO2 release and predicted natural variations in14C production are taken into account. The best fit is obtained by using a ?-diffusion model with an oceanic eddy diffusion coefficient of 3 cm2/s, a CO2 atmosphere-ocean gas exchange rate of 21 moles m?2 yr?1 and biospheric residence time of 60 years.For trees in the state of Washington the measured 1949–1951 atmospheric Δ14C level was20.0±1.2%. below the 1855–1864 level. Model calculations indicate that in 1950 industrial CO2 emissions are responsible for at least 85% of the Δ14C decline, whereas natural variability accounts for the remaining 15%.  相似文献   

15.
This study utilizes a combined stable isotope and 14C dating approach to determine the radiocarbon reservoir age correction, ΔR, for the James River, Virginia estuary from 17th century Crassostrea virginica shells of known collection dates. ΔR, which can vary spatially and temporally, is a locality-specific adjustment applied to the global ocean reservoir, R, to further account for the offset between the atmospheric and marine 14C calibration curves. To assess the temporal variability in ΔR, continuous δ18O sampling along the oyster shell hinge provides a seasonal record throughout the oyster's life. This is then used to identify sampling locations for 14C measurements based on calcite precipitated during the Summer (>19 °C) and Fall through Spring (F-Sp, <15 °C) months. The resulting seasonal ΔR values range from −151 ± 46 to +109 ± 55 14C years (260 years) due to changes in the contribution and age of dissolved inorganic carbon (DIC) from marine and freshwater sources in the James River estuary. The F-Sp samples display a larger ΔR range than the Summer samples, as do the shells precipitated during drought conditions (1606–1612) when compared to shells from the remainder of the 17th century. The largest intrashell ΔR variability, 195 14C years, is similarly found in a drought shell and is attributed to variability caused by the extreme regional 1606–1612 drought. Early land use changes related to European development and farming practices also altered the age of DIC in the James River estuary. We estimate that the soil inorganic carbon (SIC) contributing to freshwater DIC ranged from 0 to ∼1800 years old and reflected both the drought and land use changes that occurred during the 17th century. Using only the Summer samples, which represent the majority of shell calcite, we obtain a mean ΔR = −32 ± 11 14C years (1σ) for 17th century James River estuary ΔR at the very onset of European colonization. Employing a seasonally resolved sampling method will provide the greatest constraint on 14C measurements in an estuarine environment where multiple carbon sources can fluctuate on seasonal timescales and as a result of large scale environmental change.  相似文献   

16.
This paper surveys the history of the Earth's climate and deals with facts, techniques, and causes. A review of climatic history since the origin of the Earth demonstrates the changes and variability of our climate along different scales. These variations can probably be fully understood only when taking into account both external forcing and non-linear interactions between the components of the climatic system: atmosphere, oceans, cryosphere, lithosphere, and biosphere. At least, as far as boundary conditions and forcing are concerned for the 108 to 109 yr time scale, atmospheric composition, solar evolution, and tectonism have to be considered, while variations of the Earth's orbital elements, and subsequently of the insolation, best explain the glacial-interglacial occurrences during the Quaternary Period. For shorter time scales, volcanic dust, solar activity, sea surface temperatures, and atmosphere-ocean autovariations have to be taken into account. Furthermore, the man-made effects have now to be considered: atmospheric loading of dust and air pollution particles, changes in surface albedo, and mainly the increasing rise of atmospheric CO2 and other trace gases adding to a greenhouse effect.This man-made warming effect of future CO2 increase will probably emerge as a clearly recognizable trend against the background of natural climatic fluctuations by the end of this century. This carbon dioxide induced super-interglacial will be superimposed on the expected natural long-term cooling trend of the ice age chronology.  相似文献   

17.
Water vapor plays an important role in the global climate system. A clear relationship between water vapor and solar activity can explain some physical mechanisms of how solar activity influences terrestrial weather/climate changes. To gain insight of this possible relationship, the atmospheric precipitable water vapor (PWV) as the terrestrial climate response was observed by ground-based GPS receivers over the Antarctic stations. The PWV changes analyzed for the period from 2003 to 2008 coincided with the declining phase of solar cycle 23 exhibited following the solar variability trend. Their relationship showed moderate to strong correlation with 0.45 < R 2 < 0.93 (p < 0.01), on a monthly basis. This possible relationship suggests that when the solar-coupled geomagnetic activity is stronger, the Earth’s surface will be warmer, as indicated by electrical connection between ionosphere and troposphere.  相似文献   

18.
Over the past decade, a number of speleothem studies have used radiocarbon (14C) to address a range of palaeoclimate problems. These have included the use of the bomb pulse 14C to anchor chronologies over the last 60 years, the combination of U-Th and 14C measurements to improve the radiocarbon age-calibration curve, and linking atmospheric 14C variations with climate change. An issue with a number of these studies is how to constrain, or interpret, variations in the amount of radioactively dead carbon (i.e. the dead carbon fraction, or DCF) that reduces radiocarbon concentrations in speleothems. In this study, we use 14C, stable-isotopes, and trace-elements in a U-Th dated speleothem from Flores, Indonesia, to examine DCF variations and their relationship with above-cave climate over the late Holocene and modern era. A strong association between the DCF and hydrologically-controlled proxy data suggests that more dead carbon was being delivered to the speleothem during periods of higher cave recharge (i.e. lower δ18O, δ13C and Mg/Ca values), and hence stronger summer monsoon. To explore this relationship, we used a geochemical soil-karst model coupled with 14C measurements through the bomb pulse to disentangle the dominant components governing DCF variability in the speleothem. We find that the DCF is primarily controlled by limestone dissolution associated with changes in open- versus closed-system conditions, rather than kinetic fractionation and/or variations in the age spectrum of soil organic matter above the cave. Therefore, we infer that periods of higher rainfall resulted in a higher DCF because the system was in a more closed state, which inhibited carbon isotope exchange between the karst water dissolved inorganic carbon and soil-gas CO2, and ultimately led to a greater contribution of dead carbon from the bedrock.  相似文献   

19.
This study of Sun–Earth relationships is based on tree growth rings analysis of araucarias (Araucaria angustifolia) collected at Severiano de Almeida (RS) Brazil. A chronology of 359 years was obtained, and the classical method of spectral analysis by iterative regression and wavelet method was applied to find periodicities and trends contained in the tree growth. The analysis of the dendrochronological series indicates representative periods of solar activity of 11 (Schwabe cycle), 22 (Hale cycle), and 80 (Gleissberg cycle) years. The result shows the possible influence of the solar activity on tree growth in the last 350 years. Periods of 2–7 years were also found and could represent a response of the trees to local climatic conditions. Good agreement between the time series of tree growth rings and the 11 year solar cycle was found during the maximum solar activity periods.  相似文献   

20.
Geomagnetism and Aeronomy - The data on the content of the 14C cosmogenic isotope in the natural archives make it possible to study the solar activity (SA) in the past centuries and millennia....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号