首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Barriers to dispersal are recognized to play an important role in the differentiation of populations and ultimately in speciation. In the southeast Pacific, on the northern coast of Peru, a transition zone between the Peruvian and Panamic marine biogeographic provinces exists. Here, the convergence between two contrasting surface currents could generate a barrier effect for the larval dispersal of meroplanktonic invertebrates, which could in turn generate differentiated populations or genetic lineages on both sides of the transition zone. To address this, we studied to Echinolittorina paytensis, an abundant rocky intertidal periwinkle that spans both biogeographic provinces. A total of 95 individuals from Ecuador (2°19′S) to central Peru (7°31′S), covering the Panamic Province, the Peruvian Province, and the transition zone between, were collected. The mitochondrial markers cytochrome c oxidase I and 16SrRNA were sequenced in order to investigate phylogeography and genetic structuring. In general, no genetic structuring was found across the transition zone, suggesting this biogeographic boundary would not be acting as a barrier in this species. Factors such as a high larval dispersal capability and the occurrence of El Niño–Southern Oscillation events such as El Niño are discussed.  相似文献   

2.
Understanding the factors that cause population divergence has long been of interest to marine biologists in their attempts to interpret the effect of human‐mediated vectors. Broadcast‐spawning species with limited dispersal capability are excellent candidates to measure the present‐day patterns of genetic diversity. The tunicate Ciona intestinalis (Ascidiacea) is comprised of a complex of morphologically cryptic species that form vigorous aggregates in eutrophic habitats (harbors, gulfs and lagoons) where they can compete with the epibenthic community and cause biofouling problems. This study investigated biogeographic variability and migration patterns of C. intestinalis sp. A along Northeast Atlantic and Mediterranean coasts using microsatellite markers. Data presented here on 371 specimens collected from 17 populations reveal high genetic polymorphism, but with a deficit of heterozygote deficiency. Absence of evidence for isolation by distance suggests that the genetic patterns do not reflect the geographic distribution of sampled populations. Substantial gene flow and artificial potential for dispersal boost high levels of within‐population genetic variability and prevent genetic differentiation within and between seas. A predominant eastward migration pattern was revealed by the data set, with very limited opportunity for C. intestinalis sp. A to travel westward. This directional movement indicates that other properties (e.g. habitat quality, genetic traits, mating system, life cycle) may cause adaptive divergence at a large biogeographic scale.  相似文献   

3.
The coherency among larval stages of marine taxa, ocean currents and population connectivity is still subject to discussion. A common view is that organisms with pelagic larval stages have higher dispersal abilities and therefore show a relatively homogeneous population genetic structure. Contrary to this, local genetic differentiation is assumed for many benthic direct developers. Specific larval or adult migratory behavior and hydrographic effects may significantly influence distribution patterns, rather than passive drifting abilities alone. The Southern Ocean is an ideal environment to test for the effects of ocean currents on population connectivity as it is characterized by several well‐defined and strong isolating current systems. In this study we studied the genetic structure of the decapod deep‐sea shrimp Nematocarcinus lanceopes, which has planktotrophic larval stages. We analysed 194 individuals from different sample localities around the Antarctic continent using nine microsatellite markers. Consistent with a previous study based on mitochondrial DNA markers, primarily weak genetic patterns among N. lanceopes populations around the continent were found. Using ocean resistance modeling approaches we were able to show that subtle genetic differences among populations are more likely explained by ocean currents rather than by geographic distance for the Atlantic Sector of the Southern Ocean.  相似文献   

4.
The present investigation focuses on population genetic structure analysis of the endangered giant clam species Tridacna maxima across part of the Red Sea,with the main aim of assessing the influence of postulated potential barriers to gene flow(i.e.,particular oceanographic features and marked environmental heterogeneity)on genetic connectivity among populations of this poorly dispersive bivalve species.For this purpose,a total of 44 specimens of T.maxima were collected from five sampling locations along the Saudi Arabian coast and examined for genetic variability at the considerably variable mitochondrial gene cytochrome c oxidase I(COI).Our results revealed lack of population subdivision and phylogeographic structure across the surveyed geographic spectrum,suggesting that neither the short pelagic larval dispersal nor the various postulated barriers to gene flow in the Red Sea can trigger the onset of marked genetic differentiation in T.maxima.Furthermore,the discerned shallow COI haplotype genealogy(exhibiting high haplotype diversity and low nucleotide diversity),associated with recent demographic and spatial expansion events,can be considered as residual effect of a recent evolutionary history of the species in the Red Sea.  相似文献   

5.
Larval dispersal is critical for the maintenance of species populations in patchy and ephemeral hydrothermal vent habitats. On fast‐spreading ridges, such as the East Pacific Rise, rates of habitat turnover are comparable to estimated lifespans of many of the inhabiting species. Traditionally, dispersal questions have been addressed with two very different approaches, larval studies and population genetics. Population genetic studies of vent‐endemic species have been informative for determining whether patterns of dispersal are suggestive of stepping stone or island models and estimating rates of gene flow (effective migrants per generation) over broad geographic ranges. However, these studies leave fundamental questions unanswered about the specific mechanisms by which larvae disperse and species maintain their populations and biogeographic ranges. With the goal of examining genetic structure and elucidating alternative larval dispersal mechanisms, we employed a genomic DNA fingerprinting technique, amplified fragment length polymorphisms (AFLPs). To assess the potential utility of AFLPs, and genetic structure of the hydrothermal vent tubeworm Riftia pachyptila, genomic ‘fingerprints’ were recovered from 29 individuals from five vent fields spanning a distance of up to c. 5000 km along the East Pacific Rise. In contrast to previous population genetic studies that found little to no genetic structure using allozymes and mitochondrial DNA, genetic analyses of 630 polymorphic AFLP loci identified distinct subclades within R. pachyptila populations. Significant levels of differentiation were observed among populations from all vent regions as well as within each region. Discrete assemblages of tubeworms separated by as little as c. 400 m within a given vent region were genetically distinguishable and cohorts (based on size‐frequency distribution) within an aggregation were found to be most closely related. These results suggest that mechanisms of larval dispersal act to retain cohort fidelity in R. pachyptila.  相似文献   

6.
The genetic structure of populations is often shaped by the reproductive system and larval properties of the species. The waratah anemone (Actinia tenebrosa) reproduces through both asexual clones, which have very short-distance dispersal, and sexual larvae, which are believed to disperse much greater distances. The impact of this mixed strategy on the New Zealand population structure of Actinia tenebrosa was investigated using microsatellite markers. The analysis incorporated 24 sampling locations from around New Zealand and one Australian location, using four microsatellite markers, n = 420. We observed low connectivity and high genetic differentiation between all locations sampled, with a distinct pattern of isolation by distance. The most distinct grouping of locations sampled was the north-east of the North Island from Cape Reinga to East Cape, which was identified by SAMOVA and STRUCTURE analyses as being moderately diverged from the remainder of the country. A tentative correlation was observed between genetic clustering and biogeographic regionalisation, where the distribution of a number of genetic clusters matched previously defined biogeographic regions. Within each location sampled, large numbers of clones were present and a latitudinal cline was observed in the relative contribution of asexually and sexually generated recruits, with an increase in asexual recruits on the South Island's east coast.  相似文献   

7.
The precious red coral Corallium rubrum (L., 1758) lives in the Mediterranean Sea and adjacent Eastern Atlantic Ocean on subtidal hard substrates. Corallium rubrum is a long‐lived gorgonian coral that has been commercially harvested since ancient times for its red axial calcitic skeleton and which, at present, is thought to be in decline because of overexploitation. The depth distribution of C. rubrum is known to range from c. 15 to 300 m. Recently, live red coral colonies have been observed in the Strait of Sicily at depths of c. 600–800 m. This record sheds new light on the ecology, biology, biogeography and dispersal mechanism of this species and calls for an evaluation of the genetic divergence occurring among highly fragmented populations. A genetic characterization of the deep‐sea red coral colonies has been done to investigate biological processes affecting dispersal and population resilience, as well as to define the level of isolation/differentiation between shallow‐ and deep‐water populations of the Mediterranean Sea. Deep‐water C. rubrum colonies were collected at two sites (south of Malta and off Linosa Island) during the cruise MARCOS of the R/V Urania. Collected colonies were genotyped using a set of molecular markers differing in their level of polymorphism. Microsatellites have been confirmed to be useful markers for individual genotyping of C. rubrum colonies. ITS‐1 and mtMSH sequences of deep‐water red coral colonies were found to be different from those found in shallow water colonies, suggesting the possible occurrence of genetic isolation among shallow‐ and deep‐water populations. These findings suggest that genetic diversity of red coral over its actual range of depth distribution is shaped by complex interactions among geological, historical, biological and ecological processes.  相似文献   

8.
Elucidating the scale of gene flow among populations is an important challenge for understanding the ecological dynamics and local adaptation of marine organisms. We assessed whether gene flow is restricted even at a small spatial scale in the Japanese common intertidal goby Chaenogobius annularis, using highly polymorphic DNA markers, involving the mitochondrial DNA (mtDNA) control region and 15 microsatellite DNA (msDNA), because past ecological studies have suggested low dispersal ability for rocky intertidal fishes. We found significant heterogeneities between four neighboring local populations by both mtDNA and msDNA analyses. In addition, no genetic heterogeneity was detected by either method across generations within a population; it was considered that such genetic differentiation is retained across generations and that the gene flow of this species is restricted to within a radius of a few kilometers. This is the first report showing a clear genetic subdivision in rocky intertidal fish.  相似文献   

9.
For most marine invertebrate species, dispersal is achieved mainly or exclusively by pelagic larvae. When the duration of the pelagic larval stage is long, genetic homogeneity over large geographic scales is expected. However, genetic structure has often been reported over small spatial scales, suggesting that more complex processes occur than a simple positive relationship between pelagic larval duration and gene flow. Concholepas concholepas has a larval stage that can last up to 3 months in the water column with a wide distributional range covering from 6°S to 56°S. We used a hierarchical sampling technique to test if the genetic homogeneity of this highly dispersive species is maintained throughout its total geographic range in spite of environmental heterogeneity. In the three studied regions (Antofagasta Bay, Valdivia and Patagonia), a spatial pattern of isolation by distance in conjunction with a spatial genetic structure was observed. Within each region, different spatial genetic patterns were detected. In Antofagasta Bay and Valdivia there was evidence of substantial gene flow among populations, whereas in Patagonia, populations showed genetic structure and a unique, genetically isolated location was identified. These results revealed the existence of spatial differences in the genetic patterns among regions with different coastal topographies in C. concholepas, and give us new insights into the inter‐relationships of larval dispersal potential, actual larval dispersal and physical processes. Regarding the sustainable management of C. concholepas, two important issues are derived from this study: (i) to highlight the need for a regional context in the management of C. concholepas, (ii) to determine the distinctiveness of the most austral population and to focus on the conservation efforts due to the relevance of this area.  相似文献   

10.
Occasional population outbreaks of the crown‐of‐thorns sea star, Acanthaster planci, are a major threat to coral reefs across the Indo‐Pacific. The presumed association between the serial nature of these outbreaks and the long larval dispersal phase makes it important to estimate larval dispersal; many studies have examined the population genetic structure of A. planci for this purpose using different genetic markers. However, only a few have focused on reef‐scale as well as archipelago‐scale genetic structure and none has used a combination of different genetic markers with different effective population sizes. In our study, we used both mtDNA and microsatellite loci to examine A. planci population genetic structure at multiple spatial scales (from <2 km to almost 300 km) within and among four islands of the Society Archipelago, French Polynesia. Our analysis detected no significant genetic structure based on mtDNA (global FST = ?0.007, P = 0.997) and low levels of genetic structure using microsatellite loci (global FST = 0.006, P = 0.005). We found no significant isolation by distance patterns within the study area for either genetic marker. The overall genetically homogenized pattern found in both the mitochondrial and nuclear loci of A. planci in the Society Archipelago underscores the significant role of larval dispersal that may cause secondary outbreaks, as well as possible recent colonization in this area.  相似文献   

11.
The penaeid prawns Fenneropenaeus indicus and Metapenaeus monoceros support shallow-water prawn fisheries in the south-west Indian Ocean. They are sympatric and have similar life histories, including developmental stages that depend on estuarine and marine habitats and a short dispersal duration. Nevertheless, M. monoceros juveniles display a more generalist habitat preference in estuaries and recruit to offshore habitats during a different season than F. indicus. We hypothesised that these differences would affect dispersal patterns, leading to dissimilar geographic genetic structure between the two taxa. Given their short dispersal phase, we also hypothesised that the Mozambique Channel would form a barrier to dispersal between the southeastern African mainland and Madagascar sites. Population differentiation was assessed based on analysis of mitochondrial DNA control-region sequences. Both species displayed high haplotype and low nucleotide diversity. Pairwise ?ST statistics supported the existence of admixed populations along the African mainland sites for both species, with geographic distance isolating populations at the extremes of the sampled range (Kenya and east coast of South Africa). The Madagascar population differed significantly from African mainland populations. The concordant patterns in population differentiation suggest that F. indicus and M. monoceros can be considered as single African stocks, or fisheries management units.  相似文献   

12.
The Wild Coast in south-eastern South Africa is strongly influenced by the warm, southward-flowing Agulhas Current. This current has a significant impact on dispersal in the coastal biota of the region, and facilitates high levels of connectivity among populations. However, it is not known how the region's high-velocity hydrology affects genetic population structure in endemic estuarine species, populations of which are frequently isolated from the sea. Here, we compared genetic structure in two estuarine crabs of the family Hymenosomatidae. Both are presumed to have low dispersal potential, but they differ in terms of their life histories. Hymenosoma longicrure has abbreviated larval development and can complete its entire life cycle within estuaries, whereas Neorhynchoplax bovis is a direct developer that lacks planktonic larvae. Using DNA sequence data from the mitochondrial COI gene and the intron of the nuclear ANT gene, we found that levels of genetic structure differ considerably between the species. Depending on the genetic marker used, H. longicrure is genetically homogeneous (COI) or displays low levels of genetic structure and minor evidence of recruitment near natal sites (ANT). In contrast, connectivity in N. bovis is much lower, as this species has a unique combination of alleles at each site, indicating that recruitment is mostly local. These results support previous findings suggesting that even a short larval dispersal phase is sufficient to maintain high levels of connectivity and prevent genetic divergence among populations.  相似文献   

13.
多棘海盘车(Asterias amurensis)是海星纲的一个致灾物种,广泛分布于包括我国黄海、渤海海域、韩国、日本和俄罗斯海域在内的北太平洋海域,并作为入侵种分布于澳大利亚的塔斯马尼亚海域。多棘海盘车在多个海域发生过暴发性增殖导致的高密度、大规模聚集,对海洋生态系统和水产养殖造成严重的负面影响。自2006年以来在我国山东青岛海域多次发生大规模多棘海盘车聚集,对贝类养殖造成重大经济损失。日本、俄罗斯、澳大利亚等海域的多棘海盘车遗传多样性研究取得了显著进展,然而,迄今为止鲜有针对我国海域致灾物种多棘海盘车的分子生物学分析,阻碍了我国海域种群与全球种群间遗传进化关系的比较分析。研究重点分析了于2022年7月在胶州湾发生多棘海盘车暴发时采集的12个样本,系统组装了其线粒体基因组、核糖体基因簇以及多种通用分子标记。基于线粒体基因组和核糖体基因簇的系统发育分析表明多棘海盘车具有较高的种内遗传多样性。基于线粒体基因组的蛋白编码基因进行分化时间估算,多棘海盘车的种内遗传分化可能发生在1.7~4.2 Ma,表明多棘海盘车的扩布可能较早发生。与线粒体基因组相比,多棘海盘车核糖体基因簇序列在种内极为保守...  相似文献   

14.
For the population genetics analysis of the naturally grown brown seaweed Laminaria japonica (Laminariales,Phaeophyta) sampled from Dalian,Yantai,Weihai,Rongcheng and Qingdao in China,ten primers were employed to produce 88 bands as revealed by randomly amplified polymorphic DNA (RAPD) markers,and all these bands were polymorphic.According to these band patterns,there were 94 distinct phenotypes occurred in 100 samples indicating the high heterozygosity of this kelp.Dalian population samples showed the highest percentage of polymorphism (71.67%),and also the higher diversity estimated on the basis of the Shannon’s index (8.498),suggesting that this population could be chosen as the best resource for genetic breeding.The highest diversity of Yantai population possibly resulted from the introduction of L.longissima used for interspecific cross breeding with L.japonica cultivated in China.From Dalian southwards to Qingdao,the genetic variation of the five populations became less with a decrease in latitude,possibly due to the natural selection especially of high temperature.The genetic distance (Φ ST values) of the five populations was a little significantly correlated with the geographical distance (r=0.496) at P =0.05 by Mantel’s test.Weihai,Rongcheng and Yantai populations were closely grouped genetically together by Neighbor-joining cluster analysis probably in that the dispersal of the kelp by propagules more easily occurring in the range of relatively short distance.The analysis of molecular variance (AMOVA) also demonstrated that the relatively higher variation occurred among populations (71.49%) at an extremely significant level (P <0.000 1).All these evidence showed that there was a relatively distinct genetic differentiation among the sampled kelp populations,and L.japonica grown in China was also rather heterozygous in heredity.  相似文献   

15.
The collector sea urchin Tripneustes gratilla has been identified as a species with potential for aquaculture production in South Africa. The species’ roe is considered a culinary delicacy in Asia and Europe. However, T. gratilla remains genetically uncharacterised in South Africa. Therefore, the purpose of this study was to provide baseline genetic information consisting of estimates of genetic diversity and population stratification, which may aid in future sustainable use of this urchin resource. A total of 22 species-specific microsatellite markers were used for the genetic characterisation of T. gratilla samples from along the South African coast, at Haga Haga, Coffee Bay, Hibberdene, Ballito Bay and Sodwana Bay. A moderate level of genetic diversity was observed, with an average number of alleles of 7.89 and an average effective number of alleles of 6.57, as well as an average observed heterozygosity of 0.55. Population differentiation tests suggest that the geographically representative samples form part of a single, large interbreeding population, with a global Fst estimate of 0.02 (p > 0.05). This finding is likely explained by high levels of gene flow between these locations caused by extensive larval dispersal during the planktonic larval stage. The panmixia observed within these natural populations of T. gratilla indicate that they could be managed as a single genetic stock.  相似文献   

16.
The genetic diversity and differentiation of four Zostera marina populations along the southern coast of Korea were estimated using random amplified polymorphic DNA (RAPD) markers to determine the effects of natural and anthropogenic stresses and reproductive strategy on within‐population genetic diversity. The mean number of alleles and gene diversities, indicating population genetic diversity, was highest in the Z. marina population that was exposed to repeated environmental disturbances, and lowest in the most undisturbed population. The higher genetic diversity in the disturbed population was associated with a higher contribution of sexual reproduction to population persistence. This suggests that both the level of disturbances and the reproductive strategy for population persistence contributed significantly to population genetic diversity at the study sites. According to the analysis of molecular variance (AMOVA), 76% genetic variation was attributable to differences among individuals within populations. The observed genetic differentiation (FST = 0.241) among Z. marina populations at the study sites appeared to result from reduced meadow size, increased genetic drift, and a high incidence of asexual reproduction. Increased population genetic diversity can enhance resistance and resilience to environmental disturbances; thus, this investigation of seagrass population genetics provides valuable new insights for the conservation, management, and restoration of seagrass habitats.  相似文献   

17.
The Foveaux Strait oyster (Ostrea chilensis) fishery in southern New Zealand comprises many localised populations (oyster beds) that have survived disease mortality and 150 years of fishing. The reproductive biology of O. chilensis underlies the assumption that these populations are self-recruiting. A three-year study using passive, artificial collectors deployed in a gradient design around an isolated natal population investigated the hypothesis of self-recruitment. Spat settlement patterns measured the distributions of competent larvae as indicators of dispersal. This research also investigated the relationship between settler and brooder densities. Settler densities were not predicted by direction along or across the current, distance from the focal population, or by brooder densities. Settlement was widespread, and settlement patterns imply greater dispersal and larval mixing than previously reported. The swift currents and variable pelagic larval duration may enhance mixing and connectivity between populations. Demographically open recruitment should provide some resilience to disease mortality and fishing.  相似文献   

18.
Marine organisms with a pelagic stage are often assumed to display minor population structure given their extended larval development and subsequent high long‐distance dispersal ability. Nonetheless, considerable population structure might still occur in species with high dispersal ability due to current oceanographic and/or historical processes. Specifically, for the wider Caribbean and Gulf of Mexico, theoretical and empirical considerations suggest that populations inhabiting each of the following areas should be genetically distinct: Panama, Belize, Southwest Florida (Tampa), and Southeast Florida (Fort Pierce). This study tests the hypothesis of significant genetic differentiation in Palaemon floridanus populations across the wider Caribbean and Gulf of Mexico. Population level comparisons were conducted using sequences of the mtDNA COI. In agreement with predictions, AMOVA and pairwise FST values demonstrated population differentiation among most pairs of the studied populations. Only Panama and East Florida populations were genetically similar. An isolation‐with‐migration population divergence model (implemented in IMA2) indicated that population divergence with incomplete lineage sorting can be invoked as the single mechanism explaining genetic dissimilarity between populations from the east and west coast of Florida. Historical demographic analyses indicated demographic expansion of P. floridanus in some localities [recent in Panama and ancient in East Florida and the wider Caribbean (entire dataset)] but constant population in other localities (in Belize and West Florida). This study rejects the idea of panmixia in marine species with high long‐distance dispersal ability. Contemporary and historical processes might interact in a complex manner to determine current phylogeographic patterns.  相似文献   

19.
In coastal populations of invertebrates and fishes, the distribution of discrete subpopulations is influenced by adult and larval dispersal, as well as by the effects of habitat heterogeneity on site fidelity or connectivity. Here, we examine evidence for spatial structure of sea perch, Helicolenus percoides, populations among four fjords in the Fiordland region of southwestern New Zealand. We examine patterns in adult morphology, length-at-age, δ13C and δ15N of muscle tissue, and trace elemental composition of whole otoliths as proxies for population isolation among the four inner fjord regions. A multivariate analysis of morphometrics reveals significant differences among populations from each of the four sites, suggesting existence of four distinct subpopulations. These patterns are consistent with observed differences in δ13C and δ15N, and length-at-age estimates among the four subpopulations. Differences in whole otolith concentrations of Sr, Ba, Mg and Li, and high classification scores based on the whole otolith elemental fingerprint are also consistent with significant subdivision among areas. Patterns across all four markers are consistent with discrete subpopulation structure of adult sea perch among the four study sites. These data indicate that the newly implemented network of marine protected areas in Fiordland is likely to contain discrete populations of sea perch.  相似文献   

20.
带鱼(Trichiurusjaponicus)是广泛分布于东亚大陆架海域的暖温性近底层经济鱼类,也是东海区最重要的海洋渔业捕捞对象。然而,目前的研究报道对东海近岸带鱼群体遗传变异特性认识不足,不利于其种群的遗传资源保护和管理。本研究利用线粒体控制区序列对东海近岸带鱼6个群体191个个体的遗传多样性、遗传分化和历史动态进行分析。在577 bp长的控制区序列中共检测到70个多态位点,定义了121个单倍型。群体总的单倍型多样性较高(0.9911),但总的核苷酸多样性较低(0.0092),群体间遗传多样性水平差异较小。单倍型遗传学关系、Fst值和分子方差分析结果均表明群体间的遗传分化不显著,存在广泛的基因交流。历史动态分析结果表明东海近岸带鱼群体在更新世中晚期可能经历了瓶颈效应和随后的群体快速扩张,这是导致群体遗传多样性较低的主要原因。带鱼较强的扩散能力、洄游行为、海洋环流以及近期的群体扩张可能是造成东海近岸带鱼缺乏显著的系统地理种群结构的原因。研究结果提示,在线粒体DNA水平上,东海近岸带鱼群体是一个随机交配的种群,在遗传资源管理上可作为一个单元进行管理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号