首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Bay of Bengal remains one of the least studied of the world's oxygen minimum zones (OMZs). Here we offer a detailed investigation of the macrobenthos relative to oxygen minimum zone [OMZ – DO (dissolved oxygen), concentration <0.5 ml·1?1] at 110 stations off the North East Indian margin (160 and 200 N) featuring coastal, shelf and slope settings (10–1004 m). Macrobenthos (>0.5 mm) composition, abundance and diversity were studied in relation to variations in depth, dissolved oxygen, sediment texture and organic carbon. Using multivariate procedures powered by SIMPROF analysis we identified distinct OMZ core sites (depth 150–280 m; DO 0.37 ml·1?1) that exhibited dense populations of surface‐feeding polychaetes (mean 2188 ind. m?2) represented by spionids and cossurids (96%). Molluscs and crustaceans were poorly represented except for ampeliscid amphipods. The lower OMZ sites (DO > 0.55 ml·l?1) supported a different assemblage of polychaetes (cirratulids, amphinomids, eunicids, orbinids, paraonids), crustaceans and molluscs, albeit with low population densities (mean 343 ind. m?2). Species richness [E(S100)], diversity (Margalef d; H’) and evenness (J’) were lower and dominance was higher within the OMZ core region. Multiple regression analysis showed that a combination of sand, clay, organic carbon, and dissolved oxygen explained 62–78% of the observed variance in macrobenthos species richness and diversity: E(S100) and H’. For polychaetes, clay and oxygen proved important. At low oxygen sites (DO <1 ml·l?1), depth accounted for most variance. Residual analysis (after removing depth effects) revealed that dissolved oxygen and sediment organic matter influenced 50–62% of residual variation in E(S100), H’ and d for total macrofauna. Of this, oxygen alone influenced up to ~50–62%. When only polychaetes were evaluated, oxygen and organic matter explained up to 58–63%. For low oxygen sites, organic matter alone had the explanatory power when dominance among polychaetes was considered. Overall, macrobenthic patterns in the Bay of Bengal were consistent with those reported for other upwelling margins. However, the compression of faunal gradients at shallower depths was most similar to the Chile/Peru margin, and different from the Arabian Sea, where the depth range of the OMZ is two times greater. The Bay of Bengal patterns may take on added significance as OMZs shoal globally.  相似文献   

2.
Abstract

Poor water quality (high concentrations of nitrogen (N), phosphorus (P), suspended solids (SS), and faecal bacteria) in Waiokura Stream, southern Taranaki, New Zealand, is attributed to diffuse and point source (PS) inputs from dairy farming. Trend analysis of concentration time‐series data (2001–2008) and annual yields (i.e., stream load divided by catchment area) showed that significant improvements occurring since 2001 may be attributed to changes in farming practices and riparian management. Yields of filterable reactive P, total P and SS declined by 25–40% as a result of increased riparian protection, a reduction in dairy shed effluent (DSE) pond discharges from 8 to 6 with conversion to land irrigation, and a 25% reduction in the average application rate of P fertiliser. Median annual Escherichia coli concentrations declined at a rate of 116 per 100 ml per year, as a result of fewer PS discharges and improved riparian management. Thus, improvements in stream water quality were attributed to adoption of on‐farm best management practices, fewer DSE discharges and riparian management involving permanent livestock exclusion from stream banks and riparian planting to mitigate runoff from pasture. During 2001–06, N fertiliser use increased by 30% and, with a 130% increase in supplementary cattle feed during 2003–08, led to an increase in average milk solids production 1021 to 1262 kg ha?1 during 2001–06 with the increased production likely associated with increased N leaching losses. Total N and nitrate‐N concentrations and yields increased during 2001–07 as a result of the intensification in land use and increased N cycling. Stream invertebrate surveys using the macroinvertebrate community index (MCI) metric showed little improvement in MCI during 2002–07, probably because of the relatively short timeframe of this study and because water temperatures were not a limiting factor for invertebrate communities. The absence of native forest streams in the proximity of Waiokura Stream that might act as sources of sensitive species to recolonise the restored stream should also be considered as a constraint to improvements in biological community structure.  相似文献   

3.
Water quality of a lowland stream in a New Zealand dairy farming catchment   总被引:3,自引:2,他引:1  
A small stream in a predominantly dairying catchment in the Waikato region of New Zealand was monitored for 2 years at three sites. Total nitrogen (TN) concentrations were up to 7.09 g m‐3 in winter, with the bulk comprising nitrate nitrogen (NO 3‐N). During summer NO 3‐N was near zero and TN mostly comprised organic nitrogen. Maximum concentrations of total phosphorus (TP) and dissolved reactive phosphorus (DRP) were 1.64 and 0.555 g m‐3, respectively, and peaks coincided with spring and autumn applications of phosphorus fertiliser. Ammoniacal nitrogen concentrations exceeded 1 g m‐3 on several occasions and mean concentrations at the three sites were 0.165–0.272 g m‐3. Faecal coliform and enterococci bacteria concentrations were 64–26000 and 7–23000 cfu per 100 ml, respectively. Specific yields of TN and NO 3‐N (35.3 and 30.7 kg ha yr‐1, respectively) were much greater than any previously reported for New Zealand pasture catchments, whereas TP and DRP yields (1.16 and 0.54 kg ha yr‐1, respectively) were more in accord with other studies. Greater use of land treatment of liquid wastes will reduce stream inputs of faecal organisms, NH4‐N and P.  相似文献   

4.
Six small constructed ponds (surface area 500–7500 m2, catchment area 28–158 ha) in rural and native forest catchments in the Auckland region had poorer water quality than the streams they replaced. Temperature (24°C) and dissolved oxygen (DO) (4 mg/litre) criteria were exceeded for up to 46% and 84% of days, respectively, during a critical 40‐day summer period. The poor conditions found in ponds, even within undeveloped native forest catchments, indicated that the physical characteristics of ponds (e.g., lack of shade, organic sediments) affected water quality independently of other factors (e.g., land use, riparian protection). The frequency and severity of the exceedences were related to pond size, retention time, and catchment land use; the most degraded conditions were found in rural ponds with largest surface areas and longest retention times. Ponds affected water quality and macroinvertebrate communities downstream. Exceedences of temperature and DO criteria occurred more frequently and were more severe downstream than upstream of ponds. Ponds in rural catchments increased mean daily stream temperatures 3.1–6.6°C during the critical summer period, and temperature differences were three times higher than those in bush catchments (0.8–2.0°C). Elevated temperatures were observed for hundreds of metres downstream owing to the slow rate of cooling (1°C/ 100 m), expanding the extent of adverse effects well beyond the “footprint” of the pond. Macroinvertebrate community composition (sample area 1–3 m2) and values of four commonly used metrics appeared to be significantly affected by ponds in rural and native forest catchments. These finding have important management implications that should lead to modifications (e.g., breaching dams) of the estimated 4500 existing ponds in the Auckland region, where possible, and restrictions on proposals for new “on‐line” ponds.  相似文献   

5.
Abstract

Phosphorus and nitrogen were measured in stream run‐off from the four catchments of the Taita Experimental Basin (41° 11′ S, 174° 58′ E). The land is used as exotic conifer forest, native forest, and hill pasture. Multiple regression analysis was used to estimate chemical losses per unit area in floods and at low flows.

At low flows, the hill pasture (fertilised with lime at 630 kg·ba?1·y?1, and superphosphate at 380 kg·ha?1·y?1) tended to lose more phosphorus and nitrate than the forested land, but differences were small, and not always significant. During large floods, the hill pasture (No. 5 Catchment) lost about 3 times as much reactive phosphate and 2–5 times as much total phosphorus as the forested land, and 130–190 times as much nitrate as land in the Exotic Forest and Native Forest 2 Catchments. Nitrate losses from land in the No. 4 Catchment (mainly native forest) were as high as those from the hill pasture, so high nitrate loss is not associated solely with agriculture.

Losses of total phosphorus via the catchment streams were estimated as: No. 5 Catchment (hill pasture), 293 g·ha?1·y?1; Native Forest 2 Catchment, 201 g·ha?1·y?1; No. 4 Catchment, 124 g·ha?1·y?1; Exotic Forest Catchment, 71 g·ha?1.y?1. Nitrate‐N losses were estimated to have been 1356 g·ha?1·y?1, 11.5 g·ha?1·y?1, 1436 g·ha?1·y?1, and 44 g·ha?1·y?1 respectively. Phosphorus and nitrate concentrations were similar in the Exotic Forest and Native Forest 2 streams, but the Exotic Forest tended to lose smaller amounts because it yielded about 50% less water per unit area.

Over the 2‐y study, an estimated 47–70% of phosphorus losses and up to 83% nitrate losses occurred in large floods; 31% and 48% respectively were apparently lost from the hill pasture catchment in a single flood. Less than 20% of estimated phosphorus losses and as little as 1% of nitrate losses occurred at low flows.

Run‐off of phosphorus and nitrate was spasmodic, and this should be considered in assessing the impact of surface run‐off on the biology and chemistry of receiving waters.  相似文献   

6.
The Arabian Sea is characterized by a mid‐depth layer of reduced dissolved oxygen (DO) concentration or oxygen minimum zone (OMZ ‐DO concentration <0.5 ml·l?1) at ~150–1000 m depth. This OMZ results from the flux of labile organic matter coupled with limited intermediate depth water ventilation. Generally, benthic animals in the OMZ have morphological and physiological adaptations that maximize oxygen uptake in the limited oxygen availability. Characteristics of OMZ benthos have been described from only a few localities in the Arabian Sea. We measured the bottom water DO and studied the characteristics of infaunal macrobenthos of the Indian western continental shelf by collecting samples at 50, 100 and 200 m in depth from 7° to 22° N. The DO values observed at 200 m (0.0005–0.24 ml·l?1) indicated that this area is lying within an OMZ. Five major taxa, namely Platyhelminthes, Sipunculoidea, Echiuroidea, Echinodermata and Cephalochordata were absent from the samples collected from this OMZ. In general, declines in total macrobenthic density and biomass and polychaete species richness and diversity were observed in this OMZ compared with the shallower depths above it. Community analyses of polychaetes revealed the dominance of species belonging to families Spionidae, Cirratulidae and Paraonidae in this OMZ. Low oxygen condition was more pronounced in the northern continental shelf edge (≤0.03 ml·l?1), where the majority of spionids including Prionospio pinnata and cirratulids were absent; whereas amphipod, isopod and bivalve communities were not impacted.  相似文献   

7.
We used an oxygen microsensor for high-resolution measurements of pore water oxygen concentration in semi-closed coastal bays of the South Sea of Korea during summer. The oxygen penetration depths ranged from 0.60 to 3.65 mm. Oxygen consumption rates were estimated to be 9.1 to 59 mmol m?2 d?1 (average: 22.8 mmol m?2 d?1). At the sediment-water interface, the oxidation rates of organic carbon were estimated to be 84–545 mg C m?2 d?1 (average: 211 mg C m?2 d?1). Approximately 38% (~211 mg C m?2 d?1) of pelagic primary production was regenerated in the surface sediment, indicating the tight benthic-pelagic coupling in the coastal sea of the South Sea of Korea.  相似文献   

8.
Abstract

The density and biomass of fish and crayfish, and the production of eels, was compared among streams in native forest, exotic forest, and pasture. Populations were estimated by multiple‐pass electroshocking at 11 sites in hill‐country streams in the Waikato region, North Island. Three sites were in native forest, four in exotic forest, and four in pasture. Length of stream sampled at each site was 46–94 m (41–246 m2 in area), and catchment areas up stream of the sites ranged from 0.44 to 2.01 km2.

A total of 487 fish were caught. The species were longfinned and shortfinned eels, banded kokopu, Cran's and redfinned bullies, and common smelt. Eels were the most abundant fish in all three land‐use types, and shortfinned eels were more abundant at pastoral sites (mean density 1.11 fish m?2) than longfinned eels (mean density 0.129 fish m?2). Banded kokopu were present only at forested sites. Mean fish densities were greater at pastoral sites (1.55 fish m?2) than under either native forest (0.130 fish m?2) or exotic forest (0.229 fish m?2). Mean fish biomass was also greater at pastoral sites (89.7 g m?2) than under native forest (12.8 g m?2) or exotic forest (19.3 g m?2). Longfinned eels made a greater contribution to the fish biomass at all sites than did shortfinned eels. Densities of crayfish were high (0.46–5.40 crayfish m?2), but were not significantly different between land‐use types. Crayfish biomass ranged from 1.79 to 11.2 g m?2. Total eel production was greater at pastoral sites (mean 17.9 g m?2 year1) than at forest sites (mean 2.39 gm?2 year?1).  相似文献   

9.
Abstract

Thirty sites were sampled in three New Zealand rivers (Waikato, Maitai, and Wakapuaka) during late summer 1977. Samples were collected from just below the surface at mid river or in the tailraces below hydro‐electric dams.

Parameters measured included bacterial numbers (direct counts), heterotrophic potential (Vmax ), adenosine triphosphate (ATP), chlorophyll a (Chi a), and concentrations of nitrogen and phosphorus compounds.

Bacterial populations per millilitre fluctuated threefold (6.4–19.4 × 105) along the Waikato River and were lower and more consistent in the two South Island rivers (1.46–2.55 × 105). In contrast, Vmax varied 5000‐fold in the Waikato River, from a characteristically oligotrophic value of 0.0035 μg. l?1·h?1 (Lake Taupo outlet) to a eutrophic value of 18.4 μg. l?1·h?1 at the Mihi bridge. Vmax for the two South Island rivers ranged from 0.0091 to 0.189 μg. l?1 · h?1.

ATP, Chi a, Kjeldahl nitrogen, nitrate nitrogen, and total phosphorus concentrations for the 20 sites on the Waikato River varied in a similar way to the Vmax and bacterial data. There were large peaks at the Mihi bridge, lower values for the dam tailraces and significant increases for the sites below Hamilton. Concentrations for these parameters were lower and more consistent along the lengths of the two South Island rivers.

Most parameters were significantly correlated with each other for the Waikato River samples. The strongest correlations were between Vmax and bacterial numbers and between Vmax and nitrate nitrogen. In the Maitai and Wakapuaka River series these correlations were also significant, but the only other significant correlations recorded there were between ATP and nitrate nitrogen, and between ATP and bacterial numbers.  相似文献   

10.
Net community biological production in the euphotic zone of the ocean fuels organic matter and oxygen export from the upper ocean, which has a large influence on the atmospheric pressure of carbon dioxide and is the driving force for metabolite distributions in the sea. We determine the net annual biological oxygen production in the mixed layer of the northeast subarctic Pacific Ocean from in situ O2 and N2 measurements. Temperature, salinity, total gas pressure and O2 were measured every 3 h for 9 months in 2007 at about 3 m depth on a surface mooring at Station P (50°N, 145°W). The concentration of nitrogen gas, N2, determined from separate total gas pressure and pO2 measurements, was used as an inert tracer of the physical processes that induce gas departure from thermodynamic equilibrium with the atmosphere. We use a simple model of the ocean’s mixed layer along with the nitrogen concentration to constrain the importance of bubbles, gas exchange and horizontal advection, which are then used in the oxygen mass balance to derive net biological oxygen production. The mixed-layer oxygen mass balance is dominated by exchange with the atmosphere, and we determine a mean summertime oxygen production of 24 mmol O2 m?2 d?1. The annual pattern in the difference between the supersaturation of oxygen and nitrogen in the surface waters reveals very little net oxygen production during the winter at this location. The calculated annual net community production (NCP) of carbon from this new method, 2.5 mol m?2 yr?1, agrees to within its error of about×40% with previous determinations at this location from oxygen mass balance, NO3? draw down and 234Th measurements. This value is either indistinguishable from or lower than annual NCP measurements in the subtropical North Pacific, indicating that there is no experimental evidence for differences in annual NCP between the subarctic and subtropical North Pacific Ocean.  相似文献   

11.
Biogenic silica sediment constitutes one of the critical sources of particle income in the oceans. In this paper, satellite remote sensing of primary production, sinking flux, and molar ratio of Si/C were utilized to elucidate potential biogenic silica sediment in the Paleo-Yangtze Grand Underwater Delta. Primary production retrieval showed that daily primary production in the Paleo-Yangtze Grand Delta was 3.3–10.8?Mt?d?1, with 5.8?Mt?d?1 on average. Sinking flux, retrieved with in situ observations and satellite remote sensing, was within the range of 109–657?mg?Cm?2?d?1, or about 23% of total primary production, on average. A molar ratio of Si/C of 0.11–0.45 interval was used in the area, for the Paleo-Yangtze Grand Delta was similar to coastal water and affected by many factors. Considering that phytoplankton in the Paleo-Yangtze Grand Underwater Delta is mainly diatom (80% on average), about 0.21–0.88 billion tons of biogenic silica source sediment is produced in the area annually. With the reduction of land source sediment occurring in recent years in the area, biogenic silica sediment may be one of the dominant sediment sources for maintaining the future stability of the Paleo-Yangtze Grand Underwater Delta.  相似文献   

12.
The tropical seagrass Halophila stipulacea is dominant in most regions of the Indo‐Pacific and the Red Sea and was introduced into the Mediterranean Sea after the opening of the Suez canal. The species is considered invasive in the Mediterranean Sea and has been progressively colonizing new areas westward. Growth and photosynthetic responses of H. stipulacea have been described but no information is yet available on the nitrogen nutrition of the species. Here we simultaneously investigated the uptake kinetics of ammonium and nitrate and the internal translocation of incorporated nitrogen in H. stipulacea using 15N‐labelled substrates across a range of Ni levels (5, 25, 50 and 100 μm ). The ammonium uptake rates exceeded the nitrate uptake rates 100‐fold, revealing a limited capacity of H. stipulacea to use nitrate as an alternative nitrogen source. The uptake rates of ammonium by leaves and roots were comparable up to 100 μm 15NH4Cl. At this concentration, the leaf uptake rate was 1.4‐fold higher (6.22 ± 0.70 μmol·g?1 DW h?1) than the root uptake rate (4.54 ± 0.28 μmol·g?1 DW h?1). The uptake of ammonium followed Michaelis–Menten kinetics, whereas nitrate uptake rates were relatively constant at all nutrient concentrations. The maximum ammonium uptake rate (Vmax) and the half‐saturation constant (Km) of leaves (9.79 μmol·g?1 DW h?1 and 57.95 μm , respectively) were slightly higher than that of roots (6.09 μmol·g?1DW h?1 and 30.85 μm , respectively), whereas the affinity coefficients (α = Vmax/Km) for ammonium of leaves (0.17) and roots (0.20) were comparable, a characteristic that is unique among seagrass species. No substantial translocation (<2.5%) of 15N incorporated as ammonium was detected between plant parts, whereas the translocation of 15N incorporated as nitrate was higher (40–100%). We conclude that the Ni acquisition strategy of H. stipulacea, characterized by a similar uptake capacity and efficiency of leaves and roots, favors the geographical expansion potential of the species into areas with variable water‐sediment N levels throughout the Mediterranean.  相似文献   

13.
Abstract

The water chemistry, flora, and fauna of Lake Rotokawa (38° 37.8’ S, 176° 11.2'E) was studied in 1975–76. The mean pH is 2.1 and thermal inflows may elevate the mean summer temperature of the surface waters 4.2°c above that of nearby cold water Lake Rotongaio (18.9°c). The temperature range of surface water was from 10.1 °c in winter to 23.1°c in summer. The major anions were SO4 2? 679 g.m?3, and Cl‐ 314 g.m?3. Mean concentrations of major cations were Na+ 224 g.m?3, K+ 28.9 g.m?3, Ca2+ 13.3 g.m?3, and Mg2+ 2.6 g.m?3.

Two species of flagellate algae were recorded, of which Euglena anabaena was predominant. Only two benthic macroinvertebrates were found, larvae of Chironomus zealandicus, mean density 253 per square metre, and Helobdella sp., 1.3 per square metre.

The Parariki Stream was influenced by thermal springs in its upper and lower reaches, being cooler (24–25°c) about halfway along its length than near its source (27.8–39.0°c) or confluence (26.5°‐28.0°c) with the Waikato River. In the cooler stretch of the stream where unidentified benthic algae were not limited by high temperature, chlorophyll and total pigment increased from 3.9 to 377.9 mg.m?3 and from 17.5 to 534.4 mg.m?3 respectively, and nutrient levels fell (NO3‐N, 22–10.5 mg.m?3; NH4‐N, 6440–230 mg.m?3; and PO4‐P, 51–19 mg.m?3).  相似文献   

14.
OVERSEER is used in New Zealand to estimate nutrient losses from farmland, but does not quantify subsequent movement through the catchment, or attenuation. This paper uses the ROTAN model, based on the Scandinavian HBV-N model, to route nitrogen losses from 1900–2015 to Lake Rotorua where groundwater age ranges from 14 to 170 years. ROTAN conceptualises three delivery pathways (quickflow, groundwater and streamflow) with different attenuation. When calibrated to measured stream and groundwater concentrations, several combinations of attenuation gave equally good fits largely because of sparse and uncertain input and calibration data. Nevertheless, lake N loads were predicted for current land use (754?±?39?t y?1) and with proposed N loss reductions (431?±?26?t y?1). Probabilities were also calculated that the reductions are more (12%–18%) or less (82%–88%) than required to meet the target lake N load (405?t y?1). ROTAN shows promise for calculating nitrogen movement in catchments dominated by groundwater where there is limited data.  相似文献   

15.
Benthic fluxes of dissolved inorganic carbon, total alkalinity, oxygen, nutrients, nitrous oxide and methane were measured in situ at three sites of Río San Pedro salt marsh tidal creek (Bay of Cádiz, SW Spain) during three seasons. This system is affected by the discharges of organic carbon and nutrients from the surrounding aquaculture installations. Sediment oxygen uptake rates and inorganic carbon fluxes ranged respectively from 16 to 79 mmol O2 m? 2 d? 1 and from 48 to 146 mmol C m? 2 d? 1. Benthic alkalinity fluxes were corrected for the influence of NH4+ and NO3? + NO2? fluxes, and the upper and lower limits for carbon oxidation rates were inferred by considering two possible scenarios: maximum and minimum contribution of CaCO3 dissolution to corrected alkalinity fluxes. Average Cox rates were in all cases within ± 25% of the upper and lower limits and ranged from 40 to 122 mmol C m? 2 d? 1. Whereas carbon mineralization did not show significant differences among the sites, Cox rates varied seasonally and were correlated with temperature (r2 = 0.72). During winter and spring denitrification was estimated to account for an average loss of 46% and 75%, respectively, of the potentially recyclable N, whereas during the summer no net removal was observed. A possible shift from denitrification to dissimilatory nitrate reduction to ammonium (DNRA) during this period is argued. Dissolved CH4 and N2O fluxes ranged from 5.7 to 47 μmol CH4 m? 2 d? 1 and 4.3 to 49 μmol N–N2O m? 2 d? 1, respectively, and represented in all cases a small fraction of total inorganic C and N flux. Overall, about 60% of the total particulate organic matter that is discharged into the creek by the main fish farm facility is estimated to degrade in the sediments, resulting in a significant input of nutrients to the system.  相似文献   

16.
Abstract

Chemical parameters (pH, Eh, carbon, Kjeldahl nitrogen, total phosphorus, 0.5M H2SO4‐extractable phosphorus, organic phosphorus, and water‐soluble phosphorus) were measured in the surface layers of sediments collected from various depths in Lakes Rotowhero, Okaro, Ngapouri, Rotokakahi, Okareka, Tikitapu, Okataina, and. Rotoma during October 1972. The sediments of the productive geothermal lake, Rotowhero, were markedly different from those of the cold‐water lakes: they had relatively low pH values, high carbon (mean 8.5%) and organic phosphorus (mean 4160 μg.g?1) concentrations, and very high total phosphorus concentrations (mean 4770 μg.g?1), probably as a result of enrichment by hot springs.

The mean concentrations in the sediments of the cold‐water lakes were carbon 3.2–7.9%, Kjeldahl nitrogen 3380–8310 μg.g?1 and phosphorus 690–1780 μg.g?1. These concentrations are within the ranges for New Zealand terrestrial topsoils, but the lake sediments appear enriched in phosphorus relative to local topsoils. Total carbon, nitrogen, and phosphorus concentrations of sediments tended to be highest in the eutrophic lakes (Okaro, Ngapouri) although the deep oligotrophic lakes (Okataina, Rotoma) had relatively high total phosphorus concentrations (means 1400, 1510 μg.g?1). Overall, the carbon, nitrogen, and phosphorus concentrations of the sediments showed little relationship to the trophic state of the lake.

Organic phosphorus concentrations of the surface layers of sediments were similar in all the cold‐water lakes (mean 319 μg.g?1). The proportion of the total phosphorus apparently ‘fixed’ in mineral material was minimal (0–1%) in sediments from the eutrophic and mesotrophic lakes, but in the oligotrophic lakes was similar to that in New Zealand topsoils (9–14%). Reducing conditions may cause solution of a high proportion of the ‘fixed’ phosphorus in the eutrophic lakes.

The water‐soluble phosphorus concentrations in the sediments of the five shallow cold‐water lakes (Okaro, Ngapouri, Rotokakahi, Okareka, Tikitapu) correlated positively with trophic state and with concentrations of dissolved phosphorus in the lake waters.

Carbon, nitrogen, and phosphorus concentrations in the sediments tended to vary with overlying water depth. This should be considered when comparisons are made between lakes.  相似文献   

17.
Abstract

Nitrogen fixing potential was measured in summer 1975 by acetylene reduction in situ at 5 stations on the intertidal flats of the Waimea Inlet, Nelson, New Zealand, which receive nutrients from several sources. Highest values (644 μmol?m?2.d?1) were obtained on sediments near an apple cannery effluent discharge and were linear through at least two tidal cycles. The cannery waste had the highest carbon to nitrogen ratio (10.3 : 1.0) of all the effluents examined and exhibited the highest rate of acetylene reduction (14.0 μmol?l?1.d?1). Sizeable populations of the nitrogen fixing bacteria Klebsiella pneumoniae were isolated from the cannery effluent (2 × 104 per millilitre) and also from the mud adjacent to the discharge pipe (5 × 105 per millilitrc). The stimulatory effect of the cannery effluent on nitrogen fixation in the sediment was shown to be restricted to close to the discharge point. Sediments in areas affected by slaughterhouse and sewage effluents exhibited the second and third highest rates of acetylene reduction, (130 &; 28 μmol?m?2.d?1 respectively). In both places, the activities were not restricted to the immediate vicinity of the effluent channels. Nitrogen fixation was lowest in sediments fronting a catchment of grazed pasture. Fixation was low also in sediments affected by effluents from the hydraulic debarker of a woodchip mill.  相似文献   

18.
Measurements were made of suspended sediment (SS), volatile suspended solids, dissolved organic carbon (DOC), nitrogen (N) and phosphorus (P) concentrations, turbidity, black disk visibility, pH, alkalinity, and temperature, at monthly intervals for 2–5 years on nine streams draining catchments with pasture, pine plantation, and native forest land uses. Stream flow and flow‐weighted concentrations of SS, N, and P were also measured for up to 2 years from pasture, native forest, and mixed land‐use catchments enabling calculation of export (kg ha‐1 yr‐1). During 1996–97, export from the pasture stream was 2.5‐ to 7‐fold higher for SS (988), total P (1.50), total Kjeldahl N (5.65), nitrate N (4.37), and ammoniacal N (0.34) than from the stream draining native forest. In contrast, export of DOC (25.5) and dissolved reactive P (DRP) (0.25) from the pasture stream were within 20% of the native stream's values. Export of SS and nutrients (except DRP) from the pasture catchment was 4‐ to 15‐fold higher during the winters of 1995 and 1996 than winter 1997 when rainfall was half the normal level. Streams draining native forest had lower temperature, sediment, and nutrient concentrations (except DRP), and higher water clarity, than those draining pine forest and pasture. A pine/scrub stream had the highest SS and turbidity and lowest DRP, pH, and alkalinity. Pasture streams had the highest concentrations of all N species (geometric means 2‐to 4‐fold > native), total P, and DOC, and also showed the greatest variation in water quality attributes in relation to season and flow. The influences of land use were attributable to differences in both source materials of sediment and nutrients available for transport and changes in rates of in‐stream processing.  相似文献   

19.
Abstract

Decisions on lake management will often have to be made when data are scarce. However, a nutrient budget based on limited data of varying reliability and on information from the literature may help considerably.

Lake Tutira's recreational uses are threatened by eutrophication. Artificial destratification is being used temporarily to protect the trout fishery. The annual phosphorus input to the lake was estimated from nutrient loading graphs, from scanty stream input data, and from land‐use information to be about 3100 kg (1.8 g·m?2·y?1).

The 5–10 times reduction in phosphorus loading apparently required to achieve mesotrophic to oligotrophic conditions establishes the need for major changes in the catchment. The phosphorus budget helped in assessing the relative importances of the input streams and evaluating stream diversion proposals. It suggested that phosphorus inputs came mostly from animal excreta, soil erosion, and fertiliser, and it provided support for farm management proposals. When the results of stream diversion and altered land management are known the phosphorus budget may help in deciding the optimum land area needed to be converted from pasture into forest.  相似文献   

20.
To test the effects of site and successional stage on nitrogen fixation rates in salt marshes of the Venice Lagoon, Italy, acetylene reduction assays were performed with Salicornia veneta‐ and Spartina townsendii‐vegetated sediments from three restored (6–14 years) and two natural marshes. Average nitrogen fixation (acetylene reduction) rates ranged from 31 to 343 μmol C2H4·m?2·h?1 among all marshes, with the greatest average rates being from one natural marsh (Tezze Fonde). These high rates are up to six times greater than those reported from Southern California Spartina marshes of similar Mediterranean climate, but substantially lower than those found in moister climates of the Atlantic US coast. Nitrogen fixation rates did not consistently vary between natural and restored marshes within a site (Fossei Est, Tezze Fonde, Cenesa) but were negatively related to assayed plant biomass within the acetylene reduction samples collected among all marshes. Highest nitrogen fixation rates were found at Tezze Fonde, the location closest to the city of Venice, in both natural and restored marshes, suggesting possible site‐specific impacts of anthropogenic stress on marsh succession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号