首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
湿地是由陆地和水体形成的自然综合体,具有重要的生态、水文和生物地球化学功能,黄河源高寒湿地作为黄河重要的水源涵养区,对其下垫面水热交换特征及关键影响参数的研究具有非常重要的意义。本文利用中国科学院西北生态环境资源研究院麻多黄河源气候与环境变化观测站2014年6~8月观测资料,分析了黄河源区高寒湿地-大气间暖季水热交换特征,并利用公用陆面模式(Community Land Model,简称CLM)模拟了热通量变化,提出针对高寒湿地的粗糙度优化方案。主要结果如下:(1)暖季向上、向下短波与净辐射的平均日变化规律一致,向上、向下长波平均日变化平缓,地表温度升高相对于向下短波具有滞后性,潜热通量始终为正值并大于感热通量;(2)温度变化显著层结为20 cm以上土壤浅层,存在明显的日循环规律,土壤中热量09:00(北京时,下同)下传至5 cm深度,温度升高,11:00至10 cm深度,13:00至20 cm深度,18:00后开始上传,温度降低,40 cm及以下深度受此影响较小,热量在土壤中整体由浅层向深层输送;(3)土壤湿度平均日变化小,5 cm深度为土壤湿度最小层,10 cm深度为最大层;(4)麻多高寒湿地动力学粗糙度Z0m在暖季变化稳定,可作为常数,Z0m=0.0143 m;(5)提出更加适合高寒湿地下垫面暖季附加阻尼kB-1参数化方案,使得热通量模拟效果较CLM原始方案有所提高。以上结果对于研究湿地下垫面陆面过程具有重要意义。  相似文献   

2.
A calibration equation and some results of the field performance of an infrared instrument, which is designed to measure simultaneous fluctuations of atmospheric carbon dioxide and water vapor, are described. Field observations show that the instrument is suitable for simultaneous measurement of turbulent fluxes of carbon dioxide and water vapor in conjunction with a sonic anemometer. Measured values of carbon dioxide and water vapor fluxes show diurnal variations characterized by crop activity with respect to assimilation, respiration and evapotranspiration. Carbon dioxide is transferred downward during the daytime and upward at night, while latent heat and sensible heat are transferred in the opposite sense. The non-dimensional gradient of carbon dioxide is expressed in the following form under weak unstable conditions: c = (1 – 16 v )-1/2. Here, v is the Monin-Obukhov stability parameter including the humidity effect. This relation was originally proposed for temperature and humidity. Thus, the results indicate that the turbulent mechanisms of carbon dioxide fluctuations are similar to those of other scalar entities. This is strongly supported by the high correlation coefficient found between fluctuations of carbon dioxide and temperature or humidity in the air layer over crop fields.  相似文献   

3.
The spectral equations of turbulent kinetic energy and temperature variance have been solved by using Onsager's energy cascade model and by extending Onsager's model to closure of terms that embody the interaction of turbulent and mean flow.The spectral model yields the following results: In a stably stratified shear flow, the peak wave numbers of the spectra of energy and temperature variance shift toward larger wave numbers as stability increases. In an unstably stratified flow, the peak wave numbers of energy spectra move toward smaller wave numbers as instability increases, whereas the opposite trend is observed for the peak wave numbers of temperature variance spectra. Hence, the peak wave numbers of temperature spectra show a discontinuity at the transition from stable to unstable stratification. At near neutral stratification, both spectra reveal a bimodal structure.The universal functions of the Monin-Obukhov similarity theory are predicted to behave as m ~ H ~ (- Z/L)-1/3 in an extremely unstable stratification and as m ~ H ~ z/L in an extremely stable stratification. For a stably stratified flow, a constant turbulent Prandtl number is expected.  相似文献   

4.
低涡型暴雨是华南地区一种重要的暴雨类型,它常常发生在对流层低层天气尺度切变线上,虽难从气压场上找到,但它所造成的暴雨却很强。我们发现,常规天气图上似乎很弱的这类涡旋,却有较强的流场涡度和典型的散度分布,构成了强降水过程的必要物理条件。本文把它与热带气旋发展过程中的物理结构、能量变化和转换特征进行了诊断、对比分析,指出它们不仅三维物理量场分布差异较大,其发展过程中能量变化也有很大差异。热带气旋的K,值远大于切变线低涡,但Kφ的变化则相反,无论是其绝对值或它占总动能的比值,都不   相似文献   

5.
Sensible (H) and latent (LvE) heat fluxes are obtained by a combined energy budget – similarity model applied to observations from Melle in Belgium and Cabauw in The Netherlands. The sensitivity to both the stability functions and the accuracy of input data is investigated. In a first step, fluxes are calculated for a selection of stability functions and compared to values obtained with pre-defined (reference) functions. For the diurnal fluxes higher than 10 W m−2 in 1996 at Melle, the root-mean-square rmsreaches 9 W m−2 for H and 6 W m−2 for LvE, depending on the chosen functions. A lesser sensitivity is obtained at Cabauw and can be explained by lower absolute values of the stability parameter ζ (L involving the Obukhov length) mainly induced by higher mean wind speeds. Different stability bins are also considered. It is concluded that a more accurate assessment of the stability functions is already desirable for absolute values of L above a few metres. These values are not so scarce at Melle and should be captured in the future by an increasing number of new developing long-term measurement stations. In a second step, a statistical approach is proposed with errors depicted by both systematic biases and random fluctuations represented by means of Gaussian distributions. The results show that very accurate measurements are needed in order to maintain the mean annual value of the bias and rms below 5–10 W m−2, and thus to allow the discrimination between the sensitivity to errors on input data and to the stability functions selection.  相似文献   

6.
Two Langevin simulations of trajectories of marked fluid elements in inhomogenous turbulence, where the Lagrangian length and vertical velocity scales are height dependent, were compared with field data. A CO2 tracer was released from a circular line source and the concentration profiles were measured for diffusion distances of 50 and 100 cm inside and above an alfalfa canopy.One of the simulations, suggested by Wilson et al. (1983), biases the vertical velocities by adding a mean upward drift. The second simulation proposed here by-passes this difficulty by reflecting marked particles according to a probability calculated from the gradient in vertical velocity variance between the beginning and the end of each step. This simulation also makes use of a constant time-scale within the canopy, following preliminary results from a turbulence experiment within a forest (Leclerc, 1987).Comparing the results of these simulations with the field data shows that the simulation proposed by Wilson et al. (1983) does not correctly reproduce the difusion for the larger fetch in systems exhibiting strong gradients in vertical velocity variance. Instead, the modelled plumes exhibit a bulge at the source height whereas the field data show smooth profiles. In addition, the modelled plumes overestimate the vertical spread of the plumes, which is possibly due to the inadequacy of the approach in severely inhomogeneous systems. In contrast, the results from the tracer experiments indicate that the diffusion can be better reproduced with the use of a reflection probability calculated at each step. The discrepancies between the experimental results and the simulation using a reflection probability are attributed to stability effects.  相似文献   

7.
Recent studies have shown that changes in solar radiation affect the hydrological cycle more strongly than equivalent CO2 changes for the same change in global mean surface temperature. Thus, solar radiation management ??geoengineering?? proposals to completely offset global mean temperature increases by reducing the amount of absorbed sunlight might be expected to slow the global water cycle and reduce runoff over land. However, proposed countering of global warming by increasing the albedo of marine clouds would reduce surface solar radiation only over the oceans. Here, for an idealized scenario, we analyze the response of temperature and the hydrological cycle to increased reflection by clouds over the ocean using an atmospheric general circulation model coupled to a mixed layer ocean model. When cloud droplets are reduced in size over all oceans uniformly to offset the temperature increase from a doubling of atmospheric CO2, the global-mean precipitation and evaporation decreases by about 1.3% but runoff over land increases by 7.5% primarily due to increases over tropical land. In the model, more reflective marine clouds cool the atmospheric column over ocean. The result is a sinking motion over oceans and upward motion over land. We attribute the increased runoff over land to this increased upward motion over land when marine clouds are made more reflective. Our results suggest that, in contrast to other proposals to increase planetary albedo, offsetting mean global warming by reducing marine cloud droplet size does not necessarily lead to a drying, on average, of the continents. However, we note that the changes in precipitation, evaporation and P-E are dominated by small but significant areas, and given the highly idealized nature of this study, a more thorough and broader assessment would be required for proposals of altering marine cloud properties on a large scale.  相似文献   

8.
Experimental data of C T 2, determined during various experiments in the surface layer, are compared with several functions giving the stability dependence of the temperature structure parameter. The universal function of the dimensionless temperature gradient by Skeib (1980) follows very well the experimental data and the empirical function by Wyngaard et al. (1971). This function can be used in an inertial-dissipation method.  相似文献   

9.
The Bowen ratio (B) is impacted by 5 environmental elements: soil moisture availability, m, the ratio of resist-ances between atmosphere and soil pores, ra/rd, atmospheric relative humidity, h, atmospheric stability, ΔT, and environment temperature. These impacts have been investigated over diverse surfaces, including bare soil, free water surface, and vegetation covered land, using an analytical approach. It was concluded that: (a) B is not a continuous function. The singularity exists at the condition αhcb=h, occurring preferably in the following conditions: weak turbulence, stable stratified stability, dry soil, and humid air, where hcb, defined by Eq.(11) is a critical variable. The existence of a singularity makes the dependence of B on the five variables very complicated. The value of B approaches being inversely proportional to m under the conditions m≥mfc (the soil capacity) and / or ra/rd→0. The proportional coefficient changes with season and latitude with relatively high values in winter and over the poles; (b) B is nearly independent of ra/rd during the day. The impact of m on B is much larger as compared to that of ra/rd on B, (c) when h increases, the absolute value of B also increases; (d) over bare soil, when the absolute surface net radiation increases, the absolute value of B will increase. The impact of RN on B is larger at night than during the day, and (e) over plant canopy, the singularity and the dependcies of B on m, ra , and h are modified as compared to that over bare soil. Also (i) during the daytime unstable condition, m exerts an even stronger impact on B, at night, however, B changes are weak in response to the change in m; (ii) the value of B is much more sensitive in response to the changes of turbulent intensity; (iii) the B response to the variation of h over a vegetation covered area is weaker; and (iv) the singularity exists at the condition hcp=h instead of αhcb=h as over bare soil, where hcp is defined by Eq.(49). The formulas derived over bare soil also hold the same when applied to free water bodies as long as they are visualized as a special soil in which the volumetric fraction of soil pore is equal to one and are fully filled with water. Finally, the above discussions, are used to briefly study the impact on the thermally induced mesoscale circulations.  相似文献   

10.
Summary ?We have investigated the effects of shear and sharp gradients in static stability and demonstrated how a mountain wave and its associated surface winds can be strongly influenced. Linear theory for two-dimensional, nonrotating stratified flow over an isolated mountain ridge with positive shear and constant static stability shows that the horizontal wind speeds on both the lee and upslope surfaces are suppressed by positive shear. The critical F(=U/Nh where U is the basic wind speed, N the Brunt-Vaisala frequency, and h the mountain height) for the occurrence of wave breaking decreases when the strength of the positive shear increases, while the location for the wave-induced critical level is higher in cases with larger positive shear. The linear theory is then verified by a series of systematic nonlinear numerical experiments. Four different flow regimes are found for positive shear flow over a two-dimensional mountain. The values of critical F which separate the flow regimes are lower when the strength of the positive shear is larger. The location of stagnation aloft from numerical simulations is found to be quite consistent with those predicted by linear theory. We calculate the strongest horizontal wind speed on the lee surface (U max), the smallest horizontal wind speed on the upslope surface (U min), the reflection (Ref), and the transmission (Tran) coefficients for different combinations of the stability ratio between the upper and lower layers (i.e. and z 1 (interface height) in a two-layer atmosphere from linear analytical solutions. Both Ref and Tran are found to be functions of log() but not the interface height (z 1). Ref is larger when is much different from 1, no matter whether it is larger or smaller than 1. However, Tran decreases when log() increases and approaches 0 when log() is large. The magnitude of the largest U max (smallest U min) increases (decreases) as the absolute value of log() increases. It is found that the largest U max occurs when the nondimensional z 1 is near for cases with a less stable upper layer or when z 1 is near for cases with a more stable upper layer. These results are confirmed by nonlinear numerical simulations. We find that linear theory is very useful in qualitative analysis of the possibility of high-drag state for different stability profiles. The location of stagnation aloft in a two-layer atmosphere from numerical simulations agrees very well with those predicted by linear theory. The above findings are applied to investigate the Boulder severe downslope windstorm of 11 January 1972. We find that the windstorm cannot develop if the near mountain-top inversion is located at a higher altitude (e.g.,  km). However, if there exists a less stable layer right below the tropopause, the windstorm can develop in the absence of a low-level inversion. These results indicate the importance of partial reflection due to the structured atmosphere in influencing the possibility of severe downslope windstorms, although partial reflection may not be the responsible mechanism for the generation of windstorms. Received September 25, 1999/Revised February 9, 2000  相似文献   

11.
冬季西风环流指数的变率及其与北半球温度变化的关系研究   总被引:17,自引:2,他引:17  
用H40°N-H65°N即40°N和65°N纬圈平均位势高度的差来定义西风指数,可以很好地反映温带地区西风的强弱。西风环流强的年份,北半球气温通常偏高,主要是中纬度大陆变暖明显,这可能与中高纬度西风强时,向北的经向热量输送也加强有关。在长期变化的趋势上,1950年代以前北半球偏暖时期的指数偏低,而偏冷时期的指数偏高。但近30多年来,伴随全球加速变暖,西风指数也持续加强,这是否与温室效应的加强有关还有待深入研究。  相似文献   

12.
We developed an operationally applicable land-only daily high-resolution (5?km?×?5?km) gridding method for station observations of minimum and maximum 2?m temperature (T min/T max) for Europe (WMO region VI). The method involves two major steps: (1) the generation of climatological T min/T max maps for each month of the year using block regression kriging, which considers the spatial variation explained by applied predictors; and (2) interpolation of transformed daily anomalies using block kriging, and combination of the resulting anomaly maps with climatological maps. To account for heterogeneous climatic conditions in the estimation of the statistical parameters, these steps were applied independently in overlapping climatic subregions, followed by an additional spatial merging step. Uncertainties in the gridded maps and the derived error maps were quantified: (a) by cross-validation; and (b) comparison with the T min/T max maps estimated in two regions having very dense temperature observation networks. The main advantages of the method are the high quality of the daily maps of T min/T max, the calculation of daily error maps and computational efficiency.  相似文献   

13.
Using the regional terrestrial Net Primary Production (NPP) from different observations and models over China, we validated the NPP simulations and explored the relationship between NPP and climate variation at interannual and decadal scales in the Modified Sheffield Dynamic Global Vegetation Model (M-SDGVM) during 1981–2000. M-SDGVM shows agreement with the NPP data from 743 sites under the Global Primary Production Data Initiative (GPPDI). The spatial and the zonal averaged NPP of M-SDGVM agree well with ...  相似文献   

14.
Measurements of atmospheric turbulence made during the Surface Heat Budget of the Arctic Ocean Experiment (SHEBA) are used to examine the profile stability functions of momentum, φ m , and sensible heat, φ h , in the stably stratified boundary layer over the Arctic pack ice. Turbulent fluxes and mean meteorological data that cover different surface conditions and a wide range of stability conditions were continuously measured and reported hourly at five levels on a 20-m main tower for 11 months. The comprehensive dataset collected during SHEBA allows studying φ m and φ h in detail and includes ample data for the very stable case. New parameterizations for φ m (ζ) and φ h (ζ) in stable conditions are proposed to describe the SHEBA data; these cover the entire range of the stability parameter ζ = z/L from neutral to very stable conditions, where L is the Obukhov length and z is the measurement height. In the limit of very strong stability, φ m follows a ζ 1/3 dependence, whereas φ h initially increases with increasing ζ, reaches a maximum at ζ ≈ 10, and then tends to level off with increasing ζ. The effects of self-correlation, which occur in plots of φ m and φ h versus ζ, are reduced by using an independent bin-averaging method instead of conventional averaging.  相似文献   

15.
Summary In this paper the results of an urban measurement campaign are presented. The experiment took place from July 1995 to February 1996 in Basel, Switzerland. A total of more than 2000 undisturbed 30-minute runs of simultaneous measurements of the fluctuations of the wind vector u′, v′, w′ and the sonic temperature θ s ′ at three different heights (z=36, 50 and 76 m a.g.l.) are analysed with respect to the integral statistics and their spectral behaviour. Estimates of the zero plane displacement height d calculated by the temperature variance method yield a value of 22 m for the two lower levels, which corresponds to 0.92 h (the mean height of the roughness elements). At all three measurement heights the dimensionless standard deviation σ w /u * is systematically smaller than the Monin-Obukhov similarity function for the inertial sublayer, however, deviations are smaller compared to other urban turbulence studies. The σθ* values follow the inertial sublayer prediction very close for the two lowest levels, while at the uppermost level significant deviations are observed. Profiles of normalized velocity and temperature variances show a clear dependence on stability. The profile of friction velocity u * is similar to the profiles reported in other urban studies with a maximum around z/h=2.1. Spectral characteristics of the wind components in general show a clear dependence on stability and dimensionless measurement height z/h with a shift of the spectral peak to lower frequencies as thermal stability changes from stable to unstable conditions and as z/h decreases. Velocity spectra follow the −2/3 slope in the inertial subrange region and the ratios of spectral energy densities S w (f)/S u (f) approach the value of 4/3 required for local isotropy in the inertial subrange. Velocity spectra and spectral peaks fit best to the well established surface layer spectra from Kaimal et al. (1972) at the uppermost level at z/h=3.2. Received September 26, 1997 Revised February 15, 1998  相似文献   

16.
The impact of sea surface temperature (SST) on winter haze in Guangdong province (WHDGD) was analyzed on the interannual scale. It was pointed out that the northern Indian Ocean and the northwest Pacific SST play a leading role in the variation of WHDGD. Cold (warm) SST anomalies over the northern Indian Ocean and the Northwest Pacific stimulate the eastward propagation of cold (warm) Kelvin waves through the Gill forced response, causing Ekman convergence (divergence) in the western Pacific, inducing abnormal cyclonic (anticyclonic) circulation. It excites the positive (negative) Western Pacific teleconnection pattern (WP), which results in the temperature and the precipitation decrease (increase) in Guangdong and forms the meteorological variables conditions that are conducive (not conducive) to the formation of haze. ENSO has an asymmetric influence on WHDGD. In El Ni?o (La Ni?a) winters, there are strong (weak) coordinated variations between the northern Indian Ocean, the northwest Pacific, and the eastern Pacific, which stimulate the negative (positive) phase of WP teleconnection. In El Ni?o winters, the enhanced moisture is attributed to the joint effects of the horizontal advection from the surrounding ocean, vertical advection from the moisture convergence, and the increased atmospheric apparent moisture sink (Q2) from soil evaporation. The weakening of the atmospheric apparent heat source (Q1) in the upper layer is not conducive to the formation of inversion stratification. In contrast, in La Ni?a winters, the reduced moisture is attributed to the reduced upward water vapor transport and Q2 loss. Due to the Q1 increase in the upper layer, the temperature inversion forms and suppresses the diffusion of haze.  相似文献   

17.
Turbulence and heat fluxes in the marine atmospheric boundary layer (MABL) for the roll vortex regime, observed during the Genesis of Atlantic Lows Experiment (GALE) over the western Gulf Stream, have been studied. The spectral analysis suggests that cloud streets (roll vortices) are vertically organized convection in the MABL having the same roll scale for both the cloud layer and subcloud layer, and that the roll spacing is about three times the MABL depth. The roll circulations contribute significantly to the sensible (temperature) and latent heat (moisture) fluxes with importance increasing upward. Near the MABL top, these fluxes are primarily due to roll vortices which transfer both sensible heat and moisture upward in the lower half of the convective MABL. Near the MABL top, the roll circulations transfer sensible heat downward and moisture upward in the clear thermal-street region, but roll vortices influenced by evaporative cooling can transfer sensible heat upward and moisture downward in the cloud-street region. Near the cloud-top, the upward buoyancy flux due to evaporative cooling is highly related to the roll circulations near the inversion.For the lower half of the MABL, the normalized temperature flux decreases upward more rapidly than the humidity flux, which is mainly because potential temperature () increases slightly upward while humidity (q) decreases slightly upward above the unstable surface layer. The gradient production (associated with the gradient) is a source for the temperature flux in the unstable surface layer but changes to a sink in the mixed layer, while the gradient production (associated with the q gradient) acts as a source for the humidity flux in both the unstable surface and mixed layers. The results suggest that the entrainment at the MABL top might affect the budgets of temperature and humidity fluxes in the lower MABL, but not in the unstable surface layer.Caelum Research Corporation, Silver Spring, MD, 20901, U.S.A.  相似文献   

18.
Numerical experiments are carried out to simulate the development and migration of a barchan dune starting with a conical pile of sand. Such an experiment is done in three steps: (1) computation of the steady-state wind field over and around a barchan using the numerical meso-scale simulation model FITNAH, whereby the horizontal variation of the friction velocity is also calculated; (2) computation of the sand transport using the friction velocity in the transport formula by Lettau and Lettau (1978); (3) computation of the erosion and deposition rates as the divergence of the sand transport, where a special treatment is used for the slip-face of the barchan dune. Adding these rates to the height field leads to a different shape of the dune after a time step t h . Then this procedure has to be repeated for the next time step t h .The results are in good agreement with observations: the initial pile of sand develops wings (horns) and a slip-face between them. In addition, flow separation over the lee-side can be simulated. Finally, the tendency to form a barchan in equilibrium is considered.  相似文献   

19.
Process-based models used to investigate forest ecosystem response to climate change were not necessarily developed to include the effect of carbon dioxide (CO2) and temperature increases on physiological processes. Simulation of the impacts of climate change with such models may lead to questionable predictions. It is generally believed that significant shifts in the performance of black spruce (Picea mariana [Mill] B.S.P.) will occur under climate change. This species, which accounts for 64% of Ontario's coniferous growing stock and 80% of the annual allowable cut, represents important economic activity throughout the boreal forest region. Forest management planning requires relatively accurate productivity estimates. Thus, it is imperative to ensure that process-based models realistically predict the effect of climate change. In this study, CENTURY and FOREST-BGC models were calibrated for a productive, upland black spruce stand in northwestern Ontario. Even though both models predicted similar relative outcomes after 100 years of climate change, they disagreed on the impacts of temperature in combination with an increase in CO2. Also, absolute amounts of carbon sequestered varied with climate change scenarios. Comparison of both models indicated that the representation of critical processes in these two forest ecosystem models is incomplete. For instance, the interactive effects of CO2 and temperature increases on physiological processes at stand and soil levels are not well documented nor are they easily identifiable in the models. Their incorporation into models is therefore problematic. Practitioners must consequently be wary of assumptions about the inclusion of critical processes in models.  相似文献   

20.
A numerical model of airflow in the lowest 50–100 m of the atmosphere above changes in surface roughness and temperature or heat flux has been developed based on boundary layer approximations, the Businger-Dyer hypotheses for the non-dimensional wind shear and heat flux and a mixing length hypothesis.Results have been obtained for several situations, in particular, airflow with neutral upstream conditions encountering a step change in surface temperature or heat flux with no roughness change. In these cases large increases in shear stress at the outer edge of the internal boundary layer are predicted. The case of unstable upstream flow encountering a step change to zero heat flux is also considered.Two situations that may be encountered near the shores of the Great Lakes are considered.Notation B Businger-Dyer constant (= 16.0) in form for M, H - c p Specific heat at constant pressure - g Acceleration due to gravity - H Upward vertical heat flux - H 0 , H 1 Surface heat fluxes for x < 0, x 0 - k von Kármán's constant ( = 0.4) - l Mixing length - L Monin-Obukhov length - L 0 Upstream value of L - m Ratio of roughness lengths (= z 1/z 0) - RL * Non-dimensional parameter, see Equations (20, 22 and 24) - RL 1 * Same as RL * but with z 1 scaling (= mRL *) - T Scaled temperature - T 0 (z) Upstream temperature profile - u 0, u 1(x) Surface friction velocities for x < 0, x 0 - U, W Horizontal and vertical mean velocities - U 0 (z) Upstream velocity profile - x, z Horizontal and vertical coordinates - z i Local roughness length  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号