首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of the main large-scale wind directions on thermally driven mesoscale circulations at the Baltic southwest coast, southeast of Sweden, is examined. The aim of the study is to highlight small-scale alterations in the coastal atmospheric boundary layer. A numerical three-dimensional mesoscale model is used in this study, which is focused on an overall behaviour of the coastal jets, drainage flows, sea breezes, and a low-level eddy-type flow in particular. It is shown that synoptic conditions, together with the moderate terrain of the southeast of Sweden (max. height h0 206 m), governs the coastal mesoscale dynamics triggered by the land-sea temperature difference T. The subtle nature of coastal low-level jets and sea breezes is revealed; their patterns are dictated by the interplay between synoptic airflow, coastline orientation, and T.The simulations show that coastal jets typically occur during nighttime and vary in height, intensity and position with respect to the coast; they interact with downslope flows and the background wind. For the assigned land surface temperature (varying ±8 K from the sea temperature) and the opposing constant geostrophic wind 8 m s-1, the drainage flow is more robust to the opposing ambient flow than the sea breeze later on. Depending on the part of the coast under consideration, and the prevailing ambient wind, the sea breeze can be suppressed or enhanced, stationary at the coast or rapidly penetrating inland, locked up in phase with another dynamic system or almost independently self-evolving. A low-level eddy structure is analyzed. It is governed by tilting, divergence and horizontal advection terms. The horizontal extent of the coastal effects agrees roughly with the Rossby radius of deformation.  相似文献   

2.
Meteorological measurements taken at the Näsudden wind turbine site during slightly unstable conditions have been analyzed. The height of the convective boundary layer (CBL) was rather low, varying between 60 and 300 m. Turbulence statistics near the ground followed Monin-Obukhov similarity, whereas the remaining part of the boundary layer can be regarded as a near neutral upper layer. In 55% of the runs, horizontal roll vortices were found. Those were the most unstable runs, with -z i/L > 5. Spectra and co-spectra are used to identify the structures. Three roll indicators were identified: (i) a low frequency peak in the spectrum of the lateral component at low level; (ii) a corresponding increase in the vertical component at mid-CBL; (iii) a positive covariance {ovvw} together with positive wind shear in the lateral direction (V/z) in the CBL. By applying these indicators, it is possible to show that horizontal roll circulations are likely to be a common phenomenon over the Baltic during late summer and early winter.  相似文献   

3.
A mesoscale planetary boundary layer (PBL) numerical model has been developed to study airflow over complex topography. Turbulence closures using the turbulent kinetic energy (TKE) and dissipation () equations are investigated in combination with the level 2.5 scheme of Mellor and Yamada (1982) to determine eddy diffusivities for momentum and heat. This modified E- closure is simpler than the level 3 one which requires more prognostic equations for moist turbulent transport.One-dimensional (1-D) model results show that the PBL mean flows under various stability conditions are not significantly sensitive to the modified Blackadar and Kolmogorov eddy mixing-length formulations used in this E- model, although the latter yields excessively large mixing lengths in the entrainment region of the upper PBL. Eddy mixing lengths in the Kolmogorov-type formulation can be better defined by introducing background dissipation. Using the same prognostic TKE equation, the 1-D model results are not significantly affected by different diagnostic formulations in the closures. The simulated results compare well with large-eddy simulations and those obtained using higher-order closure schemes including the level 3 one. The results are found to be insensitive to eddy Prandtl number, in contrast to the 2-D model results (see Part II).  相似文献   

4.
The formulation of a new land surface scheme (LSS) with vegetation dynamics for coupling to the McGill Paleoclimate Model (MPM) is presented. This LSS has the following notable improvements over the old version: (1) parameterization of deciduous and evergreen trees by using the models climatology and the output of the dynamic global vegetation model, VECODE (Brovkin et al. in Ecological Modelling 101:251–261 (1997), Global Biogeochemical Cycles 16(4):1139, (2002)); (2) parameterization of tree leaf budburst and leaf drop by using the models climatology; (3) parameterization of the seasonal cycle of the grass leaf area index; (4) parameterization of the seasonal cycle of tree leaf area index by using the time-dependent growth of the leaves; (5) calculation of land surface albedo by using vegetation-related parameters, snow depth and the models climatology. The results show considerable improvement of the models simulation of the present-day climate as compared with that simulated in the original physically-based MPM. In particular, the strong seasonality of terrestrial vegetation and the associated land surface albedo variations are in good agreement with several satellite observations of these quantities. The application of this new version of the MPM (the green MPM) to Holocene millennial-scale climate changes is described in a companion paper, Part II.
Yi WangEmail: Phone: +1-514-3987448Fax: +1-514-3986115
  相似文献   

5.
Summary The electromagnetic radiation of cloud discharge known as atmospheric radio noise field strength (ARNFS) shows a gradual fall from a frequency of 9 kHz to 81 kHz as studied over a period of two years at Calcutta, very close to Bay of Bengal. The main characteristic features of ARNFS at Calcutta are that-(i) ARNFS shows that midday median value is smaller than midnight median value in all months, (ii) level of daily minimum is higher in February and monsoon compared to other seasons, (iii) sunrise effect and sunset effect are well correlated with local sunrise and sunset times, (iv) the magnitude of sunrise fade and sunrise fade rate are maximum in April and lowest during winter period, (v) the magnitude of sunset fade is higher in premonsoon and postmonsoon while it is lowest in monsoon, (vi) number of occurrence of both sunrise effect and sunset effect is remark-ably smaller in monsoon. The positions of the sun and of atmospheric sources are jointly the causes of seasonal and diurnal variations. The missing of sunrise effect and sunset effect are due to local cloud activity and variation of electron density during geomagnetic storms.With 7 Figures  相似文献   

6.
Atmospheric effects upon the radiometric determination of surface temperature were studied for channels centered at 3.7, 11 and 12 m. The error due to the atmosphere is least for the channel centered at 3.7 m, which is a real advantage. The use of a linear combination of two or all three of these channels allows one to eliminate most of the atmospheric effect. If instrumental noise of from 0.1 to 0.2 K is accounted for in each channel, the best results are obtained by a combination of the two channels at 3.7 and 12 m.  相似文献   

7.
A mesoscale Planetary Boundary Layer (PBL) model with a simple turbulence closure scheme based on the turbulence kinetic energy (TKE) equation and the dissipation () equation is used to simulate atmospheric flow over mesoscale topography. Comparative studies with different parameterizations suggest that with a proper closure assumption for turbulence dissipation, the E-model can simulate the circulation induced by the mesoscale topography with results similar to those obtained using the E- model. On the other hand, the first-order closure using O'Brien's cubic interpolation for eddy diffusivities (K) generally produces much larger K profiles in the stable and the unstable regions, which is believed to be due to the overprediction of the height of the PBL. All models with the TKE equation yield quite similar ensemble mean fields, which are found to be little sensitive to the closure assumption for turbulence dissipation, though their predicted magnitudes of TKE and K may differ appreciably. A discussion on the diurnal evolution of the mesoscale topography-induced circulation and the spatial variations of the turbulence fluxes in the surface layer is also given based on the E- model results.  相似文献   

8.
Selected field measurements of evening stable boundary layers are presented in detail comparable with published Large Eddy Simulation results. Such models appear to match idealized theories more closely than do some boundary-layer observations. Any attempt to compare detailed observations with idealized models therefore highlights the variability of the real boundary layer.Here direct turbulence measurements across the stable boundary layer from a heterogeneous and an ideal site are contrasted. Recommendations are made for the information needed to distinguish heterogeneous and ideal cases.The companion paper (Part II) discusses further the issues of data, analysis in the presence of variability, and the effects of averaging over heterogeneous terrain.Part of UK Meteorological Office Atmospheric Process Research Division.  相似文献   

9.
The movements of surface cold and warm fronts and low pressure centres have been observed in several Atlantic Canada winter storms. Statistical aspects of the well-defined surface fronts (7 warm and 6 cold) are presented. Surface wind direction change was considered as the best indicator of the boundaries of the front; frontal zone widths ranged from 23 to 144 km. Average values of wind shifts were 107° for the cold fronts and 85° for warm fronts. Several case studies are presented, based primarily on surface MesoNet data (near Halifax, Nova Scotia and on Sable Island). In two of the cold fronts, there was a two-stage surface structure and rapid evolution as the front passed over the MesoNet. In some cases, both warm and cold, the wind shift and temperature change were coincident while in others they were not. In particular we observed that wind shifts often started 20–30 min ahead of the start of a temperature decrease in these cold frontal passages. A possible mechanism for this is discussed. We found little or no evidence of along-front structure in our data although other investigators have found considerable along-front variation on scales of 0(10 km). Observations of the passage of one low pressure centre are presented. In a second case, surface temperature changes indicated an apparent low pressure centre passage through the Sable Island MesoNet but closer inspection provides an alternative interpretation.  相似文献   

10.
In this paper, we lay the foundations of a systematic mathematical formulation for the governing equations for flow through an urban canopy (e.g., coarse-scaled building array) where the effects of the unresolved obstacles on the flow are represented through a distributed mean-momentum sink. This, in turn, implies additional corresponding terms in the transport equations for the turbulence quantities. More specifically, a modified k-- model is derived for the simulation of the mean wind speed and turbulence for a neutrally stratified flow through and over a building array, where groups of buildings in the array are aggregated and treated as a porous medium. This model is based on time averaging the spatially averaged Navier--Stokes equations, in which the effects of the obstacle--atmosphere interaction are included through the introduction of a volumetric momentum sink (representing drag on the unresolved buildings in the array).The k-- turbulence closure model requires two additional prognostic equations, namely one for the time-averaged resolved-scale kinetic energy of turbulence,, and another for the dissipation rate, , of . The transport equation for is derived directly from the transport equation for the spatially averaged velocity, and explicitly includes additional sources and sinks that arise from time averaging the product of the spatially averaged velocity fluctuations and the distributed drag force fluctuations. We show how these additional source/sink terms in the transport equation for can be obtained in a self-consistent manner from a parameterization of the sink term in the spatially averaged momentum equation. Towards this objective, the time-averaged product of the spatially averaged velocity fluctuations and the distributed drag force fluctuations can be approximated systematically using a Taylor series expansion. A high-order approximation is derived to represent this source/sink term in the transport equation for . The dissipation rate () equation is simply obtained as a dimensionally consistent analogue of the equation. The relationship between the proposed mathematical formulation of the equations for turbulent flow within an urban canopy (where the latter is treated as a porous medium) and an earlier heuristic two-band spectral decomposition for parameterizing turbulence in a plant canopy is explored in detail.  相似文献   

11.
This is one of a series of papers on the Askervein Hill Project. It presents results on the variations in mean wind speed at fixed heights (z) above the ground from linear arrays of anemometer posts and towers. Most of the data are for z = 10 m but some are for z = 3 m. Selected and directionally grouped data from the 55 Mean Flow runs are presented together with mean flow data from Askervein '83 Turbulence runs. Comparisons are made between the data and guideline estimates of fractional speed-up ratio at hilltop locations and between the data and MS3DJH/3 model predictions along the tower lines. There is good agreement in most cases.  相似文献   

12.
An improved first-order closure approximation is developed for the non-local transilient turbulence parameterization. Instead of using Richardson numbers, this improved approach uses non-local approximations to the shear, buoyancy, storage, and dissipation terms of the turbulence kinetic energy equation to parameterize the turbulent mixing potential between every combination of grid points in a 1-D model of the atmosphere. The original (n 2 – n) degrees of freedom associated with the independent transilient matrix coefficients for a model of n grid points is thus reduced to four degrees of freedom associated with the four free parameters.The resulting parameterization is applied to three consecutive case-study days of boundary-layer data acquired near the Cabauw tower in The Netherlands. The first day is used for sensitivity tests to select the best values of the four free parameters. The remaining two days, used as independent tests, demonstrate that realistic entraining mixed layers and nocturnal boundary layers form in the model without explicitly parameterizing such boundary layers. Simulations are also presented for two idealized cases: dry stratocumulus-induced convection and a neutral boundary layer.Work performed while a visiting scientist at the Royal Netherlands Meteorological Institute.  相似文献   

13.
During the last week of June 1978, Melbourne experienced a prolonged period of stagnation over the city, resulting in high levels of air pollutants. Internal Froude numbers through the period ranged from approximately 0.1 to 0.3, indicating that flow in the area should be strongly stratified. Wind patterns determined using data from thirteen anemographs within and immediately adjacent to the city revealed a pattern of eddies across the city each afternoon in a cavity in the lee of upstream topography. That pattern evolved with time, and changed between days as the controlling meteorological conditions altered. The available mean sea level pressure data from the region for the same times indicated perturbations in that field which were consistent with the observed wind patterns.The eddy patterns were replaced at the surface overnight by katabatic winds as cooling took place and a ground-based inversion became reestablished. However, mean sea level pressure data and the anemograph records suggest that the eddy pattern may have continued overnight, aloft.Considerable recycling of air occurred, both within individual circulations and by wind reversal between daytime and nocturnal regimes. This aided the persistence of high pollutant concentrations.  相似文献   

14.
A Comparative Analysis of Transpiration and Bare Soil Evaporation   总被引:4,自引:0,他引:4  
Transpiration Ev and bare soil evaporation Eb processes are comparatively analysed assuming homogeneous and inhomogeneous areal distributions of volumetric soil moisture content . For a homogeneous areal distribution of we use a deterministic model, while for inhomogeneous distributions a statistical-deterministic diagnostic surface energy balance model is applied. The areal variations of are simulated by Monte-Carlo runs assuming normal distributions of .The numerical experiments are performed for loam. In the experiments we used different parameterizations for vegetation and bare soil surface resistances and strong atmospheric forcing. According to the results theEv()-Eb() differences are great, especially in dry conditions. In spite of this, the available energy flux curves of vegetation Av() and bare soil Ab() surfaces differ much less than the Ev() and Eb() curves. The results suggest that Ev is much more non-linearly related to environmental conditions than Eb. Both Ev and Eb depend on the distribution of , the wetness regime and the parameterization used. With the parameterizations, Eb showed greater variations than Ev. These results are valid when there are no advective effects or mesoscale circulation patterns and the stratification is unstable.  相似文献   

15.
Micrometeorologists have traditionally set aside consideration of horizontal variability and have studied boundary-layer structure with horizontal homogeneity. The numerical forecasting of boundary-layer structures, over normally varying terrain and including normal disturbances such as fronts, requires selection of an appropriate horizontal scale.A simple analysis of steady-state balance between horizontal advection and vertical diffusion provides estimates of the vertical scale (or depth) of surface-induced features. The scale height is a function of the horizontal scale of the variations. Models neglecting important terrain scales of length below ~ 1000 km can predict down to levels of ~ 0.5 to 1 km while those that neglect important terrain scales below ~ 100 km can predict down to ~ 0.2 to 0.6 km. Below these levels, any predicted features will be dominated by the vertical diffusion so that they are solutions of a one-dimensional boundary-value problem.The boundary-induced advection effects dominate free atmosphere advection effects in the lowest few hundred meters as well. This means that if mesoscale advections are resolved and terrain influences are strong, the predictions in the layer ~ 0.2 to 0.8 km can provide mesoscale detail without mesoscale initial conditions above the surface, because the surface forcing will dominate the solution.  相似文献   

16.
It is shown that the ratio of standard deviation of lateral velocity to the friction velocity, /u *, and therefore wind direction fluctuations, are sensitive to mesoscale terrain properties. Under neutral conditions, /u * is almost 40% larger in rolling terrain than over a horizontal surface. In the lee of a low mountain, the fluctuations may be 2.5 times as strong as over horizontal terrain. In contrast, vertical velocity fluctuations are little influenced by mesoscale terrain features.Now with Air Weather Service, Offutt AFB, Omaha, Nebraska.  相似文献   

17.
An observation of waves and turbulence in the earth's boundary layer   总被引:1,自引:1,他引:1  
An account is given of an observation of a wave-like phenomenon obtained during a study of nocturnal inversions. Associated bursts of turbulent activity are also described.  相似文献   

18.
A study of the temperature field for the Baltimore-Washington region reveals that since 1950 there has been the development of an urban heat corridor. Trend surface analysis shows that there has been an inversion of the thermal topography in the region as a saddle of rising temperatures has emerged, replacing a trough of lowered temperatures through three decades. Steady population growth throughout the area is seen to be the most important contributor. The strengthening of the heat corridor is best expressed in the summer months and weakest during the winter months. As population continues to grow in this region, the thermal topography is sure to be modified even further.It is recommended that further study be devoted to temperature and precipitation changes in regions experiencing urban growth.  相似文献   

19.
Summary This paper presents a range of applications of the Regional Atmospheric Modeling System (RAMS), a comprehensive mesoscale meterological modeling system. Applications discussed in this paper include large eddy simulations (LES) and simulations of thunderstorms, cumulus fields, mesoscale convective systems, mid-latitude cirrus clouds, winter storms, mechanically- and thermally-forced mesoscale systems, and mesoscale atmospheric disperision. A summary of current RAMS options is also presented. Improvements to RAMS currently underway include refinements to the cloud radiation, cloud microphysics, cumulus, and surface soil/vegetative parameterization schemes, the parallelization of the code, development of a more versatile visualization capability, and research into meso--scale cumulus parameterization.With 18 Figures  相似文献   

20.
Jackson and Hunt's (1975) equation for the depth of the inner layer of flows over low hills does not depend on any closure assumption as contrarily supposed in literature. This equation contains a constant which can arbitrarily be specified. It is suggested that this inner-layer constant should be determined from experimental data. A preliminary check with some data from the Askervein experiment suggests that Jackson and Hunt's equation fits these data almost as well as Jensen's equation provided that fitted inner-layer constants are used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号