首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Species composition and biomass of plankton samples taken on transects across an upwelling plume off Farewell Spit in February 1981 are presented. Copepods were numerically dominant, particularly Oithona similis and Paracalanus indicus. Also abundant were large phytoplankters (Chaetoceros sp. and Trichodesmium sp.), crustacean faecal pellets, and euphausiid larvae. The distribution of zooplankton species suggests mixing of inshore waters and neritic populations with upwelled waters. These data are discussed with respect to an interpretation of the upwelling system as a northwards transport of zooplankton and its enhanced productivity into the South Taranaki Bight.  相似文献   

2.
Quantitative data are presented on the distribution of adult and larval stages of the euphausiid Nyctiphanes australis G. O. Sars, in western Cook Strait, New Zealand, an area influenced by an upwelling plume. The behaviour of N. australis in the Kahurangi Point region at different stages of its life history appears to ensure its maintenance, in general, over the continental shelf on an upwelling coast. Population structure at the source of the upwelling near Kahurangi Point differed from that in regions “down stream” from the plume. Nyctiphanes australis was most abundant at the “downstream” eastern end of the upwelling plume, and the evidence suggesting that the dense populations there may be resident is discussed. Possible reasons for low densities of furcilia II and III stages in the eastern plume region are considered.  相似文献   

3.
Main features of the zooplankton distribution and the ecological characteristics of the dominant species in the northern Benguela during different phases of upwelling are discussed. The composition of the zooplankton between 17 and 27°S was similar each year. Among the 20°30 most abundant species, 3°4 copepods dominated, influencing the distribution of total zooplankton biomass. During quiescent upwelling, zooplankton abundance was low and there were no significant differences in the inshore-offshore distribution of zooplankton biomass, the maximum occurring over the slope. During active upwelling, zooplankton biomass increased significantly, the maximum over the shelf being constituted almost entirely of developmental stages of herbivorous copepods. Over the inner shelf, all stages of the copepod Calanoides carinatus were feeding actively, removing up to 5 per cent per day of the standing stock of phytoplankton. Comparison of daily ration, respiration rate and biochemical composition of C. carinatus revealed active storage of energy inshore. Offshore populations of C. carinatus, found deeper than 200 m, comprised mainly copepodite stage V, which were not feeding and were characterized by decreased mobility and respiration and a high lipid content. It is estimated that the energy stored during active upwelling enables copepods to survive up to six months without any additional source of energy.  相似文献   

4.
We present the results of a combined observational and numerical study to investigate cool plumes of nutrient-rich upwelled water that emanate near the Kahurangi Shoals and extend into Greater Cook Strait. Surface temperature and chlorophyll are mapped using satellite observations to produce surface climatologies, to validate a numerical simulation and to show the utility of using spatial temperature differences as a measure of upwelling. We find upwelling near the Kahurangi Shoals is strongly wind-driven in the weather band. Upwelling occurs at all times of the year, but its surface signature is only visible in summer months. The upwelled nutrient-rich water supports increased primary production compared to surrounding waters, particularly in summer when the water column is more stratified and surrounding surface waters are presumably nutrient depleted.  相似文献   

5.
This study examined monthly feeding rates and grazing impact on phytoplankton biomass, as well as diel feeding rhythms of four key copepod species in a tidally well mixed estuary (Asan Bay, Korean Peninsula). Monthly ingestion rates estimated based on gut pigment analysis were closely associated with their peak densities, but not with phytoplankton biomass, implying high ingestion may be related to reproductive output for population growth. The three smaller copepods, Acartia hongi, Acartia pacifica and Paracalanus parvus, showed feeding preference for smaller phytoplankton (<20 μm) with higher clearance rates, whereas the larger Calanus sinicus preferred larger phytoplankton. Acartia pacifica and P. parvus showed distinct increased nocturnal feeding rates as measured with gut fluorescence, whereas A. hongi showed no significant day–night differences. Copepod diel feeding patterns were not associated with food quantity, and endogenous physiological rhythm might be hypothesized as responsible for the observed diel feeding patterns. Grazing impact on phytoplankton biomass by the four copepods in the estuary was on average 8% (range 0.2–29.8%) of the phytoplankton standing stock, similar to values reported in other coastal waters. Very high copepod abundances but low daily carbon ration (<20% for all copepods) provided by feeding on phytoplankton indicate that copepods also grazed on other non‐phytoplankton foods in Asan Bay.  相似文献   

6.
文章建立了基于真实场驱动的三维物理—生态耦合模型, 利用模型定量分析了夏季南海北部上升流和羽状流过程对浮游植物生物量空间分布的影响程度及作用机制。首先, 利用2006—2008年卫星遥感数据及2006与2008年夏季观测数据对模型进行了验证, 结果表明, 模型能较好地再现夏季南海北部上升流和羽状流过程, 较好地反映出浮游植物的空间分布特征。模拟分析结果显示, 夏季南海北部浮游植物主要分布在50m等深线以内。琼州海峡东部海域和汕头海域浮游植物垂向分布较为均匀, 上升流的贡献均达到90%以上, 表层水平平流输送是浮游植物主要的汇, 生物过程是浮游植物的源。珠江口和汕尾海域浮游植物存在表层和次表层两个高值区, 羽状流贡献35%~40%, 主要促进表层浮游植物生长, 而上升流贡献60%~65%, 主要促进中底层浮游植物的生长。粤西海域上升流对浮游植物的贡献占92%, 主要促进中底层浮游植物生长, 而表层浮游植物浓度极低。整体上, 夏季南海北部上升流和羽状流主要是通过输送营养盐的方式影响浮游植物的生长。上升流对营养盐的输送作用是向岸方向的爬升输送和平行于等深线的沿岸流输送共同作用的结果。跃层的存在改变了营养盐的垂向输送过程, 是导致上升流和羽状流过程对不同水层浮游植物贡献差异的关键因素之一。整体而言, 夏季南海北部浮游植物空间分布差异是以上升流、羽状流主导, 环流—营养盐—生物过程共同作用的结果。  相似文献   

7.
Recent research developments on the ecology, dynamics and trophic position of copepods in the Benguela ecosystem are synthesized. Attention is focused on herbivorous species of the southern Benguela and how they cope with the physical and biological variability characteristic of this upwelling region. Copepods constitute on average approximately half of the total zooplankton carbon and. are most abundant during the upwelling season. They are able to maintain large population densities within local coastal upwelling areas by combining ontogenetically based vertical migration behaviour with features of the current system. Some species have developed finely tuned strategies to overcome periods of starvation between upwelling bouts by storing lipid reserves or by entering temporary developmental arrest. In situ measurements of production rates of local species are among the highest recorded for copepods. Despite an apparent excess of food, copepods exert only limited impact on the phytoplankton, removing on average <25 per cent of that available daily. Indirect estimates of carbon flux indicate that 11–25 per cent of copepod daily ration is used for egestion of faecal pellets. Copepods are the preferred prey of a wide variety of invertebrate and vertebrate predators. Large copepods in particular are important in the diet of commercially exploited pelagic fish. Localized areas of low abundance of copepods have been found in association with high densities of anchovy during peak spawning and recruitment periods. Copepods may therefore constitute a central limiting factor for pelagic fish production in the southern Benguela.  相似文献   

8.
Changes in phytoplankton abundance and size brought on by changes in water-column stratification are shown to affect copepod fecundity. The response of copepods to changes in their food environment, as manifested by changes in rates of egg production, is compared for two different time-scales: seasonal-to-weekly in Long Island Sound, New York, and event-scale-to-daily off the coast of central Chile. The data sets discussed include a time-series of hydrographic and chlorophyll samples along with measurements of copepod egg production (made using an incubation technique) carried out each week in Long Island Sound during 1985 and a 25-day time-series of daily measurements of the same variables at a fixed station in the nearshore coastal upwelling zone off Concepción, Chile, in January 1986. Egg production was often low, suggesting food-limitation. Temporal variations in the fecundity of the copepods Temora longicornis and Acarlia tonsa in Long Island Sound did not follow changes in total phytoplankton biomass, but rather changes in the concentration of chlorophyll in the > 10 μm and > 20 μm size fractions. Off Chile, changes in fecundity of Calanus chilensis mirrored changes in both total phytoplankton biomass and the > 20 μm size fraction. This fact demonstrates that herbivorous copepods follow closely changes in their food environment and suggests that there is a close coupling between food quality of phytoplankton (in terms of particle size), ingestion and egg production by adult females.  相似文献   

9.
To distinguish the manner of spread of upwelling effects in the Cook Strait/Taranaki Bight (New Zealand) region, nitrogen uptake and the distribution of nutrients and chlorophyll a are described. NO3 concentrations were closely linked to upwelled water, but this was distributed irregularly and not necessarily with the upwelling focus. NH4, SRP, and chlorophyll a showed varying degrees of association with recycling processes, but linear correlations were not present. NO3 uptake was strongly inhibited by ambient NH4, but not completely. There was no evidence of either N or P limitation of total planktonic biomass, and there was indirect evidence from C/N uptake and cellular ratios that a high growth rate prevailed. N uptake increased with irradiance (= decreasing depth) similar to photosynthesis, but without high light inhibition, and could be related to light by a simple equation. The irregularity of distribution of features suggests that future modelling of the phytoplankton biomass in the region could benefit from analysis of event occurrence rather than of evenly progressive changes.  相似文献   

10.
Zooplankton biomass and distribution in the KwaZulu-Natal Bight were investigated in relation to environmental parameters during summer (January–February 2010) and winter (July–August 2010). Mean zooplankton biomass was significantly higher in winter (17.1 mg dry weight [DW] m–3) than in summer (9.5 mg DW m?3). In summer, total biomass was evenly distributed within the central bight, low off the Thukela River mouth and peaked near Durban. In winter, highest biomass was found offshore between Richards Bay and Cape St Lucia. Zooplankton biomass in each size class was significantly, negatively related to sea surface temperature and integrated nitrate, but positively related to surface chlorophyll a and dissolved oxygen. Zooplankton biomass was significantly related to bottom depth, with greatest total biomass located inshore (<50 m). Distribution across the shelf varied with zooplankton size. Seasonal differences in copepod size composition suggest that a smaller, younger community occupied the cool, chlorophyll-rich waters offshore from the St Lucia upwelling cell in winter, and a larger, older community occurred within the relatively warm and chlorophyll-poor central bight in summer. Nutrient enrichment from quasi-permanent upwelling off Durban and Richards Bay appears to have a greater influence on zooplankton biomass and distribution in the bight than the strongly seasonal nutrient input from the Thukela River.  相似文献   

11.
Capacities for inorganic carbon, nitrate and ammonium uptake were measured around Hachijo Island, 300 km south of Tokyo, where local upwelling occurred. The phytoplankton population inside the upwelling area had a high capacity for nitrate uptake and a low capacity for uptake of ammonium. Nutrient concentration and phytoplankton biomass were higher in the upwelling plume than outside. On a chlorophylla basis, phytoplankton populations inside the upwelling area showed a lower capacity for carbon and nitrogen uptake than those outside the upwelling. Low temperature, relatively limited availability of light caused by extensive water mixing within the upwelling plume, and the difference in species composition of phytoplankton must be considered in explaining these lower uptake capacities.  相似文献   

12.
Bivalves feed on a combination of phytoplankton and zooplankton and have the potential to impact considerably the planktonic biomass, especially when they occur in high densities, such as in oyster and mussel beds. The brackwater mussel Brachidontes virgiliae is numerically dominant during wet phases within Africa’s largest estuarine lake, St Lucia, in the iSimangaliso Wetland Park on the east coast of South Africa. The ingestion rates and potential grazing impact of this small mussel (maximum shell length = 2.5 cm) were estimated for both the wet and dry seasons using an in situ gut fluorescence technique. Ingestion rates were higher during the wet season (5.78 µg pigment ind.?1 d?1) than during the dry season (4.44 µg pigment ind.?1 d?1). This might be explained by the increased water temperature and food availability during the wet season. Because of the patchy distribution of mussel populations, there could be higher localised grazing impact near mussel aggregations. Results showed a potential grazing impact of up to 20 times the available phytoplankton biomass at specific sites. These high grazing impacts have the potential to deplete phytoplankton stocks in the lake, especially during wet phases in the northern reaches, where mussel densities are highest. This needs to be factored into ecological models of Lake St Lucia, because the system might function differently during increased flood events.  相似文献   

13.
The colonization, adaptations and temporal changes in the species diversity and biomass of phytoplankton in an upwelling plume off the Cape Peninsula are described. Certain community characteristics such as biomass, diversity and growth rates were investigated so that successional stages as a result of environmental changes could be characterized. A mixed phytoplankton bloom comprising 49 species developed with Chaetoceros compressus Laud, and Skeletonema costaium (Grev.) Cleve the dominant species. The factors responsible for these species successfully colonizing and dominating are examined with respect to their specific selective adaptations for growth. An attempt is made to determine the mechanism whereby these species dominated, by proposing several possible adaptations in terms of cell size, growth, nutrient absorption and buoyancy. Increase in cell size along the drogue trajectory is considered as a strategy in adapting to the changing environmental conditions.  相似文献   

14.
The diet of sardine Sardinops sagax in the southern Benguela was investigated by microscopic examination of stomach contents. The relative dietary importance of prey size and prey type was assessed by calculating the carbon content of prey items. Sardine is an omnivorous clupeoid, ingesting both phytoplankton and zooplankton, with the relative importance of these two food types varying both spatially and temporally. Stomach contents were numerically dominated by small prey items, principally dinoflagellates, followed by crustacean eggs, cyclopoid copepods, calanoid copepods and diatoms. Virtually all prey items ingested by sardine were <1.2 mm maximum dimension, the particle size below which sardine only filter-feed. Despite the numerical dominance by phytoplankton, zooplankton contributed the major portion to sardine dietary carbon, small calanoid and cyclopoid copepods, anchovy eggs and crustacean eggs being the primary prey types. These results indicate that, like anchovy Engraulis capensis, sardine in the southern Benguela are primarily zoophagous, and contrast with earlier dietary studies on sardine in the region. However, the two species appear to partition their prey on the basis of size; sardine consume small zooplankton, whereas anchovy consume large zooplankton. This difference has been observed in other upwelling ecosystems where the two genera co-exist and is likely to contribute to the regime shifts observed between sardine and anchovy.  相似文献   

15.
Visual observations were made in September 1997 during the 39 cruise of R/V “Akademik Mstislav Keldysh” with 2 deep-sea manned submersibles “Mir” aboard. During 4 dives the following plankton countings were made: 3 vertical throughout the water column during the day, 2 vertical in the upper 1000 m at night, and 1 oblique in the plume area during the day. Biomass profiles are represented for each dive for all abundant animal groups: copepods, euphausiids+decapods+mysids, chaetognaths, medusae, ctenophores, siphonophores, cyclothones, myctophides, radiolarians, and the total zooplankton. Plankton distribution shows 2 aggregations, one within the main pycnocline and the other near the plume; Gelatinous animals and radiolarians dominate in both aggregations by biomass and make a significant contribution to the plankton biomass throughout the water column. Oblique counting indicates the presence of aggregations of animals near the upper and lower borders of the plume and biomass depletion within the plume core.  相似文献   

16.
Grazing impacts of calanoid copepods on size-fractionated phytoplankton biomass [chlorophyll (Chl)-a] were measured in Jangmok Bay, Geoje Island, Korea, monthly from November 2004 to October 2005. The ingestion rate of calanoid copepods on total phytoplankton biomass ranged between 1 and 215 ng Chl-a copepod?1 day?1 during bottle incubations. Results indicated that microphytoplankton (> 20 μm) was the primary food source for calanoid copepods in grazing experiments on 3 phytoplankton size categories (< 3 μm, 3–20 μm, and > 20 μm). The ingestion rate on microphytoplankton showed a significant increase (r = 0.93, p < 0.01) with Chl-a concentration. Nanophytoplankton (3–20 μm) showed a negative ingestion rate from June 2005 to October 2005, but the reason is not completely understood. Calanoid copepods were unable to feed efficiently on picophytoplankton (< 3 μm) due to unfavorable size. Calanoid copepods removed between 0.1% and 27.7% (average, 3.6 ± 15.8%) of the phytoplankton biomass daily during grazing experiments. Grazing pressure was high in winter and early spring (January–March: 15.6–27.7%), while low in summer (June–August: ?33.1–0.0%) and autumn (September–November: ?1.4–5.1%). Results suggest that calanoid copepods play an important role in controlling the biomass and size structure of phytoplankton in winter and early spring.  相似文献   

17.
A 3D eco-hydrodynamical model of high resolution (0.25° × 0.25°, 27 σ-levels) is used to simulate the seasonal variability of the ocean circulation and marine ecosystem in the Central-Eastern Basin of the North Atlantic including the Canary upwelling system. According to the model results, in the winter period, the “patches” of maximal phytoplankton and zooplankton biomass are often located in upwelling zones in the open ocean on the periphery of cyclonic eddies rather than in the coastal upwelling zones. In the summer period, when the phytoplankton biomass reaches maximal (in the annual cycle) values, the maxima of the phytoplankton are located in the coastal upwelling zones. As shown, there is no simple relationship between the nitrate distributions, on the one hand, and the phytoplankton and zooplankton ones, on the other hand.  相似文献   

18.
We investigated the geographical variations in abundance and biomass of the major taxonomic groups of micro- and net-zooplankton along a transect through Ise Bay, central Japan, and neighboring Pacific Ocean in February 1995. The results were used to estimate their secondary and tertiary production rates and assess their trophic roles in this eutrophic embayment in winter. Ise Bay nourished a much higher biomass of both micro- and net-zooplankton (mean: 3.79 and 13.9 mg C m–3, respectively) than the offshore area (mean: 0.76 and 4.47 mg C m–3, respectively). In the bay, tintinnid ciliates, naked ciliates and copepod nauplii accounted for, on average, 69, 18 and 13% of the microzooplankton biomass, respectively. Of net-zooplankton biomass, copepods (i.e. Acartia, Calanus, Centropages, Microsetella and Paracalanus) formed the majority (mean: 63%). Average secondary production rates of micro- and net-zooplankton in the bay were 1.19 and 1.87 mg C m–3d–1 (or 23.1 and 36.4 mg C m–2d–1), respectively, and average tertiary production rate of net-zooplankton was 0.75 mg C m–3d–1 (or 14.6 mg C m–2d–1). Available data approximated average phytoplankton primary production rate as 1000 mg C m–2d–1 during our study period. The transfer efficiency from primary production to zooplankton secondary production was 6.0%, and the efficiency from secondary production to tertiary production was 25%. The amount of food required to support the zooplankton secondary production corresponded to 18% of the phytoplankton primary production or only 1.7% of the phytoplankton biomass, demonstrating that the grazing impact of herbivorous zooplankton was minor in Ise Bay in winter.  相似文献   

19.
Measurements of phytoplankton distribution and production, and zooplankton abundance and biomass were made during the summer of 1979 along several shelf-slope transects in the Mid-Atlantic Bight. At the shelf-break, macrozooplankton (>200 μm) grazing was estimated to be sufficient to remove a substantial proportion of daily phytoplankton production. In contrast, on the shelf and in slope waters, where ciliates were abundant, estimates of macrozooplankton grazing indicated a consumption rate less than 15% of the daily primary production. Ciliate grazing, even at non-maximum rates, potentially could have consumed the entire daily primary production in all areas sampled. The findings indicate that the nature of the heterotrophic community is spatially variable in offshore waters even during summer conditions and could influence not only trophodynamic pathways but perhaps nutrient regeneration and recycling. This would be an important consideration in evaluating the fate of particle-bound chemcial species in the water column since fecal pellet producing zooplankton would affect rates of removal and sedimentation in a different manner than ciliates which produce non-compacted digestive debris.  相似文献   

20.
Size and taxonomic structure of plankton community carbon biomass for the 0.2–2000 μm equivalent spherical diameter range were determined at the equator at 175°E in September 1990–1993 and April 1994. Total biomass of the plankton community ranged from 1944 to 3448 mg C m−2. Phytoplankton, zooplankton and bacteria carbon biomasses were 604–1669 mg C m-2, 300–797 mg C m2, and 968–1200 mg C m-2, and the percentages were 31–54%, 15–26%, and 29–54%, respectively. Biomass of heterotrophic bacteria was always the largest fraction andProchlorococcus biomass was second. Heterotrophic and autotrophic flagellates and dinoflagellates in the nanoplankton size range and copepods (adults and copepodites) in the mesoplankton range were also high. Relatively small biomass was observed in the microplankton size range. The differences in integrated biomass of plankton community for El Nin˜o type oligotrophic conditions of September 1990–1993 and non-El Nifio type mesotrophic conditions of April 1994 were generally small compared with the interannual difference during 1990–1993. However, the percentage ofProchlorococcus in phytoplankton carbon biomass was larger in non-El Nin˜o year. Biomasses of cyanobacteria, diatom, dinoflagellates, nauplii of copepods, and crustaceans other than copepods were larger in the non-El Nin˜o year. Primary production increased significantly from El Nin˜o to non-El Nin˜o years. Carbon flow through the plankton food chain was estimated using the plankton carbon biomass data, primary production measurements, and published empirical relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号