首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
含水层渗透性空间分布的指示克立格估值   总被引:3,自引:0,他引:3  
宋刚  万力  胡伏生  高茂生  张琦伟 《地学前缘》2005,12(Z1):146-151
详细介绍了指示克立格估值计算的理论和方法。以指示变异函数为基本工具分析了华北某地区第四系含水层渗透性空间分布的结构特征,结果表明该地区含水层渗透性存在明显的各向异性特征。水平方向上,X轴方向的相关性较Y轴方向的好,Z轴的相关性最差。用指示克立格法对未采样点处进行估值,估值结果显示含水层渗透性由山前向滨海逐渐变低,在垂直方向上,渗透性变化不明显,浅部比深部略好;同时给出了估计精度,并认为对估计精度不高的区域可通过增加适当的工程加以控制。最后用交叉验证法对估值结果进行了检验,证明建立的指示变异函数模型合理且估值效果较好。这一实际应用表明指示克立格法可以很好地描述第四系含水层渗透性的空间分布规律。  相似文献   

2.
Kriging of water levels in the Souss aquifer,Morocco   总被引:2,自引:0,他引:2  
Universal kriging is applied to water table data from the Souss aquifer in central Morocco. The procedure accounts for the spatial variability of the phenomenon to be mapped. With the use of measured elevations of the water table, an experimental variogram is constructed that characterizes the spatial variability of the measured water levels. Spherical and Gaussian variogram models are alternatively used to fit the experimental variogram. The models are used to develop contour maps of water table elevations and corresponding estimation variances. The estimation variances express the reliability of the kriged water table elevation maps. Universal kriging also provides a contour map of the expected elevation of the water table (drift). The differences between the expected and measured water table elevations are called residuals from the drift. Residuals from the drift are compared with residuals obtained by more traditional least-squares analysis.  相似文献   

3.
Surrogate modelling is an effective tool for reducing computational burden of simulation optimization. In this article, polynomial regression (PR), radial basis function artificial neural network (RBFANN), and kriging methods were compared for building surrogate models of a multiphase flow simulation model in a simplified nitrobenzene contaminated aquifer remediation problem. In the model accuracy analysis process, a 10-fold cross validation method was adopted to evaluate the approximation accuracy of the three surrogate models. The results demonstrated that: RBFANN surrogate model and kriging surrogate model had acceptable approximation accuracy, and further that kriging model’s approximation accuracy was slightly higher than RBFANN model. However, the PR model demonstrated unacceptably poor approximation accuracy. Therefore, the RBFANN and kriging surrogates were selected and used in the optimization process to identify the most cost-effective remediation strategy at a nitrobenzene-contaminated site. The optimal remediation costs obtained with the two surrogate-based optimization models were similar, and had similar computational burden. These two surrogate-based optimization models are efficient tools for optimal groundwater remediation strategy identification.  相似文献   

4.
Using kriging has been accepted today as the most common method of estimating spatial data in such different fields as the geosciences. To be able to apply kriging methods, it is necessary that the data and variogram model parameters be precise. To utilize the imprecise (fuzzy) data and parameters, use is made of fuzzy kriging methods. Although it has been 30 years since different fuzzy kriging algorithms were proposed, its use has not become as common as other kriging methods (ordinary, simple, log, universal, etc.); lack of a comprehensive software that can perform, based on different fuzzy kriging algorithms, the related calculations in a 3D space can be the main reason. This paper describes an open-source software toolbox (developed in Matlab) for running different algorithms proposed for fuzzy kriging. It also presents, besides a short presentation of the fuzzy kriging method and introduction of the functions provided by the FuzzyKrig toolbox, 3 cases of the software application under the conditions where: 1) data are hard and variogram model parameters are fuzzy, 2) data are fuzzy and variogram model parameters are hard, and 3) both data and variogram model parameters are fuzzy.  相似文献   

5.
Sample schemes used in geostatistical surveys must be suitable for both variogram estimation and kriging. Previously schemes have been optimized for one of these steps in isolation. Ordinary kriging generally requires the sampling locations to be evenly dispersed over the region. Variogram estimation requires a more irregular pattern of sampling locations since comparisons must be made between measurements separated by all lags up to and beyond the range of spatial correlation. Previous studies have not considered how to combine these optimized schemes into a single survey and how to decide what proportion of sampling effort should be devoted to variogram estimation and what proportion devoted to kriging An expression for the total error in a geostatistical survey accounting for uncertainty due to both ordinary kriging and variogram uncertainty is derived. In the same manner as the kriging variance, this expression is a function of the variogram but not of the sampled response data. If a particular variogram is assumed the total error in a geostatistical survey may be estimated prior to sampling. We can therefore design an optimal sample scheme for the combined processes of variogram estimation and ordinary kriging by minimizing this expression. The minimization is achieved by spatial simulated annealing. The resulting sample schemes ensure that the region is fairly evenly covered but include some close pairs to analyse the spatial correlation over short distances. The form of these optimal sample schemes is sensitive to the assumed variogram. Therefore a Bayesian approach is adopted where, rather than assuming a single variogram, we minimize the expected total error over a distribution of plausible variograms. This is computationally expensive so a strategy is suggested to reduce the number of computations required  相似文献   

6.
以浅剖数据为源数据,钻孔实测数据为验证数据,利用普通克里金法对海底地层厚度进行空间插值得到地层分布特征,采用3种半变异函数模型和不同取样间距对某井场3组地层厚度进行普通克里金插值并验证其插值效果。结果表明:普通克里金是一种有效的海底地层厚度预测方法;结构分析最佳的模型不一定是误差最小的模型,应对不同模型下的插值结果进行综合分析来选择最合适的模型,并提出球状模型在该井场厚度估计中最优,高斯模型次之;对于球状模型,增大取样间距对地层厚度变化剧烈的地层回归效果影响较小,对地层厚度变化不大的地层回归效果影响较大;同时,SE预测值变化率分析表明对于地层厚度变化剧烈的地层,减小取样间距可以大幅度地减少插值误差,而对于地层厚度变化不大的地层,减小取样间距对插值精度提高的意义不大。  相似文献   

7.
For any distribution of grades, a particular cutoff grade is shown here to exist at which the indicator covariance is proportional to the grade covariance to a very high degree of accuracy. The name “mononodal cutoff” is chosen to denote this grade. Its importance for robust grade variography in the presence of a large coefficient of variation—typical of precious metals—derives from the fact that the mononodal indicator variogram is then linearly related to the grade variogram yet is immune to outlier data and is found to be particularly robust under data information reduction. Thus, it is an excellent substitute to model in lieu of a difficult grade variogram. A theoretical expression for the indicator covariance is given as a double series of orthogonal polynomials that have the grade density function as weight function. Leading terms of this series suggest that indicator and grade covariances are first-order proportional, with cutoff grade dependence being carried by the proportionality factor. Kriging equations associated with this indicator covariance lead to cutoff-free kriging weights that are identical to grade kriging weights. This circumstance simplifies indicator kriging used to estimate local point-grade histograms, while at the same time obviating order relations problems.  相似文献   

8.
Transmissivity (T) is a basic hydraulic parameter of an aquifer that is utilized in most groundwater flow equations to understand the flow dynamics and is generally estimated from pumping tests. However, the cost of performing a large number of aquifer tests is expensive and time consuming. The fact that specific capacity (S c) is correlated with hydraulic flow properties of aquifers simplifies parameter estimation mainly because specific capacity values are more abundant in groundwater databases than values of transmissivity and they offer another approach to estimate hydraulic parameters of aquifers. In this study, an empirical relation is derived using 214 pairs of transmissivity and specific capacity values that are obtained from pumping tests conducted on water wells penetrating the complex volcanic aquifers of Upper Awash Basin, central Ethiopia. Linear and logarithmic regression functions have been performed and it is found that the logarithmic relationship predicting transmissivity from specific capacity data has a better correlation (R = 0.97) than the linear relationship (R = 0.79). The two parameters are log-normally distributed, in which the logarithmic relation is also better statistically justified than the linear relation. Geostatistical estimations of the transmissivity were made using different inputs and methods. Measured and supplemented transmissivity data obtained from estimates using the derived empirical relation were krigged and cokrigged, spherical and exponential models were fitted to the experimental variograms. The cross-validation results showed that the best estimation is provided using the kriging procedure, the transmissivity field represented by the measured transmissivity data and the experimental variogram fitted with the exponential model. Based on the geostatistical approach, the transmissivity map of the aquifer is produced, which will be used for groundwater flow modeling of the study area that will follow this analysis.  相似文献   

9.
Indicator principal component kriging   总被引:1,自引:0,他引:1  
An alternative to multiple indicator kriging is proposed which approximates the full coindicator kriging system by kriging the principal components of the original indicator variables. This transformation is studied in detail for the biGaussian model. It is shown that the cross-correlations between principal components are either insignificant or exactly zero. This result allows derivation of the conditional cumulative density function (cdf) by kriging principal components and then applying a linear back transform. A performance comparison based on a real data set (Walker Lake) is presented which suggests that the proposed method achieves approximation of the conditional cdf equivalent to indicator cokriging but with substantially less variogram modeling effort and at smaller computational cost.  相似文献   

10.
    
For any distribution of grades, a particular cutoff grade is shown here to exist at which the indicator covariance is proportional to the grade covariance to a very high degree of accuracy. The name mononodal cutoff is chosen to denote this grade. Its importance for robust grade variography in the presence of a large coefficient of variation—typical of precious metals—derives from the fact that the mononodal indicator variogram is then linearly related to the grade variogram yet is immune to outlier data and is found to be particularly robust under data information reduction. Thus, it is an excellent substitute to model in lieu of a difficult grade variogram. A theoretical expression for the indicator covariance is given as a double series of orthogonal polynomials that have the grade density function as weight function. Leading terms of this series suggest that indicator and grade covariances are first-order proportional, with cutoff grade dependence being carried by the proportionality factor. Kriging equations associated with this indicator covariance lead to cutoff-free kriging weights that are identical to grade kriging weights. This circumstance simplifies indicator kriging used to estimate local point-grade histograms, while at the same time obviating order relations problems.This paper is based in part on a PhD thesis submitted to the Department of Applied Earth Sciences, Stanford University, Stanford, California 94305, in 1984 (unpublished).  相似文献   

11.
Robustness of variograms and conditioning of kriging matrices   总被引:1,自引:0,他引:1  
Current ideas of robustness in geostatistics concentrate upon estimation of the experimental variogram. However, predictive algorithms can be very sensitive to small perturbations in data or in the variogram model as well. To quantify this notion of robustness, nearness of variogram models is defined. Closeness of two variogram models is reflected in the sensitivity of their corresponding kriging estimators. The condition number of kriging matrices is shown to play a central role. Various examples are given. The ideas are used to analyze more complex universal kriging systems.Research performed while on leave at Centre de Geóstatistique et de Morphologie Mathématique, Fontainebleau.  相似文献   

12.
Ordinary kriging and non-linear geostatistical estimators are now well accepted methods in mining grade control and mine reserve estimation. In kriging, the search volume or ‘kriging neighbourhood’ is defined by the user. The definition of the search space can have a significant impact on the outcome of the kriging estimate. In particular, too restrictive neighbourhood, can result in serious conditional bias. Kriging is commonly described as a ‘minimum variance estimator’ but this is only true when the neighbourhood is properly selected. Arbitrary decisions about search space are highly risky. The criteria to consider when evaluating a particular kriging neighbourhood are the slope of the regression of the ‘true’ and ‘estimated’ block grades, the number of kriging negative weights and the kriging variance. Search radius is one of the most important parameters of search volume which often is determined on the basis of influence of the variogram. In this paper the above-mentioned parameters are used to determine optimal search radius.  相似文献   

13.
On Visualization for Assessing Kriging Outcomes   总被引:7,自引:0,他引:7  
Extant opinion about kriging is that all weights should be positive. Visualizations rendered by converting kriged grids to digital images are presented to show that negative weights may be beneficial to some spatial problems. In particular, variogram models with zero-valued nuggets, already well known to minimize smoothing through kriging, result in a visual resolution substantially superior to that from kriging with a variogram model having a nonzero nugget value in application to satellite acquired data. Negative weights are more likely when using variogram models with zero-valued nuggets, but resultant visualizations often show a smoother transition between extreme data values. This is true even when a variogram model having a nugget value of zero is not optimum with respect to mean square error, as is demonstrated using a nitrate data set. An analogy to digital image processing is used to suggest that the influence of negative weights in kriging is similar to a high-boost kernel.  相似文献   

14.
Robust Resampling Confidence Intervals for Empirical Variograms   总被引:1,自引:0,他引:1  
The variogram function is an important measure of the spatial dependencies of a geostatistical or other spatial dataset. It plays a central role in kriging, designing spatial studies, and in understanding the spatial properties of geological and environmental phenomena. It is therefore important to understand the variability attached to estimates of the variogram. Existing methods for constructing confidence intervals around the empirical variogram either rely on strong assumptions, such as normality or known variogram function, or are based on resampling blocks and subject to edge effect biases. This paper proposes two new procedures for addressing these concerns: a quasi-block-bootstrap and a quasi-block-jackknife. The new methods are based on transforming the data to decorrelate it based on a fitted variogram model, resampling blocks from the decorrelated data, and then recorrelating. The coverage properties of the new confidence intervals are compared by simulation to a number of existing resampling-based intervals. The proposed quasi-block-jackknife confidence interval is found to have the best properties of all of the methods considered across a range of scenarios, including normally and lognormally distributed data and misspecification of the variogram function used to decorrelate the data.  相似文献   

15.
Estimating Variogram Uncertainty   总被引:10,自引:0,他引:10  
The variogram is central to any geostatistical survey, but the precision of a variogram estimated from sample data by the method of moments is unknown. It is important to be able to quantify variogram uncertainty to ensure that the variogram estimate is sufficiently accurate for kriging. In previous studies theoretical expressions have been derived to approximate uncertainty in both estimates of the experimental variogram and fitted variogram models. These expressions rely upon various statistical assumptions about the data and are largely untested. They express variogram uncertainty as functions of the sampling positions and the underlying variogram. Thus the expressions can be used to design efficient sampling schemes for estimating a particular variogram. Extensive simulation tests show that for a Gaussian variable with a known variogram, the expression for the uncertainty of the experimental variogram estimate is accurate. In practice however, the variogram of the variable is unknown and the fitted variogram model must be used instead. For sampling schemes of 100 points or more this has only a small effect on the accuracy of the uncertainty estimate. The theoretical expressions for the uncertainty of fitted variogram models generally overestimate the precision of fitted parameters. The uncertainty of the fitted parameters can be determined more accurately by simulating multiple experimental variograms and fitting variogram models to these. The tests emphasize the importance of distinguishing between the variogram of the field being surveyed and the variogram of the random process which generated the field. These variograms are not necessarily identical. Most studies of variogram uncertainty describe the uncertainty associated with the variogram of the random process. Generally however, it is the variogram of the field being surveyed which is of interest. For intensive sampling schemes, estimates of the field variogram are significantly more precise than estimates of the random process variogram. It is important, when designing efficient sampling schemes or fitting variogram models, that the appropriate expression for variogram uncertainty is applied.  相似文献   

16.
Comparison of kriging techniques in a space-time context   总被引:1,自引:0,他引:1  
Space-time processes constitute a particular class, requiring suitable tools in order to predict values in time and space, such as a space-time variogram or covariance function. The space-time co-variance function is defined and linked to the Linear Model of Coregionalization under second-order space-time stationarity. Simple and ordinary space-time kriging systems are compared to simple and ordinary cokriging and their differences for unbiasedness conditions are underlined. The ordinary space-time kriging estimation then is applied to simulated data. Prediction variances and prediction errors are compared with those for ordinary kriging and cokriging under different unbiasedness conditions using a cross-validation. The results show that space-time kriging tend to produce lower prediction variances and prediction errors that kriging and cokriging.  相似文献   

17.
In kriging, parametric approaches to covariance (or variogram) estimation require that unknown parameters be inferred from a single realization of the underlying random field. An approach to such an estimation problem is to assume the field to be Gaussian and iteratively minimize a (restricted) negative loglikelihood over the parameter space. In doing so, the associated computational burden can be considerable. Also, it is usually not easy to check whether or not the minimum achieved is global. In this note, we show that in many practical cases, the structure of the covariance (or variogram) function can be exploited so that iterative minimizing algorithms may be advantageously replaced by a procedure that requires the computation of the roots of a simple rational function and the search for the minimum of a function depending on one variable only. As a consequence, our approach allows one to observe in a straightforward fashion the presence of local minima. Furthermore, it is shown that insensitivity of the likelihood function to changes in parameter value can be easily detected. The note concludes with numerical simulations that illustrate some key features of our estimation procedure.  相似文献   

18.
A stationary specification of anisotropy does not always capture the complexities of a geologic site. In this situation, the anisotropy can be varied locally. Directions of continuity and the range of the variogram can change depending on location within the domain being modeled. Kriging equations have been developed to use a local anisotropy specification within kriging neighborhoods; however, this approach does not account for variation in anisotropy within the kriging neighborhood. This paper presents an algorithm to determine the optimum path between points that results in the highest covariance in the presence of locally varying anisotropy. Using optimum paths increases covariance, results in lower estimation variance and leads to results that reflect important curvilinear structures. Although CPU intensive, the complex curvilinear structures of the kriged maps are important for process evaluation. Examples highlight the ability of this methodology to reproduce complex features that could not be generated with traditional kriging.  相似文献   

19.
Comparison of approaches to spatial estimation in a bivariate context   总被引:6,自引:0,他引:6  
The problem of estimating a regionalized variable in the presence of other secondary variables is encountered in spatial investigations. Given a context in which the secondary variable is known everywhere (or can be estimated with great precision), different estimation methods are compared: regression, regression with residual simple kriging, kriging, simple kriging with a mean obtained by regression, kriging with an external drift, and cokriging. The study focuses on 19 pairs of regionalized variables from five different datasets representing different domains (geochemical, environmental, geotechnical). The methods are compared by cross-validation using the mean absolute error as criterion. For correlations between the principal and secondary variable under 0.4, similar results are obtained using kriging and cokriging, and these methods are superior slightly to the other approaches in terms of minimizing estimation error. For correlations greater than 0.4, cokriging generally performs better than other methods, with a reduction in mean absolute errors that can reach 46% when there is a high degree of correlation between the variables. Kriging with an external drift or kriging the residuals of a regression (SKR) are almost as precise as cokriging.  相似文献   

20.
A critical step for kriging in geostatistics is estimation of the variogram. Traditional variogram modeling comprise of the experimental variogram calculation, appropriate variogram model selection and model parameter determination. Selecting of the variogram model and fitting of model parameters is the most controversial aspect of geostatistics. Shapes of valid variogram models are finite, and sometimes, the optimal shape of the model can not be fitted, leading to reduced estimation accuracy. In this paper, a new method is presented to automatically construct a model shape and fit model parameters to experimental variograms using Support Vector Regression (SVR) and Multi-Gene Genetic Programming (MGGP). The proposed method does not require the selection of a variogram model and can directly provide the model shape and parameters of the optimal variogram. The validity of the proposed method is demonstrated in a number of cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号