首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The horizontal pattern of mesoscale (1–4 km) variability in salinity was a poor predictor of mesoscale patterns in chlorophyll a, suspended particulate matter, and daily primary productivity in the South San Francisco Bay estuary during spring 1987. The tidally-averaged salinity distribution varied over weekly time scales, reflecting inputs of freshwater as well as transport processes. Spatial distributions of the other quantities also varied weekly, but not in concert with the salt field. Spatial patterns of phytoplankton biomass (chlorophyll a) deviated from the salinity patterns, largely reflecting in situ production of phytoplankton biomass during the spring bloom. The tidally-averaged distribution of suspended particulate matter (SPM) was highly dynamic and responded to (1) the riverine input of suspended sediment during a freshet, (2) neap-spring variations in tidally-driven resuspension, and (3) resuspension in shallows following a period of wind mixing. Two-dimensional distributions of primary productivity P′, derived from maps of biomass and turbidity (SPM), also varied weekly, but the spatial variability of P′ was only about half that of SPM and chlorophyll. Since the magnitude and patterns of spatial variability differ among nonconservative quantities, at least in part because of local sources and sinks, we conclude that the spatial distributions of nonconservative quantities cannot be predicted from distributions of conservative tracers, such as salinity.  相似文献   

2.
Chlorophyll-a (chl-a) concentration has an important economic effect in coastal and marine environments on fisheries resources and marine aquaculture development. Monthly climatologies the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) derived chl-a from February 1998 to August 2004 around Funka Bay were used to investigate the spatial and temporal variability of chl-a concentrations. SeaWiFS-derived suspended sediment, MODIS derived sea surface temperature (SST), solar radiation and wind data were also analyzed. Results showed two distinct chlorophyll blooms in spring and autumn. Chl-a concentrations were relatively low (<0.3 mg m3) in the bay during summer, with high concentrations occurring along the coast, particularly near Yakumo and Shiraoi. In spring, chl-a concentrations increased, and a large (>2 mg m3) phytoplankton bloom occurred. The spatial and temporal patterns were further confirmed by empirical orthogonal function (EOF) analysis. About 83.94% of the variability could be explained by the first three modes. The first chl-a mode (77.93% of the total variance) explained the general seasonal cycle and quantified interannual variability in the bay. The spring condition was explained by the second mode (3.89% of the total variance), while the third mode (2.12% of the total variance) was associated with autumn condition. Local forcing such as the timing of intrusion of Oyashio water, wind condition and surface heating are the mechanisms that controlled the spatial and temporal variations of chlorophyll concentrations. Moreover, the variation of chlorophyll concentration along the coast seemed to be influenced by suspended sediment caused by resuspension or river discharge.  相似文献   

3.
泉州湾水域浮游植物群落的昼夜变化   总被引:3,自引:1,他引:2  
唐森铭  陈兴群 《海洋学报》2006,28(4):129-137
对福建省泉州湾口、大坠岛以北水域的浮游植物群落作了准同步昼夜连续观测,观测时间分别在2001年11月至2002年8月内的秋(11月)、冬(2月)、春(5月)、夏(8月)季大潮期.结果表明,该水域的叶绿素a生物量(以下简称生物量)受湾内高生物量的影响在潮汐作用下出现波动,高潮期出现低生物量,低潮期出现高生物量.靠近内湾的站位生物量大于湾外的站位;底层水体中的生物量普遍大于表层,底栖硅藻成为生物量变化的重要部分.调查海区生物量呈现昼夜节律变化,生物量白天高于夜间.进一步的分析表明,在潮汐和昼夜变化综合作用下,浮游植物的群落结构发生相应变化,白天的多样性指数低于夜间,浮游植物昼夜群落的不相似度很高.群落中一些种类如中肋骨条藻白天大量增殖,出现较高的优势度,昼夜平均密度比值达到9,变化节律明显.研究认为,尽管海区潮汐和流向左右着生物量变化,浮游植物的生态学过程如细胞增殖、再悬浮、扩散等过程在昼夜生物量变化中仍产生较大作用.  相似文献   

4.
Circulation in Tasman Bay   总被引:4,自引:4,他引:0  
Direct current measurements at four locations in Tasman Bay and numerical model results are used to analyse the mean flow in Tasman Bay. The mean circulation conforms to that previously found from drift card experiments: a clockwise circulation in Golden Bay, and an anti‐clockwise flow in Tasman Bay, with a return south‐westerly flow on the coast near Nelson. Typical mean speeds are 0.02–0.05 m.s‐1. The circular flow appears asymmetrical in both bays, with a stronger outflow along Farewell Spit in Golden Bay and near D'Urville Island in Tasman Bay.

An analytical tidal solution is used to exhibit the influence of Cook Strait in producing smaller tidal amplitudes in eastern Tasman Bay. Tidal speeds of 0.15–0.30 nus‐1 are typical, with tidal ellipses having degenerated into north‐east, south‐west lines.  相似文献   

5.
The chemical and biological characteristics of surface waters in Jinhae Bay were investigated over four seasons to understand water quality in light of the growing industrialisation occurring within this area. Jinhae Bay includes four smaller bays: Masan; Hangam; Jindong; and Gohyun. The water quality in Jinhae Bay varied spatially and seasonally. The water quality of both Hangam Bay and Masan Bay was highly degraded, demonstrating high concentrations of ammonia, nitrate, chlorophyll a and particulate organic carbon. Contamination from sewage was the dominant cause of the water quality deterioration in these bays. Conversely, the water quality in Jindong Bay and Gohyun Bay was not as severely affected as that of the above two bays. Water quality in Jinhae Bay was particularly poor in summer when nutrient loading was highest due to the run-off associated with high precipitation. Principal component analysis indicated that nitrogen contamination was a major factor influencing the water quality of Jinhae Bay. The effective reduction in high-nitrogen discharges is essential to improve water quality in Jinghae Bay.  相似文献   

6.
Vertical distributions of turbidity & phytodetritus (Chl.a and pheopigment), and their seasonal variations were measured in the deep water column of Sagami Bay, Japan, in June 1999, February 2000 and May 2000. Observations were carried out at eight stations along an east-west section of Sagami Bay using a CTD/water sampling system equipped with a memory-type infrared back-scattering meter which had been calibrated for the suspended particles collected in Sagami Bay. Turbidity increased close to the bottom in both summer and winter, indicating the existence of a benthic nepheloid layer throughout the year. But the vertical gradient of turbidity was much larger in summer than in winter. The concentration of Chl.a and pheopigment also increased in the benthic layer in summer, sometimes reaching values of more than 0.01 and 0.2 μg/l, respectively, much higher than those reported in hemipelagic regions of the ocean. In winter, on the other hand, Chl.a kept a constant low value throughout the deep water column. This indicates that the turbid water mass formed in the benthic layer in summer derives from the deposition of large amounts of phytodetritus in spring and the resuspension of these aggregates, which are subsequently decomposed in the benthic layer during the following autumn. Unlike the benthic boundary layer, the turbidity of intermediate water was lower in summer rather than in winter. Because the phytoplankton aggregates exported from the surface water during the spring bloom not only supply phytodetritus to the benthic layer but also scavenge the suspended particles in the water column, the steep vertical gradient of turbidity observed in summer may reflect the dynamic interaction between suspended and sinking particles in the deep water column.  相似文献   

7.
The capacity of filter feeders to reduce seston and phytoplankton concentrations in the water column has important implications for restoration and management of coastal ecosystems. We directly measured changes in chlorophyll a concentration on commercially stocked intertidal oyster beds (Crassostrea gigas) in Willapa Bay, Washington, USA by recording water properties near small drifters as they tracked parcels of water across tide flats. Chlorophyll declined 9.6% per half hour in water passing on-bottom adult oysters and 41% for longline adult oysters, whereas chlorophyll concentrations increased as water flowed across tide flats without adult oysters. Field filtration rates, which were fit to exponential declines in chlorophyll and accounted for oyster density and water depth, averaged 0.35 L g 1 h 1 (shucked dry weight) for on-bottom aquaculture and 0.73 L g 1 h 1 for longline culture, compared to values of 2.5–12 L g 1 h 1 reported from laboratory studies of C. gigas. Field filtration rates may be lower than laboratory rates due to unfavorable field conditions (e.g., low initial chlorophyll concentrations) or masked by resuspension of benthic microalgae. In addition to distinctions among on-bottom, longline, and no-oyster habitats, Akaike's Information Criterion analysis showed temperature, initial chlorophyll concentration, and depth related to chlorophyll decline. This research corroborates mathematical models suggesting that benthic suspension feeders are exerting top-down control of pelagic production in this estuary, with strong patterns in chlorophyll emerging across extensive tideflats populated by C. gigas despite low field filtration rates.  相似文献   

8.
We examined short-term phytoplankton and sediment dynamics in Tampa Bay with data collected between 8 December 2004 and 17 January 2005 from optical, oceanographic, and meteorological sensors mounted on a coastal oceanographic tower and from satellite remote sensing. Baseline phytoplankton (chlorophyll-a, Chl) and sediment concentrations (particle backscattering coefficient at 532 nm, bbp(532)) were of the order of 3.7 mg m−3 and 0.07 m−1, respectively, during the study period. Both showed large fluctuations dominated by semidiurnal and diurnal frequencies associated with tidal forcing. Three strong wind events (hourly averaged wind speed >8.0 m s−1) generated critical bottom shear stress of >0.2 Pa and suspended bottom sediments that were clearly observed in concurrent MODIS satellite imagery. In addition, strong tidal current or swells could also suspend sediments in the lower Bay. Sediments remained suspended in the water column for 2–3 days after the wind events. Moderate Chl increases were observed after sediment resuspension with a lag time of ˜1–2 days, probably due to release of bottom nutrients and optimal light conditions associated with sediment resuspension and settling. Two large increases in Chl with one Chl > 12.0 mg m−3 over ˜2 days, were observed at neap tides. For the study site and period, because of the high temporal variability in phytoplankton and sediment concentrations, a monthly snapshot can be different by −50% to 200% from the monthly “mean” chlorophyll and sediment conditions. The combination of high-frequency observations from automated sensors and synoptic satellite imagery, when available, is an excellent complement to limited field surveys to study and monitor water quality parameters in estuarine environments.  相似文献   

9.
The species composition and dynamics of phytoplankton in the water column and its contribution to clam, Ruditapes philippinarum, and oyster, Crassostrea gigas, production were studied in the Akkeshi-ko estuary, eastern part of Hokkaido, Japan. A total 128 taxa of diatoms were identified, with 103 and 102 species occurring on the surface sediments and in the water column, respectively. Amphora sp., Bacillaria paradoxa var paxilifer, Cocconeis scutellum, Navicula sp., Nitzschia sigma, Paralia sulcata, Rhoicosphenia curvata, Synedra ulna and Thalassiosira sp. were most common and dominant in all stations in both water column and surface sediment. Benthic diatoms were most dominant in both water column and surface sediment. The species composition of epiphytes was, in part, similar to diatom assemblage of the water column and also to that of the surface sediment. The benthic and pelagic ratio in the diatom assemblage of the water column was very high. Benthic diatoms were able to resuspend into water column by turbulence stimulated by wind. Chlorophyll a concentration in the water column increased as wind speed increased. Seventy and 67% of the gut contents oysters consisted of benthic diatoms in 2003 and 2004 and also 78 and 87% of clams in 2003 and 2004, respectively. The availability of benthic and epiphytic diatom assemblages contributes significantly to food resources for clam and oyster mariculture due to resuspension by disturbance in the Akkeshi-ko estuary.  相似文献   

10.
Sediment samples were collected at stations along cross-shelf transects in Onslow Bay, North Carolina, during two cruises in 1984 and 1985. Station depths ranged from 11 to 285 m. Sediment chlorophyll a concentrations ranged from 0·06 to 1·87 μg g−1 sediment (mean, 0·55), or 2·6–62·0 mg m2. Areal sediment chlorophyll a exceeded water column chlorophyll a a at 16 of 17 stations, especially at inshore and mid-shelf stations. Sediment ATP concentrations ranged from 0 to 0·67 μg g−1 sediment (mean, 0·28). Values for both biomass indicators were lowest in the depth range including the shelf break (50–99 m). Organic carbon contents of the sediments were uniformly low across the shelf, averaging 0·159% by weight. Photography of the sediments revealed extensive patches of microalgae on the sediment surface.Our data suggest that viable benthic microalgae occur across the North Carolina continental shelf. The distribution of benthic macroflora on the North Carolina shelf indicates that sufficient light and nutrients are available to support primary production out to the shelf break. Frequent storm-induced perturbations do not favour settling of phytoplankton, an alternative explanation for the presence of microalgal pigments in the sediments. Therefore, we propose that a distinct, productive benthic microflora exists across the North Carolina continental shelf.  相似文献   

11.
Sediment and water column data from four sites in North, Central and South San Francisco Bays were collected monthly from November 1999 through November 2001 to investigate the seasonal variation of benthic organic matter and chlorophyll in channel sediments, the composition and quality of sediment organic matter (SOM), and the relationship between seasonal patterns in benthic organic matter and patterns in water column chlorophyll. Water column chlorophyll peaked in the spring of 2000 and 2001, characteristic of other studies of San Francisco Bay phytoplankton dynamics, however an unusual chlorophyll peak occurred in fall 2000. Cross-correlation analysis revealed that water column chlorophyll at these four channel sites lead sediment parameters by an average of 2 to 3 months. Sediment organic matter levels in the San Francisco Bay channel showed seasonal cycles that followed patterns of water column production: peaks in water column chlorophyll were followed by later peaks in sediment chlorophyll and organic matter. Cyclical, seasonal variations also occurred in sediment organic matter parameters with sediment total organic carbon (TOC) and total nitrogen (TN) being highest in spring and lowest in winter, and sediment amino acids being highest in spring and summer and lowest in winter. Sediment chlorophyll, total organic carbon, and nitrogen were generally positively correlated with each other. Sediment organic matter levels were lowest in North Bay, intermediate in Central Bay, and highest in South Bay. C:N ratio and the ratio of enzyme hydrolyzable amino acids to TOC (EHAA:TOC) data suggest that SOM quality is more labile in Central and northern South Bay, and more refractory in North Bay and southern South Bay.  相似文献   

12.
Winter-spring phytoplankton blooms in Dabob Bay, Washington   总被引:4,自引:2,他引:4  
Scientific investigations in Dabob Bay, Washington State, USA, have been extensive since the early 1960s, but phytoplankton blooms have been studied mostly with regard to chlorophyll concentrations and little is known about the phytoplankton species themselves. Here we provide information on the species present, their abundances during blooms, their contribution to organic carbon concentrations and the ability of some phytoplankton species to produce toxic aldehydes that may impact metazoan grazers.Multiple blooms of phytoplankton, dominated by diatoms, occurred in the late winter-early spring period, with depth-integrated chlorophyll levels ranging from <20 to 230 mg m−2 and peaks in February and April. The major bloom species included Skeletonema costatum, Thalassiosira spp. and Chaetoceros spp; Phaeocystis cf. pouchetii occurred in 2002 and 2004. Other taxa or groups of organisms that were sometimes abundant included unidentified small flagellates <10 μm in size and unidentified heterotrophic dinoflagellates. Large diatoms usually comprised most of the cell carbon, but a large, heterotrophic dinoflagellate, identified only as Gyrodinium “tear” because of its shape, was a major contributor to the microplankton carbon when present even in small numbers. Five Thalassiosira species and S. costatum were found to produce polyunsaturated aldehydes (PUA) that are known to affect copepod reproduction and hatching success. Our findings are similar to the few previous studies in the last four decades that included phytoplankton species and suggest long-term similarities and relative stability in the phytoplankton species present and their timing in Dabob Bay.  相似文献   

13.
Analysis of suspended-sediment concentration data in San Francisco Bay is complicated by spatial and temporal variability. In situ optical backscatterance sensors provide continuous suspended-sediment concentration data, but inaccessibility, vandalism, and cost limit the number of potential monitoring stations. Satellite imagery reveals the spatial distribution of surficial-suspended sediment concentrations in the Bay; however, temporal resolution is poor. Analysis of thein situ sensor data in conjunction with the satellite reflectance data shows the effects of physical processes on both the spatial and temporal distribution of suspended sediment in San Francisco Bay. Plumes can be created by large freshwater flows. Zones of high suspended-sediment concentrations in shallow subembayments are associated with wind-wave resuspension and the spring-neap cycle. Filaments of clear and turbid water are caused by different transport processes in deep channels, as opposed to adjacent shallow water. Crown  相似文献   

14.
Five stations along a transect from the western shore of Biscayne Bay, Florida to the Florida Current were sampled monthly for one year. The variability and amount of seston particulate organic carbon, adenosine triphosphate, chlorophyll a, primary production and zooplankton decreased along the seaward transect. The greater inshore biomass and variability of seston were the result of the allochthonous input of detritus and inorganic nutrients via terrestrial runoff. Annual primary production in this subtropical coastal lagoon ranged from 13 to 46 g C m?2 yr?1. Chlorophyll a in the bay ranged from 1 to 3 mg chlorophyll a m?2. In contrast, chlorophyll a in the surface centimetre of the sediment ranged from 50 to 300 mg chlorophyll a m?2. In this clear, shallow (2 to 3 m), oligotrophic lagoon, over 90% of total primary production is by submerged macrophytes and benthic algae. The high zooplankton biomass in the bay is most likely sustained by macrophyte detritus and the resuspension of benthic diatoms by the high winds associated with summer squalls and winter cold fronts.  相似文献   

15.
We conducted studies of nutrients and water mass movements in a semi-enclosed bay in northern China to understand nutrient dynamics under varying tidal regimes. Four cruises were conducted under varying tidal regimes in Jiaozhou Bay, two at neap tide and one at spring tide in August and one at spring tide in October 2001. In addition to transect surveys, drift experiments and an anchor station were employed to show current and tidal effects. Samples for nutrient evaluation were taken from the five major tributary rivers in March (dry season) and August (flood season) of 2002 to estimate nutrient transport by rivers, and wastewater samples were collected to evaluate nutrients in wastewater discharge. Benthic nutrient fluxes were determined by (1) incubation of sediments with overlying seawater on board the boat and (2) calculated by Fick’s First Law from nutrient pore water profiles. Nutrient concentrations were high in the north, especially the northeast and northwest sectors, reflecting human activities. Jiaozhou Bay was characterized by high nitrogen, but low phosphorus and silica concentrations compared to Chinese coastal seas. Based on nutrient atomic ratios, the limiting elements for phytoplankton growth in Jiaozhou Bay were silica and phosphorus. The fluxes of nutrients between sediment and overlying water varied depending on the specific nutrient, the site and redox conditions. Benthic nutrient fluxes based on sediment incubations were all lower than the estimated diffusive fluxes, implying that the nutrients released from sediment pore waters were probably utilized by benthic microalgal and bottom-water primary production. A preliminary estimate of nutrient budgets demonstrated that riverine and wastewater inputs were greater than atmospheric deposition into Jiaozhou Bay, except that nitrate from wastewater inputs was less than atmospheric deposition. Concentrations of nitrogen and phosphorus increased while silica decreased in the last four decades, similar to other eutrophicated estuaries. The resulting shift in nutrient composition in Jiaozhou Bay affects phytoplankton composition, trophic interactions, and sustainability of living resources.  相似文献   

16.
Benthic Nutrient Recycling in Port Phillip Bay, Australia   总被引:8,自引:0,他引:8  
Benthic chamber measurements of the reactants and products involved with biogenic matter remineralization (oxygen, ammonium, nitrate, nitrite, phosphate, silicate, TCO2and alkalinity) were used to define solute exchange rates between the sediment and overlying water column of Port Phillip Bay, Australia. Measurements at various sites throughout the bay, conducted during the summers of 1994 and 1995, indicate that the variability in flux values within a site is comparable to year-to-year variability (±50%). Four regions of the bay were distinguished by sediment properties and the northern region was identified as having 3–30 times greater nutrient regeneration rates than the other regions. Benthic recycling accounted for 63 and 72% of the annualized N and P input, respectively, to the entire bay as determined by summing benthic, dissolved riverine, atmospheric and dissolved effluent sources. However, bay-wide sedimentary denitrification accounted for a loss of 63% of the potentially recyclable N. This fraction is higher than many other coastal regions with comparable carbon loading. Denitrification efficiency is apparently not enhanced by benthic productivity nor by bio-irrigation. The rate of bio-irrigation is negatively correlated with denitrification efficiency. Bio-irrigation was studied using radon-222 and CsCl spike injection chamber measurements. Radon fluxes from sediments in Port Phillip Bay were enhanced over the diffusive flux by 3–16 times. The modelled rate of loss of Cs from chamber water was positively correlated with radon flux enhancement results. Both methods identify regions within Port Phillip Bay that have particularly high rates of non-diffusive pore-water overlying water solute exchange.  相似文献   

17.
《Marine Chemistry》2001,73(3-4):215-231
In-situ benthic flux studies were conducted at three stations in Upper Galveston Bay twice during March 1996 to directly measure release rates of dissolved Mn, Fe, Ni and Zn from the sediments. Results showed reproducible increases with time in both replicate light and light–dark benthic chambers, resulting in average fluxes of −1200±780, −17±12, −1.6±0.6 and −2.4±0.79 μmol m−2 day−1 for Mn, Fe, Ni and Zn, respectively. Sediment cores collected during 1994–1996 showed that surficial pore water concentrations were elevated compared to overlying water column concentrations, suggesting diffusive release from the sediments. Diffusive flux estimates of Mn and Zn agreed in direction with chamber fluxes measured on the same date, but only accounted for 5–38% of the measured flux. Diffusive fluxes of Fe agreed with measured fluxes at the near Trinity River station but overestimated actual release in the mid and outer Trinity Bay regions, possibly due to inaccurate determination of the Fe pore water gradients or rapid oxidation processes in the overlying water at these stations.In general, measured fluxes of Mn and Ni were higher in the mid Trinity Bay region and suggested a mechanism for the elevated trace metal concentrations previously reported for this region of Galveston Bay. However, the fluxes of Fe were highest in close proximity to the Trinity River, supporting the elevated Fe concentrations measured in this region during this and other studies, and decreased towards middle and outer Trinity Bay. Trace metal turnover times were between 0.1 and 1.2 days for Mn, between 1.3 and 4.6 days for Fe, and between 27 and 100 days for Ni and 12–20 days Zn, and were considerably shorter than the average Trinity Bay water residence time (1.5 years) for this period. Comparing area averaged benthic inputs to Trinity River inputs shows the sediments to be a significant source of trace metals to Galveston Bay. However, while benthic inputs of trace metals were measured, water column concentrations remained low despite rapid turnover times for Mn and Fe, suggesting removal of these metals from the water column after release from the sediments.  相似文献   

18.
Phytoplankton dynamics in the upper reach of the northern San Francisco Bay estuary are usually characterized by low biomass dominated by microflagellates or freshwater diatoms in winter, and high biomass dominated by neritic diatoms in summer. During two successive years of very low river discharge (the drought of 1976-77), the summer diatom bloom was absent. This is consistent with the hypothesis that formation of the diatom population maximum is a consequence of the same physical mechanisms that create local maxima of suspended sediments in partially-mixed estuaries: density-selective retention of particles within an estuarine circulation cell. Because the estuary is turbid, calculated phytoplankton growth rates are small in the central deep channel but are relatively large in lateral shallow embayments where light limination is less severe. When river discharge falls within a critical range (100–350 m3 s?1) that positions the suspended particulate maximum adjacent to the productive shallow bays, the population of neritic diatoms increases. However, during periods of high discharge (winter) or during periods of very low discharge (drought), the suspended particulate maximum is less well-defined and is uncoupled (positioned downstream or upstream) from the shallow bays of the upper estuary, and the population of neritic diatoms declines. Hence, the biomass and community composition of phytoplankton in this estuary are controlled by river discharge.  相似文献   

19.
Temporal variations in water mass properties and the composition of phytoplankton pigments in the central part of Sagami Bay were investigated by monthly observations from June 2002 to May 2004. Eleven pigments were quantified using high-performance liquid chromatography (HPLC) from 100%, 20%, and 5% light depths relative to the surface; the class-specific composition of phytoplankton community was then obtained by CHEMTAX analysis. The study area was influenced by the Kuroshio water for most of the observation period. The mean contribution of diatoms in all samples was relatively low (29%), while that of flagellates, mainly chlorophytes or cryptophytes, was quite high (60%). The phytoplankton composition at the three depths was uniform throughout the observation period, indicating that the vertical structure of the phytoplankton community did not develop significantly over time. A distinct temporal pattern was observed: flagellates dominated during the summer of 2002 and the winters of 2002–2003 and 2003–2004, while diatoms dominated during the summer of 2003. This pattern was associated with water mass changes. The community in the summer of 2003 was influenced by coastal water. While no distinct spring bloom of phytoplankton was observed, a weak increase in chlorophyll a was observed during the spring of 2004. Ocean color satellite data showed that fluctuations in chlorophyll a concentrations at time scales much shorter than a month occurred during the spring of 2003 and that the elevations in chlorophyll a levels were not continuous. The fluctuations were probably associated with rapid flushing by the Kuroshio water, which has low chlorophyll a content.  相似文献   

20.
Chesapeake Bay is a large and productive estuary that has received close scrutiny in recent years because of indications that its water quality and biota have been damaged by man's activities. Data on primary production for the estuary as a whole, however, are surprisingly sparse. We describe here the distribution of photosynthetic carbon assimilation by phytoplankton in Chesapeake Bay, and relate productivity patterns to hydrographic characteristics of the estuary. Between March 1982 and April 1983, a series of four cruises was conducted on Chesapeake Bay, and two cruises on the urbanized Delaware Bay for comparison. The upper Chesapeake and Delaware were highly turbid with high concentrations of suspended particulate matter and dissolved inorganic nutrients. Low chlorophyll concentrations were usually found in these areas of high turbidity, despite the abundance of nutrients, suggesting light limitation. Application of Wofsy's (1983) model of phytoplanton growth confirmed this suggestion. Chlorophyll and productivity maxima usually occurred seaward of the turbidity maxima where light penetration increased and suffient nutrients were present to support active phytoplankton growth. Further seaward of the chlorophyll maxima in the Chesapeake, the photic zone depth increased, concentrations of nutrients decreased, and phytoplankton biomass decreased, suggesting that nutrient availability, rather than light, controlled phytoplankton growth in the lower portion of the estuary. In contrast to the Chesapeake, Delaware Bay was more turbid, had generally higher nutrient concentrations, and was lower in phytoplankton productivity. The chlorophyll maxima and region of rapid phytoplankton growth occurred further toward the lower estuary and shelf regions in Delaware Bay because the high turbidity extended further seaward. Nutrients were never depleted at the shelf end of the estuary sufficiently to retard phytoplankton growth. Photosynthesis-irradiance (P-I) curves from simulated in situ and constant intensity incubations showed a strong correlation of the light-limited slope (aB) with the light-saturated rate ( ) on each cruise. Spatial variations in corresponded to patterns of phytoplankton abundance, as did integral production (PP) and carbon-based growth rates (μC, μm), and photosynthetic parameters varied significantly with temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号