首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Detailed 3‐D analysis of inclusion trails in garnet porphyroblasts and matrix foliations preserved around a hand‐sample scale, tight, upright fold has revealed a complex deformation history. The fold, dominated by interlayered quartz–mica schist and quartz‐rich veins, preserves a crenulation cleavage that has a synthetic bulk shear sense to that of the macroscopic fold and transects the axis in mica‐rich layers. Garnet porphyroblasts with asymmetric inclusion trails occur on both limbs of the fold and display two stages of growth shown by textural discontinuities. Garnet porphyroblast cores and rims pre‐date the macroscopic fold and preserve successive foliation inflection/intersection axes (FIAs), which have the same trend but opposing plunges on each limb of the fold, and trend NNE–SSW and NE–SW, respectively. The FIAs are oblique to the main fold, which plunges gently to the WSW. Inclusion trail surfaces in the cores of idioblastic porphyroblasts within mica‐rich layers define an apparent fold with an axis oblique to the macroscopic fold axis by 32°, whereas equivalent surfaces in tabular garnet adjacent to quartz‐rich layers define a tighter apparent fold with an axis oblique to the main fold axis by 17°. This potentially could be explained by garnet porphyroblasts that grew over a pre‐existing gentle fold and did not rotate during fold formation, but is more easily explained by rotation of the porphyroblasts during folding. Tabular porphyroblasts adjacent to quartz‐rich layers rotated more relative to the fold axis than those within mica‐rich layers due to less effective deformation partitioning around the porphyroblasts and through quartz‐rich layers. This work highlights the importance of 3‐D geometry and relative timing relationships in studies of inclusion trails in porphyroblasts and microstructures in the matrix.  相似文献   

2.
Schists from the Appalachian Orogen in south-east Vermont have undergone multiple phases of garnet growth. These phases can be distinguished by the trend and relative timing of f oliation i nflexion or i ntersection a xes (FIAs) of foliations preserved as inclusion trails in garnet porphyroblasts. The relative timing of different generations of FIAs is determined from samples containing porphyroblasts with two or three differently trending FIAs developed outwards from core to rim (multi-FIA porphyroblasts). Schists from south-east Vermont show a consistent pattern of relative clockwise rotation of FIA trends from oldest to youngest. Four populations or sets of FIAs can be distinguished on the basis of their relative timings and trends. From oldest to youngest, the four sets have modal peaks trending SW–NE, W–E, NNW–SSE and SSW–NNE. These peaks show that each of the four FIA sets has a statistically consistent trend at all scales across a 35×125 km area containing numerous mesoscopic and macroscopic folds. The FIAs of Set 4 are defined by inclusion trails that are continuous with matrix foliations, have trends subparallel to most folds and are inferred to have developed contemporaneously with these structures. Conversely, Sets 1 to 3 are oblique to and pre-date most matrix foliations and folds. All four FIA sets occur in Siluro-Devonian rocks and must have formed in the Acadian Orogeny. The lack of statistically significant differences in the distribution of FIA trends across the study area and their consistent relative timings in multi-FIA porphyroblasts, despite a complex regional deformation history involving numerous phases of folding at all scales, suggest the porphyroblasts have not rotated relative to one another. The change in FIA trend with time resulted from rotation of the kinematic reference frame of bulk flow, possibly as a consequence of the reorganization of lithospheric plates responsible for Acadian orogenesis. Recognition of distinct generations of FIAs provides a means of distinguishing different phases of porphyroblast growth. Four periods of garnet porphyroblast growth occurred in the schists of south-east Vermont. This growth was heterogeneously distributed on the cm2–m2 scale. No single porphyroblast records all stages of growth, and adjacent samples from the same or dissimilar rock types commonly contain porphyroblasts that preserve different sequences of growth. Factors that may have been responsible for switching porphyroblast growth on and off at this scale include: (i) subtle differences in bulk chemical composition; (ii) oscillating levels of heat, owing to the buffering effect of endothermic garnet-forming reactions; (iii) channelized infiltration of fluids with localized fluid buffering of bulk composition; and (iv) cyclic controls on the rates of diffusion and material transport of reactants, either by channelized fluid flow or by a changing pattern of microfracturing during foliation development. Consistency in FIA trend and relative timing provide a new method for potentially distinguishing and correlating successive metamorphic events, or even phases of metamorphism within a progressive tectonothermal event, along and across orogens. Using a consistent pattern of core to rim changes in FIA trend, multiple phases of growth of a single porphyroblastic mineral can be quantitatively distinguished, allowing correlation of different phases of growth around and across macroscopic folds. The relative timing of growth of different porphyroblastic minerals can also be quantitatively determined using FIA data and correlated around and across macroscopic folds. Conceptually, the paragenetic history preserved in each generation of porphyroblast growth, in the form of chemical zoning and the minerals in inclusion trails, could be combined to produce a more detailed P–T–t–deformation path than previously determined.  相似文献   

3.
The behaviour of spherical versus highly ellipsoidal rigid objects in folded rocks relative to one another or the Earth’s surface is of particular significance for metamorphic and structural geologists. Two common porphyroblastic minerals, garnet and staurolite, approximate spherical and highly ellipsoidal shapes respectively. The motion of both phases is analysed using the axes of inflexion or intersection of one or more foliations preserved as inclusion trails within them (we call these axes FIAs, for foliation inflexion/intersection axes). For staurolite, this motion can also be compared with the distribution of the long axes of the crystals. Schists from the regionally shallowly plunging Bolton syncline commonly contain garnet and staurolite porphyroblasts, whose FIAs have been measured in the same sample. Garnet porphyroblasts pre-date this fold as they have inclusion trails truncated by all matrix foliations that trend parallel to the strike of the axial plane. However, they have remarkably consistent FIA trends from limb to limb. The FIAs trend 175° and lie 25°NNW from the 020° strike of the axial trace of the Bolton syncline. The plunge of these FIAs was determined for six samples and all lie within 30° of the horizontal. Eleven of these samples also contain staurolite porphyroblasts, which grew before, during and after formation of the Bolton syncline as they contain inclusion trails continuous with matrix foliations that strike parallel to the axial trace of this fold. The staurolite FIAs have an average trend of 035°, 15°NE from the 020° strike of the axial plane of this fold. The total amount of inclusion trail curvature in staurolite porphyroblasts, about the axis of relative rotation between staurolite and the matrix (i.e. the FIA), is greater than the angular spread of garnet FIAs. Although staurolite porphyroblasts have ellipsoidal shapes, their long axes exhibit no tendency to be preferentially aligned with respect to the main matrix foliation or to the trend of their FIA. This indicates that the axis of relative rotation, between porphyroblast and matrix (the FIA), was not parallel to the long axis of the crystals. It also suggests that the porphyroblasts were not preferentially rotated towards a single stretch direction during progressive deformation. Five overprinting crenulation cleavages are preserved in the matrix of rocks from the Bolton syncline and many of these result from deformation events that post-date development of this fold. Staurolite porphyroblast growth occurred during the development of all of these deformations, most of which produced foliations. Staurolite has overgrown, and preserved as helicitic inclusions, crenulated and crenulation cleavages; i.e. some inclusion trail curvature pre-dates porphyroblast growth. The deformations accompanying staurolite growth involved reversals in shear sense and changing kinematic reference frames. These relationships cannot all be explained by current models of rotation of either, or both, the garnet and staurolite porphyroblasts. In contrast, we suggest that the relationships are consistent with models of deformation paths that involve non-rotation of porphyroblasts relative to some external reference frame. Further, we suggest there is no difference in the behaviour of spherical or ellipsoidal rigid objects during ductile deformation, and that neither garnet nor staurolite have rotated in schists from the Bolton syncline during the multiple deformation events that include and post-date the development of this fold.  相似文献   

4.
In the Littleton Formation, garnet porphyroblasts preserve three generations of growth that occurred before formation of the Bolton Syncline. Inclusion trails of foliations overgrown by these porphyroblasts are always truncated by the matrix foliation suggesting that garnet growth predated the matrix foliation. In contrast, many staurolite porphyroblasts grew synchronously with formation of the Bolton Syncline. However, local rim overgrowths of the matrix foliation suggest that some staurolite porphyroblasts continued to grow after development of the fold during younger crenulation producing deformations. The axes of curvature or intersection of foliations defined by inclusion trails inside the garnet porphyroblasts lie oblique to the axial plane of the Bolton Syncline but do not change orientation across it. This suggests the garnets were not rotated during the subsequent deformation associated with fold development or during even younger crenulation events. Three samples also contain a different set of axes defined by curvature of inclusion trails in the cores of garnet porphyroblasts suggesting a protracted history of garnet growth. Foliation intersection axes in staurolite porphyroblasts are consistently orientated close to the trend of the axial plane of the Bolton Syncline on both limbs of the fold. In contrast, axes defined by curvature or intersection of foliations in the rims of staurolite porphyroblasts in two samples exhibit a different trend. This phase of staurolite growth is associated with a crenulation producing deformation that postdated formation of the Bolton Syncline. Measurement of foliation intersection axes defined by inclusion trails in both garnet and staurolite porphyroblasts has enabled the timing of growth relative to one another and to the development of the Bolton Syncline to be distinguished in rocks where other approaches have not been successful. Consistent orientation of foliation intersection axes across a range of younger structures suggests that the porphyroblasts did not rotate relative to geographical coordinates during subsequent ductile deformation. Foliation intersection axes in porphyroblasts are thus useful for correlating phases of porphyroblastic growth in this region.  相似文献   

5.
The three-dimensional geometry of spiral inclusion trails from the Canton Schist were measured to determine whether the spirals were a product of porphyroblast rotation within a shear zone, or porphyroblast growth during a series of overprinting fold events. The spiral inclusion trails are composed of three separate, sub-planar inclusion trail surfaces occupying texturally distinct parts of the porphyroblasts. These surfaces are correlated across a >10 km2 area using textural criteria and relative timing. Measured patterns of inclusion trail orientation and asymmetry suggest they did not form by porphyroblast rotation within a non-coaxial shear zone. Rather, the porphyroblasts grew during three successive overprinting fold events (F2–F4), and the spiral inclusion trails represent the accumulated curvature associated with folding of successive axial plane foliations. The data show that spiral garnets are not peculiar to shear zones, and can form by overprinting crenulations and folds. This is consistent with the common occurrence of spiral garnets in multiply-deformed, regionally metamorphosed fold belts.  相似文献   

6.
Spiral garnet porphyroblasts are known to record lengthy periods of deformation and metamorphism by preserving single or multiple FIAs (Foliation Intersection Axis) formed normal to tectonic shortening directions. Thanks to technological advances in X-ray computed micro-tomography (XCMT), FIAs can now be readily determined in relatively large samples in contrast to previous methods that require the preparation of a set of radial vertical and horizontal thin sections of samples. XCMT scanning not only alleviates tedious thin section based procedures but also illuminates the complete internal architecture of a rock sample allowing three-dimensional (3D) quantitative shape analysis of an individual porphyroblast as well as precise measurement of FIAs. We applied the technique to a sample from the Hunza Valley in the Karakoram metamorphic complex (KMC), NW Himalayas, containing numerous garnet porphyroblasts with spiral-shaped inclusion trails. The XCMT imaging reveals an E–W trending FIA within the sample, which is consistent with orthogonal N–S collision of the India-Kohistan Island Arc with Asia. Garnet long axes (XGT) have variable plunges that define a broad sub-vertical maximum and a small sub-horizontal maximum. The XGT principle maxima lie at N-090 and N-120. Smaller maxima lie at N-020 and N-340. Geometric relationships between XGT axes and FIA orientation in the sample suggest that porphyroblast shapes are controlled by the geometry of the lens-shaped microlithons in which they tend to nucleate and grow. The orientation of inclusion trails and matrix foliations in the sample are correlated with three discrete tectono-metamorphic events that respectively produced andalusite, sillimanite and kyanite in the KMC. Late staurolite growth in the sample reveals how the rocks extruded to the surface via a significant role of roll-on tectonics, which can be correlated with the Central Himalayas.  相似文献   

7.
Abstract Reactivation of early foliations accounts for much of the progressive strain at more advanced stages of deformation. Its role has generally been insufficiently emphasized because evidence is best preserved where porphyroblasts which contain inclusion trails are present. Reactivation occurs when progressive shearing, operating in a synthetic anastomosing fashion parallel to the axial planes of folds, changes to a combination of coarse- and finescale zones of progressive shearing, some of which operate antithetically relative to the bulk shear on a fold limb. Reactivation of earlier foliations occurs in these latter zones. Reactivation decrenulates pre-existing or just-formed crenulations, generating shearing along the decrenulated or rotated pre-existing foliation planes. Partitioning of deformation within these foliation planes, such that phyllosilicates and/or graphite take up progressive shearing strain and other minerals accommodate progressive shortening strain, causes dissolution of these other minerals. This results in concentration of the phyllosilicates in a similar, but more penetrative manner to the formation of a differentiated crenulation cleavage, except that the foliation can form or intensify on a fold limb at a considerable angle to the axial plane of synchronous macroscopic folds. Reactivation can generate bedding-parallel schistosity in multideformed and metamorphosed terrains without associated folds. Heterogeneous reactivation of bedding generates rootless intrafolial folds with sigmoidal axial planes from formerly through-going structures. Reactivation causes rotation or ‘refraction’of axial-plane foliations (forming in the same deformation event causing reactivation) in those beds or zones in which an earlier foliation has been reactivated, and results in destruction of the originally axial-plane foliation at high strains. Reactivation also provides a simple explanation for the apparently ‘wrong sense’, but normally observed ‘rotation’of garnet porphyroblasts, whereby the external foliation has undergone rotation due to antithetic shear on the reactivated foliation. Alternatively, the rotation of the external foliation can be due to its reactivation in a subsequent deformation event. Porphyroblasts with inclusion trails commonly preserve evidence of reactivation of earlier foliations and therefore can be used to identify the presence of a deformation that has not been recognized by normal geometric methods, because of penetrative reactivation. Reactivation often reverses the asymmetry between pre-existing foliations and bedding on one limb of a later fold, leading to problems in the geometric analysis of an area when the location of early fold hinges is essential. The stretching lineation in a reactivated foliation can be radically reoriented, potentially causing major errors in determining movement directions in mylonitic schistosities in folded thrusts. Geometric relationships which result from reactivation of foliations around porphyroblasts can be used to aid determination of the timing of the growth of porphyroblasts relative to deformation events. Other aspects of reactivation, however, can lead to complications in timing of porphyroblast growth if the presence of this phenomenon is not recognized; for example, D2-grown porphyroblasts may be dissolved against reactivated S1 and hence appear to have grown syn-D1.  相似文献   

8.
A succession of 5 FIA trends(foliation intersection or inflection axes in porphyroblasts) preserved in high temperature-low pressure regime PreCambrian rocks in the Texas Creek, Arkansas River region reflected by the fold axial plane traces and schistosity data in this region. Similar fold axial plane trace data measured in Palaeozoic rocks in Chester Dome, Vermont, which is high temperature to medium pressure regime, only preserve the effects of the youngest FIAs of the all 5 FIA sets that obtained in this region. The other three FIA sets have no equivalent fold axial planes. This difference from shallow to deeper orogenic regimes reflects decreasing competency at greater pressure with collapse and unfolding of earlier formed folds. The greater overlying load of rocks has tended to flatten all but the very largest early-formed structures, preserving only those folds that were more recently developed.  相似文献   

9.
The banded iron-formation in the southeastern Bababudan Hills display a macroscopic synformal bend gently plunging towards WNW. The bedding planes in smaller individual sectors show a cylindrical or conical pattern of folding. The dominant set of minor folds has WNW-ESE trending axial planes and the axes plunge towards WNW at gentle to moderate angles, though there is considerable variation in orientation of both axes and axial planes. A later set of sporadically observed folds has N-S trending axial planes. The macroscopic synformal bend within the study area forms the southeastern corner of a horseshoe shaped regional synformal fold closure which encompasses the entire Bababudan range. The minor folds are buckle folds modified to a varying extent by flattening. In some examples the quartzose layers appear to be more competent than the ferruginous layers; in others the reverse is true. The folds are frequently noncylindrical and the axes show curvature with branching and en echelon patterns. Such patterns are interpreted to be the result of complex linking of progressively growing folds whose initiation is controlled by the presence of original perturbations in the layers. Domes and basins have at places developed as a result of shortening along two perpendicular directions in a constrictional type of strain. Development of folds at different stages of progressive deformation has given rise to nonparallelism of fold axes and axial planes. The axes and axial planes of smaller folds developed on the limbs of a larger fold are often oriented oblique to those of the latter. Progressive deformation has caused rotation and bending of axial planes of earlier formed folds by those developed at later stages of the same deformational episode. Coaxial recumbent to nearly reclined fold locally encountered on the N-S limb of the macroscopic fold may belong to an earlier episode of deformation or to the early stage of the main deformation episode. The E-W to ESE-WNW strike of axial plane of the regional fold system in the Bababudan belt contrasts with the N-S to NNW-SSE strike of axial planes of the main fold system in the Chitradurga and other schist belts of Karnataka.  相似文献   

10.
The subduction and exhumation of accretionary prism metasedimentary rocks are accompanied by large‐strain ductile deformations which may be recorded in microstructures. Porphyroblast microstructures have been a key to unravel the kinematics in such deformed belts. Shape‐preferred orientation (SPO) of epidote and amphibole inclusions that define S‐shaped trails in prograde cores of plagioclase porphyroblasts were analysed from the high‐P/T Sambagawa metamorphic rocks. Inclusions are found to be elongate parallel to the [010] and [001] directions, respectively, and their long‐axis orientations define an internal foliation Si (best‐fit great circle) and lineation Li (maximum on the Si). S‐shaped inclusion trails in the orthogonal sections do not exhibit the same geometries, but rather are grouped into two types, where the foliation intersection axes (FIAs) are nearly perpendicular and parallel to Li, respectively. These two types of S‐shaped inclusion trails are seen in the sections inclined at low and high angles to the Li, respectively. However, the latter type commonly consists of composite trails, where the Si is first rotated about an FIA perpendicular to the Li (i.e. unique axis), and then about an FIA parallel to the Li. The S‐shaped inclusion trails are interpreted to have formed by the successive overgrowth of matrix minerals and rotation of the plagioclase porphyroblast cores about a unique axis in non‐coaxial deformation. The rotation of Si about an FIA nearly parallel to the Li is perhaps an apparent rotation, caused by the deflection of foliation around the growing prismatic plagioclase grain prior to inclusion into the porphyroblast. This study has for the first time documented the 3‐D geometry of S‐shaped inclusion trails in porphyroblasts from accretionary prism metasedimentary rocks and identified their origin, which helps to understand the flow kinematics in the deeper part of a subduction channel.  相似文献   

11.
New data strongly suggest that the classical spiral garnet porphyroblasts of south-east Vermont, USA, generally did not rotate, relative to geographical coordinates, throughout several stages of non-coaxial ductile deformation. The continuity of inclusion trails (Si) in these porphyroblasts is commonly disrupted by planar to weakly arcuate discontinuities, consisting of truncations and differentiation zones where quartz–graphite Si bend sharply into more graphitic Si. Discontinuous, tight microfold hinges with relatively straight axial planes are also present. These microstructures form part of a complete morphological gradation between near-orthogonally arranged, discontinuous inclusion segments and smoothly curving, continuous Si spirals. Some 2700 pitch measurements of well-developed inclusion discontinuities and discontinuous microfold axial planes were taken from several hundred vertically orientated thin sections of various strike, from specimens collected at 28 different locations around the Chester and Athens domes. The results indicate that the discontinuities have predominantly subvertical and subhorizontal orientations, irrespective of variations in the external foliation attitude, macrostructural geometry and apparent porphyroblast-matrix rotation angles. Combined with evidence for textural zoning, this supports the recent hypothesis that porphyroblasts grow incrementally during successive cycles of subvertical and subhorizontal crenulation cleavage development. Less common inclined discontinuities are interpreted as resulting from deflection of anastomosing matrix foliations around obliquely orientated crystal faces prior to inclusion. Most of the idioblastic garnet porphyroblasts have a preferred crystallographic orientation. Dimensionally elongate idioblasts also have a preferred shape orientation, with long axes orientated normal to the mica folia, within which epitaxial nucleation occurred. Truncations and differentiation zones result from the formation of differentiated crenulation cleavage seams against porphyroblast margins, in association with progressive and selective strain-induced dissolution of matrix minerals and locally also the porphyroblast margin. Non-rotation of porphyroblasts, relative to geographical coordinates, suggests that deformation at the microscale is heterogeneous and discontinuous in the presence of undeformed, relatively large and rigid heterogeneities, which cause the progressive shearing (rotational) component of deformation to partition around them. The spiral garnet porphyroblasts therefore preserve the most complete record of the complex, polyphase tectonic and metamorphic history experienced in this area, most of which was destroyed in the matrix by progressive foliation rotation and reactivation, together with recrystallization.  相似文献   

12.
In the metamorphic cores of many orogenic belts, large macroscopic folds in compositional layering also appear to fold one or more pervasive matrix foliations. The latter geometry suggests the folds formed relatively late in the tectonic history, after foliation development. However, microstructural analysis of four examples of such folds suggests this is not the case. The folds formed relatively early in the orogenic history and are the end product of multiple, near orthogonal, overprinting bulk shortening events. Once large macroscopic folds initiate, they may tighten further during successive periods of sub-parallel shortening, folding or reactivation of foliations that develop during intervening periods of near orthogonal shortening. Reactivation of the compositional layering defining the fold limbs causes foliation to be rotated into parallelism with the limbs.Multiple periods of porphyroblast growth accompanied the multiple phases of deformation that postdated the initial development of these folds. Some of these phases of deformation were attended by the development of large numbers of same asymmetry spiral-shaped inclusion trails in porphyroblasts on one limb of the fold and not the other, or larger numbers of opposite asymmetry spirals on the other limb, or similar numbers of the same asymmetry spirals on both limbs. Significantly, the largest disparity in numbers from limb to limb occurred for the first of these cases. For all four regional folds examined, the structural relationships that accompanied these large disparities were identical. In each case the shear sense operating on steeply dipping foliations was opposite to that required to originally develop the fold. Reactivation of the folded compositional layering was not possible for this shear sense. This favoured the development of sites of approximately coaxial shortening early during the deformation history, enhancing microfracture and promoting the growth of porphyroblasts on this limb in comparision to the other. These distributions of inclusion trail geometries from limb to limb cannot be explained by porphyroblast rotation, or folding of pre-existing rotated porphyroblasts within a shear zone, but can be explained by development of the inclusion trails synchronous with successive sub-vertical and sub-horizontal foliations.  相似文献   

13.
Recent studies have used the relative rotation axis of sigmoidal and spiral‐shaped inclusion trails, known as Foliation Inflexion/Intersection Axis (FIA), to investigate geological processes such as fold mechanisms and porphyroblast growth. The geological usefulness of this method depends upon the accurate measurement of FIA orientations and correct correlation of temporally related FIAs. This paper uses new data from the Canton Schist to assess the variation in FIA orientations within and between samples, and evaluates criteria for correlating FIAs. For the first time, an entire data set of FIA measurements is published, and data are presented in a way that reflects the variation in FIA orientations within individual samples and provides an indication of the reliability of the data. Analysis of 61 FIA trends determined from the Canton Schist indicate a minimum intrasample range in FIA orientations of 30°. Three competing models are presented for correlation of these FIAs, and each of the models employ different correlation criteria. Correlation of FIAs in Model 1 is based on relative timing and textural criteria, while Model 2 uses relative timing, orientation and patterns of changing FIA orientations, and Model 3 uses relative timing and FIA orientation as correlation criteria. Importantly, the three models differ in the spread of FIA orientations within individual sets, and the number of sets distinguished in the data. Relative timing is the most reliable criterion for correlation, followed by textural criteria and patterns of changing FIA orientations from core to rim of porphyroblasts. It is proposed that within a set of temporally related FIAs, the typical spread of orientations involves clustering of data in a 60° range, but outliers occur at other orientations including near‐normal to the peak distribution. Consequently, in populations of FIA data that contain a wide range of orientations, correlation on the basis of orientation is unreliable in the absence of additional criteria. The results of this study suggest that FIAs are best used as semiquantitative indicators of bulk trends rather than an exact measurement for the purpose of quantitative analyses.  相似文献   

14.
An ~W–E belt of maximum bulk horizontal shortening (the orogen core) moved North relative to the overlying crust to form the Himalayan Syntaxes due to roll‐on of this portion of the Indian plate. This displacement occurred below a lengthy succession of gently dipping decollements that formed episodically at a depth of ~30 km along the orogen core due to numerous periods of gravitational collapse and spreading of the overlying ductile crust. Successively developed basal decollements were deformed when continued bulk horizontal shortening of the orogen core below reasserted dominance over the effects of gravitational collapse above causing refolding about steeply dipping axial planes. This resulted in northwards migration of the orogen core above depths of ~30 km causing rocks metamorphosing at depths of ~22 km on the north side of the orogen core to be moved to its south side with no change in depth as roll‐on progressed. Garnet porphyroblasts record this lengthy history of lateral migration across the orogen within their inclusion trails. The ~6.4 kbar average pressures accompanying it were obtained from the Mn, Fe and Ca contents of successive garnet cores. Garnet grew at depths of ~22 km until movement towards the surface initiated on successively developed decollements that accommodated the volume constraints of gravitational collapse and spreading on both sides of the orogen. The speed of extrusional displacement increased the further the rocks migrated from the orogen core developing mylonitic schists around the porphyroblasts. This truncated inclusion trails against all matrix foliations as the porphyroblasts were carried towards the surface. Indeed, these rocks were multiply deformed during at least four distinct periods of deformation after mylonitization began and prior to exposure above the Main Central Thrust (MCT). Three or more sub‐vertical and sub‐horizontal foliations were formed during each of the five changes in FIA trend (foliation inflection/intersection axes in porphyroblasts) preserved in these rocks. The inclusion trail asymmetries and P‐T of garnet core growth accompanying each FIA reveal that the first four changes in FIA trend, which define periods of tectonism about one direction of horizontal bulk shortening (relative plate motion), occurred on the north side of the orogen core. The fifth occurred on the south side of the orogen core and the switch in shear sense on gently dipping foliation planes that resulted from this shift to the south eventually led to the development of the MCT. When magnetic anomaly 22 that formed in the Southern Indian Ocean Ridge is taken into account, these five changes in FIA trend correlate markedly with changes in the motion of India relative to a constant Eurasia from 50 to c. 25 Ma. They reveal that Eurasia moved NNW during FIAs 1, 3 and 4 and SSE during FIA 5 when the shear sense on gently dipping foliations switched to top to the S. They suggest collision of India with Eurasia took place at 50 Ma, immediately prior to the development of FIA 1.  相似文献   

15.
T.H. Bell  A. Forde  J. Wang 《地学学报》1995,7(5):500-508
The orientation of axes of sigmoidal, staircase or spiral inclusion trails within porphyroblasts provides an indicator of the direction of movement during deformation that is synchronous with metamorphism. A simple technique is presented in detail to find this axis in 3D by radially sectioning a horizontal slab cut from an oriented sample. When viewed from one direction, the switch in asymmetry of the porphyroblast inclusion trails in these sections defines the trend of the axis. Further radial sectioning of a vertical slab cut parallel to this trend determines the plunge of this axis.
This technique is independent of the model adopted for the formation of sigmoidal or spiral-shaped inclusion trails and can be used to evaluate the mechanism by which they form. It can also be used to evaluate theories of folding and orogenesis. Measurements of spiral and sigmoid axes in garnet porphyroblasts from the European Alps show that they reflect the movement of the African Plate relative to Europe better than linear indicators preserved within the same rocks.  相似文献   

16.
Porphyroblasts of garnet and plagioclase in the Otago schists have not rotated relative to geographic coordinates during non-coaxial deformation that post-dates their growth. Inclusion trails in most of the porphyroblasts are oriented near-vertical and near-horizontal, and the strike of near-vertical inclusion trails is consistent over 3000 km2. Microstructural relationships indicate that the porphyroblasts grew in zones of progressive shortening strain, and that the sense of shear affecting the geometry of porphyroblast inclusion trails on the long limbs of folds is the same as the bulk sense of displacement of fold closures. This is contrary to the sense of shear inferred when porphyroblasts are interpreted as having rotated during folding.
Several crenulation cleavage/fold models have previously been developed to accommodate the apparent sense of rotation of porphyroblasts that grew during folding. In the light of accumulating evidence that porphyroblasts do not generally rotate, the applicability of these models to deformed rocks is questionable.
Whether or not porphyroblasts rotate depends on how deformation is partitioned. Lack of rotation requires that progressive shearing strain (rotational deformation) be partitioned around rigid heterogeneities, such as porphyroblasts, which occupy zones of progressive shortening or no strain (non-rotational deformation). Therefore, processes operating at the porphyroblast/matrix boundary are important considerations. Five qualitative models are presented that accommodate stress and strain energy at the boundary without rotating the porphyroblast: (a) a thin layer of fluid at the porphyroblast boundary; (2) grain-boundary sliding; (3) a locked porphyroblast/matrix boundary; (4) dissolution at the porphyroblast/matrix boundary, and (5) an ellipsoidal porphyroblast/shadow unit.  相似文献   

17.
曹汇 《中国地质》2013,40(6):1818-1828
提要:美国东部阿巴拉契亚造山带北端缅因州Rangeley地区志留—泥盆纪中温低压片岩测得的面理弯切轴与褶皱轴面数据有很好的对应关系。西部科迪勒拉造山带落基山脉南端科罗拉多州阿肯色河地区Texas Creek 以东高温低压前寒武纪堇青石片岩中测得的褶皱轴面方向和片理走向数据与该地区堇青石、斜长石变斑晶内测得的5期面理弯切轴也表现出很好的一致性。而在Rangeley北东200 km的佛蒙特州Chester Dome地区奥陶—泥盆纪中温中压片麻岩中测得的类似褶皱轴面数据却只反映了该地区5期面理弯切轴中较晚的北北西-南南东走向和北北东-南南西走向的两期面理弯切轴,未测得与其余3期面理弯切轴对应的褶皱轴面数据。通过对变质峰期温度相近、压力不同的两个造山带内3个典型变质岩区面理弯切轴、褶皱轴面方向和片理走向数据的对比分析认为,造山作用发生的地壳深度差异是早期褶皱经历多期造山运动后能否保存下来的主要影响因素。重力形成的去褶皱作用使得早期形成的规模较小褶皱经历复杂造山过程后难以保存。区域内早期形成的规模较大褶皱和造山过程晚期形成的褶皱由于受到重力塌陷作用影响较小,所以能够较好保存下来。  相似文献   

18.
Strain rates from snowball garnet   总被引:3,自引:0,他引:3  
Spiral inclusion trails in garnet porphyroblasts are likely to have formed due to simultaneous growth and rotation of the crystals, during syn‐metamorphic deformation. Thus, they contain information on the strain rate of the rock. Strain rates may be interpreted from such inclusion trails if two functions are known: (1) The relationship between rotation rate and shear strain rate; (2) the growth rate of the crystal. We have investigated details of both functions using a garnetiferous mica schist from the eastern European Alps as an example. The rotation rate of garnet porphyroblasts was determined using finite element modelling of the geometrical arrangement of the crystals in the rock. The growth rate of the porphyroblasts was determined by using the major and trace element distributions in garnet crystals, thermodynamic pseudosections and information on the grain size distribution. For the largest porphyroblast size fraction (size L=12 mm) we constrain a growth interval between 540 and 590 °C during the prograde evolution of the rock. Assuming a reasonable heating rate and using the angular geometry of the spiral inclusion trails we are able to suggest that the mean strain rate during crystal growth was of the order of =6.6 × 10?14 s?1. These estimates are consistent with independent estimates for the strain rates during the evolution of this part of the Alpine orogen.  相似文献   

19.
Numerical 3D simulations of the development of spiral inclusion trails in porphyroblasts were conducted in order to test the proposals that (a) 3D spiral geometry differs between the rotation and nonrotation end‐member models of spiral formation proposed in the literature, and (b) 3D spiral geometry can be used as a criterion to distinguish between the two end‐member models in rocks. Four principal differences are identified between the two sets of simulations: smoothness of spiral curvature; spacing of foliation planes; alignment of individual foliation planes either side of the sphere representing the porphyroblast; and spiral asymmetry with respect to matrix shear sense. Of these differences, only spiral asymmetry and possibly the alignment of individual foliation planes are diagnostic criteria for distinguishing between the end‐member models. In the absence of a readily applied test to distinguish the end‐member models, interpretation of spiral inclusion trails is problematic. It is necessary to determine complementary evidence to distinguish porphyroblast rotation or nonrotation during spiral formation.  相似文献   

20.
Inclusion trails in 58 garnet porphyroblasts in a single sample from the Cram Hill Formation in southeast Vermont were imaged using high-resolution X-ray computed tomography. Texturally the porphyroblasts have a large core with a sub-vertical foliation that has a well defined geometry with a mean orientation of 113/72E for a 95% confidence cone semi-angle of 5.3°. This steep foliation curves into a sub-horizontal foliation. The foliation intersection/inflection axes (FIAs) defined by hinge lines for this curvature are tightly clustered with a mean plunge of 11° towards 201° with a 95% confidence cone semi-angle of 4.1°. Eigenvalue analysis indicates that the clustered distribution of the foliation and FIA data are unlikely to be the result of a random event. There is evidence in the specimen for multiple foliation-forming events subsequent to garnet nucleation, and the preservation of these clustered distributions in their wake strongly suggests that the porphyroblasts have not rotated with respect to a geographic reference frame. FIAs represent a measurable structural element that can provide information on tectonic events at the time the porphyroblasts grew. A comparison of FIA data collected using high-resolution X-ray computed tomography with data collected using the asymmetry method demonstrates that the asymmetry method is a valid technique for defining the mean FIA orientations in a sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号