首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The mummichog,Fundulus heteroclitus, is one of the most abundant macrofaunal components of salt marsh ecosystems along the east coast of the United States. During April–November 1998, we determined the habitat use and movement patterns of young-of-the-year (YOY) and adult mummichogs in a restored marsh, formerly a salt hay farm, and an adjacent creek in order to expand our understanding of the ecology of the species and evaluate the success of the restoration. Four major fish habitat types (large first-order natural creek, second-order created creek, linear drainage ditch, and marsh surface) were identified within the study site. Patterns of relative abundance and mark and recapture using coded wire tags were used to determine the habitat use, tidal movements, home range, and site fidelity of the species within these habitat types. A total of 14,784 fish, ranging from 20–100 mm SL, were captured with wire mesh traps and tagged, and 1,521 (10.3%) fish were recaptured. A variety of gears were used to attempt to recapture fish across all habitat types, including wire mesh traps, push nets, and otter trawls. Based on abundance and recaptures of tagged fish, the YOY and adults primarily used the shallow subtidal and intertidal areas of the created creek, the intertidal drainage ditches, and the marsh surface of the restored marsh but not the larger, first-order natural creek. At low tide, large numbers were found in the subtidal areas of the created creek; these then moved onto the marsh surface on the flooding tide. Elevation, and thus hydroperiod, appeared to influence the microscale use of the marsh surface. We estimated the home range of adults and large YOY (20–100 mm SL) to be 15 ha at high tide, which was much larger than previously quantified. There was strong site fidelity to the created creek at low tide. The habitat use and movement patterns of the mummichog appeared similar to that reported for natural marshes. Coupled with the results of other studies on the feeding, growth, and production of this species in this restoreh, the species appeared to have responded well to the restoration.  相似文献   

2.
Large-scale marsh restoration efforts were conducted to restore normal salt marsh structure and function to degraded marshes (i.e., former salt hay farms) in the mesohaline lower Delaware Bay. While nekton response has been previously evaluated for the marsh surface and subtidal creeks in these marshes, little effort has been focused on intertidal creeks. Nekton response in intertidal creeks was evaluated by sampling with seines to determine if restored (i.e., former salt hay farms restored in 1996) and reference (i.e., natural or relatively undisturbed) salt marshes were utilized by intertidal nekton in a similar manner. The overall nekton assemblage during June–October 2004–2005 was generally comprised of the same species in both the restored and reference marshes. Intertidal creek catches in both marsh types consisted primarily ofFundulus heteroclitus andMenidia menidia, with varying numbers of less abundant transient species present. Transient nekton were more abundant at restored marshes than reference marshes, but in insufficient numbers to cause differences in nekton assemblages. In both marsh types, low tide stages were characterized by resident nekton, dominated byF. heteroclitus, while high tide stages were characterized by a variable mix of transient and resident nekton. Assemblage level analyses indicated that intertidal creeks in restored and reference marshes were generally utilized in a similar manner by a similar nekton assemblage, so restoration efforts were deemed successful. This is in agreement with multiple comparative studies from the ame marshes examining fish, invertebrates, and vegetation in different marsh habitats.  相似文献   

3.
Patterns of nekton occurrence on the salt marsh surface at high tide and in an adjacent intertidal creek pool at low tide were used to investigate movements of nekton in an intertidal basin. Paired collections were made in North Inlet estuary, SC on 67 dates over 9 years. Comparisons of high- and low-tide total abundance indicated that what remained in the creek pool at low tide was representative of the nekton on the flooded marsh. Of the 64 taxa collected, the same 8 species ranked in the top 10 in both the high- and low-tide collections. Abundances of most resident species were positively correlated with the area of marsh flooded, but mummichog (Fundulus heteroclitus), the most abundant resident, was not. Abundances of young-of-the-year transient species were not related to the extent of tidal flooding. Some transient species used the flooded marsh but did not occupy the pool at low tide, and others found in the pool did not use the marsh. Differences in abundance, biomass, and length between the marsh and pool collections indicated differences in the tendency of species and life stages to retreat downstream of the pool to the subtidal channel. Proportionately more of the nekton that were present on the flooded marsh left the intertidal basin when large changes in temperature and salinity occurred between high and low tides. More transients left the basin following higher tides, but more residents did not. The results demonstrate a wide range of taxonomic and ontogenetic patterns among nekton using intertidal salt marsh basins and the underappreciated importance of intertidal creek pools as alternative low-tide refuges.  相似文献   

4.
0-group sea bass,Dicentrarchus labrax, colonize intertidal marsh creeks of Mont Saint Michel Bay, France, on spring tides (e.g., 43% of the tides) during flood and return to coastal waters during ebb. Most arrived with empty stomachs (33%), and feed actively during their short stay in the creeks (from 1 to 2 h) where they consumed on average a minimum of 8% of their body weight. During flood tide, diet was dominated by mysids,Neomysis integer, which feed on marsh detritus. During ebb, when young sea bass left tidal marsh creeks, the majority had full stomachs (more than 98%) and diet was dominated by the most abundant marsh (including vegetated tidal flats and associated marsh creeks) resident amphipod,Orchestia gammarellus. Temporal and tidal effects on diet composition were shown to be insignificant. Foraging in vegetated flats occurs very rarely since they are only flooded by about 5% of the tides. It was shown that primary and secondary production of intertidal salt marshes play a fundamental role in the feeding of 0-group sea bass. This suggests that the well known nursery function of estuarine systems, which is usually restricted to subtidal and intertidal flats, ought to be extended to the supratidal, vegetated marshes and mainly to intertidal marsh creeks.  相似文献   

5.
Mummichog,Fundulus heteroclitus, were collected weekly from a southern New Jersey high-salinity salt marsh from October 1988 to June 1989 and from September 1989 to June 1990 to determine the overwintering habitat. Major habitat types sampled within the salt marsh were subtidal creek, intertidal creeks, and salt-marsh pools. Few individuals were collected in the intertidal creek or the subtidal creek from the end of October through the beginning of May for both years, when creek water temperatures were low. Both young-of-the-year and adults of both sexes were abundant in the salt-marsh pools (total lengths ranged from 29 mm to 125 mm) throughout the winter. In the spring, catch per unit effort (CPUE) within the tidal creek increased with increasing water temperature, while CPUE in marsh pools decreased with increases in estuarine water temperature. These collection patterns indicate that the majority ofF. heteroclitus may move from subtidal and intertidal creeks into salt-marsh pools in the late fall and leave in the spring. This seasonal movement could explain how fish survive winter environmental conditions because daily average water temperatures of salt-marsh pools were warmer than subtidal creek temperatures for much of the winter.  相似文献   

6.
Variability in early life stages of species that are permanent residents of the estuarine nekton is poorly understood, especially in systems with extensive areas of emergent vegetation (e.g., salt marshes and mangroves). Sampling small mobile nekton in these shallow intertidal habitats presents a difficult methodological challenge. Simulated aquatic microhabitats (SAMs) were used to collect the early life stages of resident nekton that remained on the emergent marsh surface after it was exposed by the tide and could not be adequately sampled by traditional methods. Where the intertidal is a prominent areal component of the estuary, a large portion of young nekton could be overlooked using other common survey methods (e.g., plankton tows or block nets). Populations of young fishes and natant crustaceans were monitored for a year at 3-d to 6-d intervals from both low and high intertidal elevations within each of two marsh sites on Sapelo Island, Georgia, USA. Three species accounted for >99% of the 41,023 individuals collected. These were the killifishesFundulus heteroclitus (57.0%) andF. luciae (4.0%), and the daggerblade grass shrimp,Palaemonetes pugio (38.4%). YoungF. heteroclitus were used in field enclosure experiments to relate abundance data to actual areal densities. Average annual estimated density of young nekton on the surface of the intertidal marsh at low tide was 7.2 individuals m?2. Early life stages of estuarine resident species, particularly those with demersal young, are not affected by the same physical processes influencing larval supply and recruitment variability in marine-spawned species. In salt marshes, biotic factors (e.g., adult reproductive activity, predation, and food limitation) may be more important as proximate causes of variation during the early life histories of resident nekton.  相似文献   

7.
Fishes and invertebrate macrofauna (nekton) were sampled biweekly (July through October 1985) from the surface of tidal freshwater marshes. Samples were collected with flume nets at three different stream orders (orders 2, 3 and 4+) along a marsh stream order gradient. Twenty-five species of fishes (5,610 individuals, 17.072 kg preserved wet weight) representing 13 families, and three species of invertebrates (19,570 individuals, 13.026 kg preserved wet weight) were collected. The most abundant species were grass shrimp (Palaemonetes pugio), mummichogs (Fundulus heteroclitus), banded killifish (F. diaphanus), inland silversides (Menidia beryllina), and blue crabs (Callinectes sapidus). Invertebrate catches (mostly grass shrimp and blue crabs) were not significantly different among stations. Total numbers of fishes were significantly greater at both headwater (order 2) and main creek (order 3) stations than river (order 4+) stations, but catches of headwater and main creek stations were not significantly different. The relationship between marsh stream order and fish abundance may partly be related to the distribution of submerged aquatic vegetation (SAV) within marsh tidal creeks. Submerged aquatic vegetation decreases in abundance with increasing stream order. Some species may use SAV as a refuge from predators or as a foraging area during low tide when the marsh surface is inaccessible. The presence of SAV in tidal creeks may enhance the habitat value of adjacent marshes.  相似文献   

8.
The utilization of an intertidal salt marsh creek in South Carolina during January 1977 was determined by sampling every third ebb tide for 13 days. All fishes leaving the creek during that period were captured in a channel net. This procedure produced a time-series of samples which permitted analysis of the fish community occupying the intertidal creek at all times of day and night. A total of 14,730 larval, juvenile, and adult fishes comprising at least 22 species in 16 families were collected. The most common larval and juvenile fishes wereLeiostomus xanthurus, Mugil spp.,Myrophis punctatus leptocephali,Lagodon rhomboides, Paralichthys spp., andMicropogon undulatus. Catch sizes for all species varied widely between samples. No diurnal-nocturnal pattern in catches was evident forL. xanthurus, Mugil spp.,L. rhomboides andM. undulatus. M. punctatus was taken in large numbers only when the flood tide occurred during the day, while moreParalichthys spp. larvae were taken in late afternoon-evening flood tide samples. The most common invertebrate,Palaemonetes pugio, was taken in large quantities only in late afternoon-night flood tide samples. Three diversity indices were computed for each sample. Values for all indices varied widely between successive samples. The results emphasize a high degree of utilization of the intertidal creek habitat by larval and juvenile fishes. The diurnal-nocturnal activity patterns of some species, and the wide variation in catch size of the other species can permit use of the intertidal salt marsh habitat with reduced competition for available space and energy.  相似文献   

9.
Although studies of intertidal habitats have contributed greatly to the field of ecology, the processes governing the use of these areas by highly mobile animals such as fish remain poorly understood. In particular, although large-scale patterns of estuarine fish abundances are well known, fine-scale patterns of habitat use have been largely overlooked. Here, I examine among and within habitat use patterns of the mummichog,Fundulus heteroclitus, in a New England salt marsh. Using minnow traps I sampled changes in mummichog habitat use among closely spaced sites within creeks, mudflat, and channel over 2 yr. The general pattern of mummichog captures was consistent among years, showing peaks in summer months and lows in winter. Use of specific habitat types was also seasonally dependent. For most of the year (fall, winter, spring) mudflat capture rates were lower than creek capture rates in the summer; however, densities in the mudflat equal or exceed those in creeks. In most months channel habitats did not differ significantly in use from either creek or mudflat habitat. Consistent patterns also occur within induividual marsh habitats.F. heteroclitus concentrate in the uppermost portion of creeks. Additionally, mudflat capture rates (August 1990) declined with increasing water depth. Diurnal habitat use is heavier than nocturnal use for all habitats. These findings demonstrate that mummichogs are restricted to areas representing a very small proportion of total available habitat and that their patterns of habitat use are strongly seasonal. Only careful experimental work can determine the relative advantages of these habitats for estuarine fish. Further comparative work is required to reveal how biological and physical parameters affecting habitat use may vary geographically.  相似文献   

10.
Salt marsh habitats influenced by southern California's mixed, semi-diurnal tides are, on average, accessible to fishes less than 16% of the time. However, five species (four natives, one oxotic) and a variety of juvenile and adult size classes were collected on the marsh surface during a year-long sampling from June 1997 through June 1998 at Sweetwater Marsh National Wildlife Refuge on San Diego Bay.Fundulus parvipinis andGillichthys mirabilis were the most abundant fish species using the marsh. Analyses of their guts revealed that the marsh surface provides a rich foraging area for fishes on high spring tides.F. parvipinnis with marsh access consumed six times as much food as fishes restricted to creek habitats (on a g-food g-fish?1 basis) and also fed on additional prey types. Because the salt marsh is an important foraging area for fishes, we recommend that restoration projects (especially those intended to mitigate lost fish habitat) include vegetated areas with interconnecting tidal creeks.  相似文献   

11.
Flume nets of various lengths and a 3-m seine were used to sample the fishes and macrocrustaceans using a flooded Louisiana salt marsh and the adjacent tidal creek. The experiment allowed for species-specific comparisons of the flooded marsh at the creek edge versus the interior. Of the 37,667 organisms collected in flume nets from January through November 1989, 89% were decapods (nine species) and 11% were fish (29 species). An additional 18,539 organisms (75% decapods and 25% fish) were collected from concurrent seine samples taken from July through November. Comparison of catches among different flume lengths and low tide versus high tide seine collections revealed distinct patterns of marsh habitat utilization. Densities of most organisms were highest within 3 m of the water’s edge, but significant numbers of marsh-resident fish species used the interior marshes. The edge marshes appeared to be used by both transient and resident species; however, the interior marshes were used primarily by marsh-resident species (Cyprinodontiformes andPalaemonetes sp.) that are excellent food sources for adult transient-species. Four zonations of marsh use are described for transients, residents, and rare species.  相似文献   

12.
To assess the potential for habitat isolation effects on estuarine nekton, we used two species with different dispersal abilities and life history strategies, mummichog (Fundulus heteroclitus) and pinfish (Lagodon rhomboides) to examine: (1) distribution trends among estuarine shallow-water flat and various intertidal salt marsh habitats and (2) the influence of salt marsh habitat size and isolation. Collections were conducted using baited minnow traps set within nonisolated interior marshes (interior), nonisolated fringing marshes (nonisolated), isolated island marshes (isolated), and shallow-water flat habitats (flat) that were adjacent to isolated and nonisolated marshes. Size range of individuals collected included juvenile and adult F. heteroclitus (20–82-mm standard length) and L. rhomboides (22–151-mm standard length). During high tide, F. heteroclitus exclusively used marsh habitats, particularly high marsh, whereas L. rhomboides used marshes and flats. F. heteroclitus abundance followed an interior > nonisolated > isolated pattern. L. rhomboides abundance patterns were less consistent but followed a nonisolated > isolated > interior pattern. A size-dependent water depth relationship was observed for both species and suggests size class partitioning of marsh and flat habitats during high tide. Minimum water depth (~31 cm) restricted L. rhomboides populations in marshes, while maximum water depth (~69 cm) restricted F. heteroclitus population use of marshes and movement between marsh habitats. Disparities in F. heteroclitus young of year contribution between isolated compared to nonisolated and interior marsh types suggests isolated marshes acted as population sinks and were dependent on adult emigrants. Resident and transient salt marsh nekton species utilize estuarine habitats in different ways and these fundamental differences can translate into how estuarine landscape might affect nekton.  相似文献   

13.
Salt marshes are widely believed to serve as nurseries for many fishes and crustaceans of fishery value as a result of the high production of vascular plant detritus and the protection from predation offered by shallow, spatially complex habitats. Comparisons of the yields of species which reside in salt marsh habitats during critical life history stages (such as penaeid shrimp) with the area of such habitats and their greater densities in flooded marshes and associated tidal creeks support the premise that marshes enhance the yield of such species. A range of evidence, including the amount of detrital export from marshes, the poor nutritive value of vascular plant detritus, and natural diets, casts doubt on the notion that production of fishery species is based on the direct consumption of marsh grass detritus or predominantly on food chains based on this detritus. Vascular plants and associated algae may, however, contribute to the production of prey species. The limited observations available support the hypothesis that salt marshes offer significant escape from mortality due to predation, but there have been yet few experimental tests of this hypothesis. Knowledge of relative importance of the food and refuge functions in support of living resources is of practical value in marsh and fisheries management. Better understanding of these roles is important to the effective evaluation of the effects of coastal habitat modifications on fisheries resources and design of alterations to minimize the losses of these values.  相似文献   

14.
Forty-eight core and grab samples were taken from two impoundments and an adjacent tidal creek and salt marsh during each of six sampling periods (January, June and November 1983; and January, April and July 1984). Habitats sampled within the impoundments included the perimeter ditch and shallow vegeted areas dominated byRuppia maritima, Spartina alterniflora, andScirpus robustus. The adjacent tidal creek bottom and low marsh ofS. alterniflora were sampled for comparison with the impoundment sites. Major differences in faunal composition and density of macrobenthic invertebrates were observed between habitats in this study. Macrobenthic density was highest (475 individuals 0.05 m?2) at the impoundment site dominated byScripus robustus, where oligochaetes were abundant. The open marsh site had a density of 254 individuals 0.05 m?2. Among unvegetated sites, density for all sampling periods was higher in Chainey Creek than in the perimeter ditches of the impoundments. The total number of taxa was highest for the open marsh and tidal creek sites. The impoundments contained vegetated sites which were inhabited by fewer species than nonimpounded sites, while the perimeter ditch sites were comparatively depauperate. Cluster and nodal analyses identified four broad assemblages based on habitat: 1) an open marsh assemblage, 2) a creek assemblage, 3) a eurytopic assemblage, and 4) an impoundment assemblage. The separation of faunal assemblages by sampling site rather than sampling period suggests that physical differences between habitats were important factors determining distribution patterns.  相似文献   

15.
辛沛  金光球  李凌 《水科学进展》2009,20(3):379-384
滨海盐沼是重要的陆地-海洋交界带生态系统。目前国际上存在关于盐沼的两大假设:盐沼系统输出养分和盐沼植物带状分布。为验证这两大假设,增强对盐沼湿地的了解,盐沼孔隙水流动及溶质运移研究至关重要。为模拟复杂盐沼系统孔隙水流动及溶质运移,改进了美国地质勘测局编制的SUTRA程序。基于假定的潮沟横断面物理条件,对孔隙水流动及溶质运移过程进行了模拟分析。结果表明潮沟附近孔隙水及溶质交换较快,潮水浸淹会减缓潮沟附近出现物质集结。落潮时潮沟附近有明显垂向流和水平流,远潮沟地带主要为水平流。潮沟附近土壤通气条件较好。这些模拟结果较好的吻合了潮沟附近较盐沼内部盐沼植物长势较好的现象。  相似文献   

16.
We examined connectivity among marsh subhabitats to determine the structural limits and important components of a polyhaline salt marsh by studying the patterns of abundance, residency, and movement of a numerically and ecologically dominant nektonic fish (mummichog, Fundulus heteroclitus). We captured, tagged (n = 14,040 individuals, 30–110 mm), and recaptured from Feb 2001 to Jul 2002, although most recaptures (75–95% by tagging location) occurred within 150 days. Seasonal residency and movements were common among most subhabitats based on catch per unit effort and recapture per unit effort. Thus, these (marsh pools, intertidal and subtidal creeks, and marsh surface) should be considered natural subhabitats within New England type salt marshes. Further, all these subhabitat types should be included in studies of salt marsh nekton and marsh restoration and creation activities.  相似文献   

17.
Studies of adult northern diamondback terrapins (Malaclemys terrapin terrapin) in the salt marshes on the Atlantic Ocean side of Cape May Peninsula reveal that from mid-November through December, terrapins gradually migrate from the open waters of the sounds into the marsh creeks. Within the creeks, hibernating diamondbacks hibernate as isolated individuals or in small groups. Three hibernating methods are used: 1) resting on the bottom under water, 2) burial atop creek banks, and 3) taking refuge beneath undercut banks. Hibernating diamondbacks apparently remain dormant all winter.  相似文献   

18.
The intertidal marsh community comprises both benthic and natant faunal components. The benthic components are primarily small invertebrates residing within or on the soft sediments of the vegetated marsh surface. The natant components include larger, fully aquatic organisms (e.g., fish and shrimp) that inhabit the shallow waters adjacent to the marsh at low tide but interact with the benthic components of the community when the marsh is tidally inundated. In this structurally complex and often expansive intertidal environment, patterns of invertebrate distribution and abundance are not apparent to the casual observer. Benthic core samples taken along an intertidal marsh transect on Sapelo Island, Georgia, USA show that many of the inconspicuous infaunal organisms, which numerically dominate the macrofaunal elements of this soft-substrate community, exhibit zonal distribution patterns along a tidal gradient. Patterns of invertebrate distribution in the intertidal salt marsh are often attributed to the activities of aquatic predators. The results of most predator exclusion experiments have left little doubt that predation/disturbance can be an important determinant of invertebrate abundance in soft-substrate communities; but a growing number of experiments, in both freshwater and marine environments, have produced results that apparently conflict with this, general tenet. Dismissed by some as “failed” experiments, these investigations have exposed our lack of knowledge about the effects of specific predators and the importance of complex interactions which involve more than two trophic levels. Although the importance of predation has been stressed in many recent experimental investigations, there are many other factors that, alone or in combination, may also influence the structure of salt marsh invertebrate assemblages. Included among these are: (1) various density-dependent processes (e.g., adult-larval interactions, agonistic behavior, interspecific competition), (2) selective larval settlement or mortality, (3) the influence of physical factors expressed through habitat preferences, and (4) unpredictable or cyclic physical disturbances. Many questions concerning the spatial and temporal patterns of invertebrate distribution and abundance in the salt marsh are unresolved and remain as challenges to our understanding of soft-substrate community dynamics.  相似文献   

19.
The flooded intertidal zone in coastal estuarine systems (e.g., mangroves and salt marshes) is thought to provide nekton with both food and refuge from predators. The primary aim of this study was to identify the relative contribution of root structure, shading, and leaf litter, all characteristic features of mangrove forests, in shaping the intertidal distribution of tidally migrating fishes. We manipulated the structure and shade in 9-m2 sample plots in a shallow, mangrove-fringed, intertidal embayment in Tampa Bay, Florida. In a separate field experiment, we compared fish association with standing mangrove leaf litter and bare sand substrate. Shade and leaf litter had a water depthdependent effect on the distribution of the fish; no effect was associated with the presence of mangrove roots. In shallow water (<45 cm), fish were captured primarily in plots without shade, but this distribution shifted progressively with increasing water depth, so that when water was greater than 55 cm most fish were captured in shaded plots. Fish were more frequently associated with, and feeding in, plots covered in leaf litter than bare sand plots. This relationship did not persist at depths greater than 15 cm because fish abundance declined gratly. Tethering experiments usingCyprinodon variegatus demonstrated that predation pressure was quadratically correlated with water depth (inflexion point approximately 60 cm). Our results suggest that small fishes will abandon well-lighted foraging grounds in favor of the potential refuge of shaded waters as water depth increases. We suggest that studies of intertidal nekton should be carefully interpreted in the context of water depth.  相似文献   

20.
Delaware Bay is one of the largest estuaries on the U.S. eastern seaboard and is flanked by some of the most extensive salt marshes found in the northeastern U.S. While physicochemical and biotic gradients are known to occur along the long axis of the bay, no studies to date have investigated how the fish assemblage found in salt marsh creeks vary along this axis. The marshes of the lower portion of the bay, with higher salinity, are dominated bySpartina spp., while the marshes of the upper portion, with lower salinity, are currently composed primarily of common reed,Phragmites australis, S. alterniflora, or combinations of both. Extensive daytime sampling (n=815 tows) during May–November 1996 was conducted with otter trawls (4.9 m, 6 mm mesh) in six intertidal and subtidal marsh creek systems (upper and lower portions of each creek) where creek channel depths ranged from 1.4–2.8 m at high tide. The fish taxa of the marsh creeks was composed of 40 species that were dominated by demersal and pelagic forms including sciaenids (5 species), percichthyids (2), and clupeids (7), many of which are transients that spawn outside the bay but the early life history stages are abundant within the bay. The most abundant species wereMorone americana (24.3% of the total catch),Cynoscion regalis (15.4%),Micropogonias undulatus (15.3%),Anchoa mitchilli (12.0%), andTrinectes maculatus (10.8%). Non-metric Multi-Dimensional Scaling ordination of catch per unit effort (CPUE) data indicated two fish assemblages that were largely independent of the two major vegetation types, but generally corresponded with spatial variation in salinity. This relationship was more complex because some of the species for which we could discriminate different age classes by size had different patterns of distribution along the salinity gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号