首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The urban flood of Dhaka city in September 2004 is a result of heavy rainfall (341 mm a day or more than 600 mm in 5 days). In addition to the local rainfall, elevated water levels in the surrounding rivers may have affected the flood duration by bank filtration. Two lakes, Banani and Gulshan, in the mid of the city are the part of general storm water retention system in Dhaka. Flood water runs through the lakes acting as channels to the pumping station downstream. A tank model is used in this study to describe the total drainage process with the hydraulic geometry and resistance laws to derive cross-sections and friction factors of the quasi-uniform flows. Assuming the dissolved matters of the flood water was of similar composition as in the lake sediments, the process was a combination of adsorption and sedimentation. Lake sediment samples collected in March 2004 show an anomaly of chromium which may reflect the previous 1998 flood, and there may be a diffusive leakage from the source area to the adjacent zones. Further evidence of infiltration process is seen in records of diurnal thermal stratification of Lake Banani. It responds to only heavy rainfalls over 100 mm/day, and the fact means that infiltration to the groundwater is rather intermittent.  相似文献   

2.
Floods are regular feature in rapidly urbanizing Dhaka, the capital city of Bangladesh. It is observed that about 60% of the eastern Dhaka regularly goes under water every year in monsoon due to lack of flood protection. Experience gathered from past devastating floods shows that, besides structural approach, non-structural approach such as flood hazard map and risk map is effective tools for reducing flood damages. In this paper, assessment of flood hazard by developing a flood hazard map for mid-eastern Dhaka (37.16 km2) was carried out by 1D hydrodynamic simulation on the basis of digital elevation model (DEM) data from Shuttle Radar Topography Mission and the hydrologic field-observed data for 32 years (1972–2004). As the topography of the area has been considerably changed due to rapid land-filling by land developers which was observed in recent satellite image (DigitalGlobe image; Date of imagery: 7th March 2007), the acquired DEM data were modified to represent the current topography. The inundation simulation was conducted using hydrodynamic program HEC-RAS for flood of 100-year return period. The simulation has revealed that the maximum depth is 7.55 m at the southeastern part of that area and affected area is more than 50%. A flood hazard map was prepared according to the simulation result using the software ArcGIS. Finally, to assess the flood risk of that area, a risk map was prepared where risk was defined as the product of hazard (i.e., depth of inundation) and vulnerability (i.e., the exposure of people or assets to flood). These two maps should be helpful in raising awareness of inhabitants and in assigning priority for land development and for emergency preparedness including aid and relief operations in high-risk areas in the future.  相似文献   

3.
Irigaray  C.  Fernández  T.  Chacón  J. 《Natural Hazards》2003,30(3):309-324
This paper aims to examine the impact of large-scale structuraladjustments (like the Greater Dhaka Flood Protection Project, GDFPP) on local living environment.It focuses the importance of environmental factors in flood hazard mitigation, and examines theenvironmental attitudes of the floodplain residents arising from the large-scale structural adjustments.Based on `perceived natural hazard research perspectives', this paper examines: (i) the reasons for persistentfloodplain occupation, and (ii) the importance of environmental factors in the choice, motivations and decision-makingof floodplain residents.This research used data collected from 300 households situated inthe eastern part of Dhaka. The face-to-face household survey data provided individuals' responses to a structuredquestionnaire on hazards and environment. Survey concerned urban floodplains, and looked fordata on housing, household characteristics, and residents' attitudes. Results of interview surveys wereused to: (i) explore the reasons of floodplain occupation, and (ii) residents' attitudes to tolerable levelof flood risk and willingness to accept environmental change resulting from the proposed structural embankments inthe eastern perimeter of Dhaka City, Bangladesh.Findings revealed that floodplain occupation (by theindividuals' decision-making) was a result of overall reaction to the Government's structuraladjustment policies that resulted from institutional, locational and socio-economic factors. The attitude survey results provided residents' perception to hazards and environment to be dependenton the socio-economic factors – but in a complex manner, many factors are interrelated.In addition to support for structural embankments, the study sample displayed a common concernand widespread environmental awareness. In terms of any `trade-off' between thebenefits (resources) from the embankments and costs (hazards) due to the detrimental impact on environment, the residents of Dhaka, despite some concern forsacrificing embankments for environment, tended to show a generalconsensus for embankments.  相似文献   

4.
In the past decades, the influence of climate change has caused changes in the amount of rainfall in many areas which may affect the flood assessment and mitigation. This research aims to determine amount of rainfall which impacts on changes of the water levels in canals and evaluate the appropriate mitigation measures for floods in the inner Bangkok area, Bangkok Noi and Bangkok Yai districts of Bangkok. The maximum 1-day rainfall during 1997–2010 was determined under different return periods of 2, 5, 10, 25, 50 and 100 year. The MIKE 11 model was then applied to assess changes of the water levels in canals caused by design rainfall events for those return periods. The flood mitigation was also proposed by applying various pumping capacities and initial water levels, incorporating with building dykes and a floodgate. This study has found that the highest flood-risk areas are along Chak Phra and Bangkhunnon canals and the eastern part of Jakthong Canal while the lowest flood-risk area is Bangkok Yai district. Flood caused from the 10-year rainfall can be mitigated by building dykes with the height of 0.75 m [mean sea level (MSL)] and maintaining the initial water level of 0.70 m (MSL). Furthermore, it has also been found that flood caused from the 25-year rainfall can be mitigated by building the floodgate to prevent the flowing back water at Wat Yangsuttharam Canal. However, 50- and 100-year rainfalls seem to cause floods which are too large to mitigate.  相似文献   

5.
The increasing natural disasters, especially floods during the last quarter century, are raising the economic losses in Taiwan. The most severe hazard in Taiwan is flooding induced by typhoons and storms in summer and autumn. By comparing the rivers around the world, the ones in Taiwan have the steepest slopes, the largest discharge per unit drainage area, and the shortest time of concentrations. Rapid urbanization without proper land uses managements usually worsen the flood problems. Consequently, flood hazards mitigation has become the most essential task for Taiwan to deal with. Although the government keeps improving flood defense structures, the flood damage grows continuously. In this article, possible flood mitigation strategies are identified for coping with complex environmental and social decisions with flood risk involved.  相似文献   

6.
Midstream of the Keelung River Basin in Northern Taiwan has become highly urbanized and densely populated area. Flood inundation along riversides frequently occurred during typhoons or rainstorms. Three protection measures, including constructions of high-level protection levees, a diversion channel, and a detention reservoir, were proposed for flood mitigation. The main purpose of this study is to evaluate the flood mitigation performance of the three proposed structural measures by using combined hydrologic analyses and hydraulic routings. A semi-distributed parallel-type linear reservoirs rainfall-runoff model was used for estimating the surface runoff. Furthermore, a 1-D dynamic channel routing model was coupled with a two-dimensional inundation model to simulate the hydraulic characteristics of river flooding and overland flow. Simulation results of flood stages, runoff peak discharges, and inundation extent under design rainfall scenarios were chosen as the criteria for evaluation. The results showed a diversion channel is superior to the other two measures for flood mitigation of the study area. After the process of environmental impact assessment, a revised diversion channel approach has been approved for construction as the major structural measure.  相似文献   

7.
Flood mitigation involves the management and control of floodwater movement, such as redirecting flood runoff through the use of floodwalls and flood gates, rather than trying to prevent floods altogether. The prevention and mitigation of flooding can be studied on three levels: on individual properties, small communities, and whole towns or cities. The current study area is located in Hurghada on the Red Sea, which is considered an important area for coastal tourism. The study area is located at distance 7.50 km from El Gouna city along the Red Sea and east of Hurghada–Al Ismaileya road. The aim of this research is to derive the runoff flow paths across the study area and their flow magnitudes under different rainfall events of 10, 25, 50, and 100 year return periods in order to design the flood mitigation measures to protect such important areas. Field data (e.g., topographic data and rainfall intensities) were collected for the study area. The results indicated that the site is exposed to high flash flood risk and protection work is required. In order to protect the area from flood risks, locations of number of drainage channels and dams were selected and designed based on flood quantity and direction. The proposed mitigation system is capable of protecting this crucial area from flood risks and increases the national income from tourism. This study can be applied in different areas of Egypt and the world.  相似文献   

8.
Beijing, the capital city of China, has suffered from acute water shortage, with only 300 m3/a of water resources available per capita. In addition, Beijing has experienced a prolonged period of consecutive droughts from 1999 to 2010. Water crisis has constrained the socio-economic development of Beijing. Meanwhile, the national "South-to-North Water Transfer"(STNWT) project, which is expected to provide some relief to the water crisis in Beijing, is still under development. In order to ensure the security of water supply in Beijing before the completion of the STNWT project, several measures have been implemented to cope with droughts, including pumping groundwater from emergency well fields,water saving, recycling of water, rain and flood water harvesting, and the diversion of water from neighboring rivers and groundwater basins. Groundwater from four emergency well fields contributes the most to the public and domestic water supplies in Beijing, supplying a total volume of 1.8×10~9 m~3.The water crisis is supposed to be mitigated by the completion of the STNWT project. After the completion of this project, more sustainable management of water resources will be implemented,including the use of aquifers as groundwater reservoirs and conjunctive use of surface water and groundwater resources.  相似文献   

9.
Dhaka, the capital of Bangladesh, is home to a population of 15 million people, whose water supply is 85% drawn from groundwater in aquifers that underlie the city. Values of Cl/Br >500 are common in groundwater beneath western Dhaka in areas <3 km from the river, and in rivers and sewers around and within the city. The study shows that groundwater beneath western Dhaka is strongly influenced by infiltration of effluent from leaking sewers and unsewered sanitation, and by river-bank infiltration from the Turag-Buriganga river system which bounds the western limit of the city. River-bank infiltration from other rivers around Dhaka is minor. Values of Cl/Br and Cl concentrations reveal that 23 % of wells sampled in Dhaka are influenced by saline connate water in amounts up to 1%. This residual natural salinity compromises the use of electrical conductivity of groundwater as a method for defining pathways of recharge by contaminated surface waters. Concentrations of As, B, Ba, Cd, Cu, F, Ni, NO3, Pb, Sb, Se and U in groundwater samples are less than WHO health-based guideline values for drinking water.  相似文献   

10.
绘制直观与可靠的城市洪涝灾害风险区划图,为城市防洪排涝相关部门决策提供参考依据。以广州市东濠涌流域为研究区域,综合考虑城市降雨、径流、地形和排水系统特性,构建基于InfoWorks ICM的一维-二维耦合城市洪涝仿真模型,模拟暴雨重现期为1年、5年、50年情景下的洪涝过程并获取致灾因子数据。调研分析区域的孕灾环境、承灾体和防灾减灾能力概况,结合层次分析法、评价等级和阈值划分等进行洪涝灾害风险评估。结果表明:城市洪涝仿真模型在一维排水系统和二维地面淹没模拟上均有较好的精度和可靠性,保证了致灾因子数据的可靠性;风险区划图能较好地反映流域的风险分布;随着重现期增大,较高、高风险区的面积显著增加,为防洪排涝重点关注区域。  相似文献   

11.
An evaluation of morphometric parameters of two drainage networks derived from different sources was done to determine the influence of sub-basins to flooding on the main channel in the Havran River basin (Balıkesir-Turkey). Drainage networks for the sub-basins were derived from both topographic maps scaled 1:25.000 and a 10-m resolution digital elevation model (DEM) using geographic information systems (GIS). Blue lines, representing fluvial channels on the topographic maps were accepted as a drainage network, which does not depict all exterior links in the basin. The second drainage network was extracted from the DEM using minimum accumulation area threshold to include all exterior links. Morphometric parameters were applied to the two types of drainage networks at sub-basin levels. These parameters were used to assess the influence of the sub-basins on the main channel with respect to flooding. The results show that the drainage network of sub-basin 4—where a dam was constructed on its outlet to mitigate potential floods—has a lower influence morphometrically to produce probable floods on the main channel than that of sub-basins 1, 3, and 5. The construction of the dam will help reduce flooding on the main channel from sub-basin 4 but it will not prevent potential flooding from sub-basin 1, 3 and 5, which join the main channel downstream of sub-basin 4. Therefore, flood mitigation efforts should be considered in order to protect the settlement and agricultural lands on the floodplain downstream of the dam. In order to increase our understanding of flood hazards, and to determine appropriate mitigation solutions, drainage morphometry research should be included as an essential component to hydrologic studies.  相似文献   

12.
Flood loss analysis and quantitative risk assessment in China   总被引:9,自引:4,他引:5  
Risk assessment is a prerequisite for flood risk management. Practically, most of the decision making requires that the risks and costs of all risk mitigation options are evaluated in quantified terms. Therefore, a quantitative assessment of possible flood loss is very important, especially for emergency planning and pre-disaster preparedness. This paper presents a preliminary methodology and an operational approach for assessing the risk of flood loss to the population, crops, housing, and the economy at county level in China. The present work assesses the risk of loss for each element (people, crops, and so on) under low-, moderate-, and high-intensity flood using intensity-loss curves and loss rates based on historical flood data from 1990 to 2008. Results show that the counties with high flood risk are primarily located in North, East, Central, and South China, particularly in the lower reaches of rivers. On the other hand, the risk of most counties in the western region is generally lower than that of counties in the eastern region. However, for the entire country, the high-risk regions have both a substantial amount of rainfall and low terrain, making such regions highly prone to flooding. Moreover, these high-risk regions present both high population and wealth density.  相似文献   

13.
对未来防洪减灾形势和对策的一些思考   总被引:2,自引:0,他引:2       下载免费PDF全文
徐乾清 《水科学进展》1999,10(3):235-241
简要介绍了20世纪90年代我国大江大河的防洪形势。重点指出:河道萎缩,江河泄洪能力下降,行洪水位抬高,城市水灾突出,洪涝矛盾加重和水灾损失急剧增加的特点。探讨了防洪减灾的目标和标准,在进行防洪策略历史回顾的基础上,阐述了防洪减灾对策和基本措施方向。  相似文献   

14.
防洪效益评估对防洪工程投资决策与减灾对策制定具有重要意义。建立集成了与太湖流域防洪效益评估相关的系列模型和方法,包括含降雨产流与平原净雨计算的水文分析方法、由河网水动力学模型和平原区域洪水分析模型组成的大尺度水力学模型、综合流域社会经济和淹没因素的洪灾损失评估模型。模拟了太湖流域遇特大洪水的灾害损失,开展了不同防洪工程应对流域性特大洪水减灾效益的预测分析。结果表明:1999年型200年一遇降雨将会给太湖流域造成高达568.29亿元的直接经济损失,外排动力增强30%至100%的防洪效益介于26.69亿元到45.70亿元之间,新建圩区、太浦河拓宽的防洪效益依次减小,而圩区泵排能力增加30%的防洪效益仅为0.65亿元。基于研究成果提出了增设外排泵站、加强圩区科学调度、通过保险分担风险等应对特大洪水的对策措施建议,为太湖流域特大洪水的防治提供支撑和参考。  相似文献   

15.
Flooding in urban area is a major natural hazard causing loss of life and damage to property and infrastructure. The major causes of urban floods include increase in precipitation due to climate change effect, drastic change in land use–land cover (LULC) and related hydrological impacts. In this study, the change in LULC between the years 1966 and 2009 is estimated from the toposheets and satellite images for the catchment of Poisar River in Mumbai, India. The delineated catchment area of the Poisar River is 20.19 km2. For the study area, there is an increase in built-up area from 16.64 to 44.08% and reduction in open space from 43.09 to 7.38% with reference to total catchment area between the years 1966 and 2009. For the flood assessment, an integrated approach of Hydrological Engineering Centre-Hydrological Modeling System (HEC-HMS), HEC-GeoHMS and HEC-River analysis system (HEC-RAS) with HEC-GeoRAS has been used. These models are integrated with geographic information system (GIS) and remote sensing data to develop a regional model for the estimation of flood plain extent and flood hazard analysis. The impact of LULC change and effects of detention ponds on surface runoff as well as flood plain extent for different return periods have been analyzed, and flood plain maps are developed. From the analysis, it is observed that there is an increase in peak discharge from 2.6 to 20.9% for LULC change between the years 1966 and 2009 for the return periods of 200, 100, 50, 25, 10 and 2 years. For the LULC of year 2009, there is a decrease in peak discharge from 10.7% for 2-year return period to 34.5% for 200-year return period due to provision of detention ponds. There is also an increase in flood plain extent from 14.22 to 42.5% for return periods of 10, 25, 50 and 100 years for LULC change between the year 1966 and year 2009. There is decrease in flood extent from 4.5% for 25-year return period to 7.7% for 100-year return period and decrease in total flood hazard area by 14.9% due to provisions of detention pond for LULC of year 2009. The results indicate that for low return period rainfall events, the hydrological impacts are higher due to geographic characteristics of the region. The provision of detention ponds reduces the peak discharge as well as the extent of the flooded area, flood depth and flood hazard considerably. The flood plain maps and flood hazard maps generated in this study can be used by the Municipal Corporation for flood disaster and mitigation planning. The integration of available software models with GIS and remote sensing proves to be very effective for flood disaster and mitigation management planning and measures.  相似文献   

16.
Polders in the Netherlands are protected from flooding by flood defence systems along main water bodies such as rivers, lakes or the sea. Inside polders, canal levees provide protection from smaller water bodies. Canal levees are mainly earthen levees along drainage canals that drain excess water from polders to the main water bodies. The water levels in these canals are regulated. During the last decades, probabilistic approaches have been developed to quantify the probability of failure of flood defences along the main water bodies. This paper proposes several extensions to this method to quantify the probability of failure of canal levees. These extensions include a method to account for (i) water-level regulation in canals, (ii) the effect of maintenance dredging on the geohydrological response of the canal levee and (iii) survival of loads in the past. The results of a case study demonstrate that the proposed approach is capable of quantifying the probability of failure of canal levees and is useful for exploring the relative benefit of risk mitigating measures for canal levees.  相似文献   

17.
This paper illustrates the development of flood hazard and risk maps in Greater Dhaka of Bangladesh using geoinformatics. Multi-temporal RADARSAT SAR and GIS data were employed to delineate flood hazard and risk areas for the 1998 historical flood. Flood-affected frequency and flood depth were estimated from multi-date SAR data and considered as hydrologic parameters for the evaluation of flood hazard. Using land-cover, gemorphic units and elevation data as thematic components, flood hazard maps were created by considering the interactive effect of flood frequency and flood water depth concurrently. Analysis revealed that a major portion of Greater Dhaka was exposed to high to very high hazard zones while a smaller portion (2.72%) was free from the potential flood hazard. Flood risk map according to administrative division showed that 75.35% of Greater Dhaka was within medium to very high risk areas of which 53.39% of areas are believed to be fully urbanized by the year 2010.  相似文献   

18.
Nature-based solutions are rapidly gaining interest in the face of global change and increasing flood risks. While assessments of flood risk mitigation by coastal ecosystems are mainly restricted to local scales, our study assesses the contribution of salt marshes and mangroves to nature-based storm surge mitigation in 11 large deltas around the world. We present a relatively simple GIS model that, based on globally available input data, provides an estimation of the tidal wetland’s capacity of risk mitigation at a regional scale. It shows the high potential of nature-based solutions, as tidal wetlands, to provide storm surge mitigation to more than 80% of the flood-exposed land area for 4 of the 11 deltas and to more than 70% of the flood-exposed population for 3 deltas. The magnitude of the nature-based mitigation, estimated as the length of the storm surge pathway crossing through tidal wetlands, was found to be significantly correlated to the total wetland area within a delta. This highlights the importance of conserving extensive continuous tidal wetlands as a nature-based approach to mitigate flood risks. Our analysis further reveals that deltas with limited historical wetland reclamation and therefore large remaining wetlands, such as the Mississippi, the Niger, and part of the Ganges-Brahmaputra deltas, benefit from investing in the conservation of their vast wetlands, while deltas with extensive historical wetland reclamation, such as the Yangtze and Rhine deltas, may improve the sustainability of flood protection programs by combining existing hard engineering with new nature-based solutions through restoration of former wetlands.  相似文献   

19.
The drainage basin parameters of the groundwater-fed Chhoti Gandak River originating in the terai area of the Ganga Plain were analyzed using topographical sheets, satellite data, and field documentation with emphasis to its implication for flood mitigation and recharging of groundwater. The analyses indicate dominance of first order streams, gentle slope gradient, low surface run-off, low sediment production, high infiltration rate, and low value of basin relief. The low water storage capacity, spreading of water and concentration of peak discharge in the distal part of the river basin explain that whenever precipitation is high in the catchment area there is flood in the distal part of the basin. The bifurcation ratio value (4.34) of this basin describes that the drainage is carved naturally by slope and local relief and not influenced by geological structures like lineaments and faults.  相似文献   

20.
This paper examines the nature and causes of September 2004 hazardous flood that affected the dry and drought prone southwestern region of Bangladesh. It also examines human perception of this new hazard and their methods of adjustments to its negative impacts. Field research for this study includes personal interviews of 453 victim families living in four thanas (lowest administrative units) in Jessore and Satkhira districts of southwestern Bangladesh. Findings of the study suggest that all victim respondents viewed this flood event as a natural hazard, which has caused severe damage to standing crops, fish ponds, permanent trees and homesteads, and deteriorated human health and sanitation conditions. Its long-term impacts on fish farming, soil quality degradation, as well as changing land use/land coverage are also noteworthy but yet to be adequately explored. Both perceived and scientific causes of this flood event include high rainfall for a week before the flood, unusual movement of low pressure system into the affected area, cloudy weather and low evaporation, siltation of the regional riverbeds, and rolling back of the Ganges River water through the Ichamati and Bhagirati rivers. These factors also caused hazardous flooding at the same time in the Ichamati and Bhagirati Rivers and their floodplains in the West Bengal province of India. To release the overflow of flood water inside India, the Indian border patrol breached the Ichamati river embankment in several places along Satkhira and Jessore international border which had aggravated the flood situation in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号