首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We present results from a BeppoSAX observation of the rich cluster Abell 3266. The broadband spectrum (2-50 keV) of the cluster, when fitted with an optically thin thermal emission model, yields a temperature of 8.1+/-0.2 keV and a metal abundance of 0.17+/-0.02 in solar units, with no evidence of a hard X-ray excess in the Phoswich Detector System spectrum. By performing a spatially resolved spectral analysis, we find that the projected temperature drops with increasing radius, going from approximately 10 keV at the cluster core to approximately 5 keV at about 1.5 Mpc. Our BeppoSAX temperature profile is in good agreement with the ASCA temperature profile of Markevitch et al. From our two-dimensional temperature map, we find that the gradient is observed in all azimuthal directions. The temperature gradient may have been caused by a recent merger event that was also responsible for a velocity-dispersion gradient measured in the optical band. The projected metal abundance profile and the two-dimensional map are both consistent with being constant.  相似文献   

2.
In Paper I we presented a methodology to recover the spatial variations of properties of the intracluster gas from ASCA X-ray satellite observations of galaxy clusters. We verified the correctness of this procedure by applying it to simulated cluster data sets that we had subjected to the various contaminants common in ASCA data. In this paper we present the results that we obtain when we apply this method to real galaxy cluster observations. We determine broad-band temperature and cooling-flow mass-deposition rates for the 106 clusters in our sample, and obtain temperature, abundance and emissivity profiles (i.e., at least two annular bins) for 98 of these clusters. We find that 90 per cent of these temperature profiles are consistent with isothermality at the 3 σ confidence level. This conflicts with the prevalence of steeply declining cluster temperature profiles found by Markevitch et al. from a sample of 30 clusters.  相似文献   

3.
In this paper we discuss the effect of Coulomb collisions on the temperature profiles of the intracluster medium in clusters of galaxies, motivated by recent reports of negative temperature gradients in some clusters by Markevitch et al. The time-scale for electrons and protons to reach temperature equilibrium can exceed a few × 109 years beyond radii of a megaparsec, if the intracluster gas is assumed to be at the usual cluster virial temperature. If a cluster merger has occurred within that time causing the protons, but not the electrons, to be rapidly heated then a small negative temperature gradient can result. This gradient is larger in clusters with higher temperatures and steeper density profiles.   Applying these considerations to the cluster of galaxies A2163, we conclude that, more plausibly, the observed gradient is due to a lack of hydrostatic equilibrium following a merger.  相似文献   

4.
In this Letter, we use the recent Chandra observation of Abell 2142 reported by Markevitch et al. to put constraints on thermal conduction in the intracluster plasma. We show that the observed sharp temperature gradient requires that classical conductivity has to be reduced at least by a factor of between 250 and 2500. The result provides a direct constraint on an important physical process relevant to the gas in the cores of clusters of galaxies.  相似文献   

5.
We present a detailed analysis of the X-ray properties of the cooling flows in a sample of nearby, X-ray-bright clusters of galaxies using high-quality ASCA spectra and ROSAT X-ray images. We demonstrate the need for multiphase models to consistently explain the spectral and imaging X-ray data for the clusters. The mass deposition rates of the cooling flows, independently determined from the ASCA spectra and ROSAT images, exhibit reasonable agreement. We confirm the presence of intrinsic X-ray absorption in the clusters using a variety of spectral models. We also report detections of 100-μm infrared emission, spatially coincident with the cooling flows, in several of the systems studied. The observed infrared fluxes and flux limits are in good agreement with the predicted values owing to reprocessed X-ray emission from the cooling flows. We present precise measurements of the abundances of iron, magnesium, silicon and sulphur in the central regions of the Virgo and Centaurus clusters. Our results firmly favour models in which a high mass fraction (70–80 per cent) of the iron in the X-ray gas in these regions originates from Type Ia supernovae. Finally, we present a series of methods which may be used to estimate the ages of cooling flows from X-ray data. The results for the present sample of clusters indicate ages of between 2.5 and 7 Gyr. If the ages of cooling flows are primarily set by subcluster merger events, then our results suggest that in the largest clusters, mergers with subclusters with masses of ∼30 per cent of the final cluster mass are likely to disrupt cooling flows.  相似文献   

6.
Taking advantage of the very precise de Jager et al. optical white dwarf orbit and spin ephemerides; ASCA , XMM–Newton and Chandra X-ray observations spread over 10 yr; and a cumulative 27-yr baseline, we have found that in recent years the white dwarf in AE Aqr is spinning down at a rate that is slightly faster than predicted by the de Jager et al. spin ephemeris. At the present time, the observed period evolution is consistent with either a cubic term in the spin ephemeris with     , which is inconsistent in sign and magnitude with magnetic dipole radiation losses, or an additional quadratic term with     , which is consistent with a modest increase in the accretion torques spinning down the white dwarf. Regular monitoring, in the optical, ultraviolet and/or X-rays, is required to track the evolution of the spin period of the white dwarf in AE Aqr.  相似文献   

7.
We present ASCA data on RE J2248−511, extending existing optical and soft X-ray coverage to 10 keV, and monitoring the soft component. These data show that, despite a very strong ultrasoft X-ray excess below 0.3 keV and a soft 0.3–2 keV spectral index in earlier ROSAT data, the hard X-ray spectrum ( α ∼−0.8; 0.6–10 keV) is typical of type 1 active galactic nuclei (AGN), and the soft component has since disappeared. Optical data taken at two different epochs show that the big blue bump is also highly variable. The strength of the ultrasoft X-ray component and the extreme variability in RE J2248−511 are reminiscent of the behaviour observed in many narrow line Seyfert 1s (NLS1s). However, the high-energy end of the ROSAT spectrum, the ASCA spectrum and the Balmer line full widths at half maximum of ∼3000 km s−1 in RE J2248−511 are typical of normal Seyfert 1 AGN.
The change in the soft X-ray spectrum as observed in the ROSAT and ASCA data is consistent with the behaviour of Galactic Black Hole Candidates (GBHCs) as they move from a high to a low state, i.e. a fall in the ultrasoft component and a hardening of the X-ray continuum. This GBHC analogy has also been proposed for NLS1s. Alternatively, the variability may be caused by opacity changes in a hot, optically thin corona which surrounds a cold, dense accretion disc; this was first suggested by Guainazzi et al. for 1H 0419−577, an object which shows remarkably similar properties to RE J2248−511.  相似文献   

8.
Studies of the X-ray surface brightness profiles of clusters, coupled with theoretical considerations, suggest that the breaking of self-similarity in the hot gas results from an 'entropy floor', established by some heating process, which affects the structure of the intracluster gas strongly in lower-mass systems. By fitting analytical models for the radial variation in gas density and temperature to X-ray spectral images from the ROSAT PSPC and ASCA GIS, we have derived gas entropy profiles for 20 galaxy clusters and groups. We show that, when these profiles are scaled such that they should lie on top of one another in the case of self-similarity, the lowest-mass systems have higher-scaled entropy profiles than more massive systems. This appears to be due to a baseline entropy of depending on the extent to which shocks have been suppressed in low-mass systems. The extra entropy may be present in all systems, but is detectable only in poor clusters, where it is significant compared with the entropy generated by gravitational collapse. This excess entropy appears to be distributed uniformly with radius outside the central cooling regions.
We determine the energy associated with this entropy floor, by studying the net reduction in binding energy of the gas in low-mass systems, and find that it corresponds to a pre-heating temperature of 0.3 keV. Since the relationship between entropy and energy injection depends upon gas density, we are able to combine the excesses of 70140 keV cm2 and 0.3 keV to derive the typical electron density of the gas into which the energy was injected. The resulting value of implies that the heating must have happened prior to cluster collapse but after a redshift z 710. The energy requirement is well matched to the energy from supernova explosions responsible for the metals which now pollute the intracluster gas.  相似文献   

9.
We report the discovery of a 40 arcsec long X-ray filament in the core of the cluster of galaxies Abell 1795. The feature coincides with an H α +N  ii filament found by Cowie et al. in the early 1980s and resolved into at least two U -band filaments by McNamara et al. in the mid-1990s. The (emission-weighted) temperature of the X-ray emitting gas along the filament is 2.5–3 keV, as revealed by X-ray colour ratios. The deprojected temperature will be less. A detailed temperature map of the core of the cluster presented. The cD galaxy at the head of the filament is probably moving through or oscillating in the cluster core. The radiative cooling time of the X-ray emitting gas in the filament is about     which is similar to the age of the filament obtained from its length and velocity. This suggests that the filament is produced by cooling of the gas from the intracluster medium. The filament, much of which is well separated from the body of the cD galaxy and its radio source, is potentially of great importance in helping to understand the energy and ionization source of the optical nebulosity common in cooling flows.  相似文献   

10.
We report the discovery of highly distorted X-ray emission associated with the nearby cluster Zw 1718.10108, one of the dominant members of which is the powerful radio galaxy 3C353. This cluster has been missed by previous X-ray cluster surveys because of its low Galactic latitude ( b =19.5°), despite its brightness in the hard X-ray band (210 keV flux of 1.21011 erg cm2 s1). Our optical charge-coupled device image of the central part of the cluster reveals many member galaxies which are dimmed substantially by heavy Galactic extinction. We have measured redshifts of three bright galaxies near the X-ray emission peak and they are all found to be around z =0.028. The ASCA gas imaging spectrometer and ROSAT high-resolution imager images show three aligned X-ray clumps embedded in low surface-brightness X-ray emission extended by 30 arcmin. The averaged temperature measured with ASCA is kT =4.3±0.2 keV, which appears to be hot for the bolometric luminosity when compared with the temperatureluminosity correlation of galaxy clusters. The irregular X-ray morphology and evidence for a non-uniform temperature distribution suggest that the system is undergoing a merger of substructures. Since the sizes and luminosities of the individual clumps are consistent with those of galaxy groups, Zw 1718.10108 is interpreted as an on-going merger of galaxy groups in a dark matter halo forming a cluster of galaxies and thus is in a transition phase of cluster formation.  相似文献   

11.
We present spatially resolved X-ray spectroscopy of the luminous lensing cluster Abell 2390, using observations made with the Chandra observatory. The temperature of the X-ray gas rises with increasing radius within the central ∼ 200 kpc of the cluster, and then remains approximately isothermal, with kT =11.5−1.6+1.5 keV , out to the limits of the observations at r ∼1.0 Mpc . The total mass profile determined from the Chandra data has a form in good agreement with the predictions from numerical simulations. Using the parametrization of Navarro, Frenk and White, we measure a scale radius r s∼0.8 Mpc and a concentration parameter c ∼3 . The best-fitting X-ray mass model is in good agreement with independent gravitational lensing results and optical measurements of the galaxy velocity dispersion in the cluster. The X-ray gas to total mass ratio rises with increasing radius with f gas∼21 per cent at r =0.9 Mpc . The azimuthally averaged 0.3–7.0 keV surface brightness profile exhibits a small core radius and a clear 'break' at r ∼500 kpc , where the slope changes from S X   r −1.5 to S X   r −3.6 . The data for the central region of the cluster indicate the presence of a cooling flow with a mass deposition rate of 200–300 M yr−1 and an effective age of 2–3 Gyr .  相似文献   

12.
We examine the K shell emission lines produced by isothermal and simple multiphase models of the hot gas in elliptical galaxies and galaxy clusters to determine the most effective means for constraining the width of the differential emission measure, ( T  ), in these systems which we characterize by a dimensionless parameter, . Comparison of line ratios of two-temperature  ( <1)  and cooling flow  ( 1)  models is presented in detail. We find that a two-temperature model can approximate very accurately a cooling flow spectrum over 0.510 keV.
We re-analyse the ASCA spectra of three of the brightest galaxy clusters to assess the evidence for multiphase gas in their cores: M87 (Virgo), the Centaurus cluster and the Perseus cluster. K emission-line blends of Si, S, Ar, Ca and Fe are detected in each system, as is significant Fe K emission. The Fe K /K ratios are consistent with optically thin plasma models and do not suggest resonance scattering in these systems. Consideration of both the ratios of H-like to He-like K lines and the local continuum temperatures clearly rules out isothermal gas in each case. To obtain more detailed constraints, we fitted plasma models over 1.69 keV where the emission is dominated by these K shell lines and by continuum. In each case the ASCA spectra cannot determine whether the gas emits at only two temperatures or over a continuous range of temperatures as expected for a cooling flow. The metal abundances are near-solar for all of the multiphase models. We discuss the implications of these results and examine the prospects for determining the temperature structure in these systems with upcoming X-ray missions.  相似文献   

13.
We report on two optical candidates for the counterpart to an X-ray source in the Small Magellanic Cloud , 1WGA J0053.8−7226, identified as a serendipitous X-ray source from the ROSAT Position Sensitive Proportional Counter (PSPC) archive, and also observed by the Einstein Imaging Proportional Counter . Its X-ray properties, namely the hard X-ray spectrum, flux variability and column density, indicate a hard, transient source, with a luminosity of ∼     XTE and ASCA observations have confirmed the source to be an X-ray pulsar, with a 46-s spin period. Our optical observations reveal two possible candidates within the error circle. Both exhibit strong H α and weaker H β emission. The optical colours indicate that both objects are Be-type stars. The Be nature of the stars implies that the counterpart is most likely a Be/X-ray binary system. Subsequent infrared (IR) photometry ( JHK ) of one of the objects shows that the source varies by at least 0.5 mag, while the     measured nearly simultaneously with the UBVRI and spectroscopic observations indicate an IR excess of ∼0.3 mag.  相似文献   

14.
We present Chandra and XMM–Newton observations of 12 bright  [ f (2–10 keV) > 10−13 erg cm−2 s−1]  sources from the ASCA search for the High Energy Extragalactic Population (SHEEP) survey. Most of these have been either not observed or not detected previously with the ROSAT mission, and therefore they constitute a sample biased towards hard sources. The Chandra observations are important in locating the optical counterpart of the X-ray sources with accuracy. Optical spectroscopic observations show that our sample is associated with both narrow-line (NL) (six objects) and broad-line (BL) active galactic nuclei (AGN) (five objects), with one source remaining unidentified. Our sources cover the redshift range 0.04–1.29, spanning luminosities from 1042 to  1045 erg s−1  (2–10 keV). The NL sources have preferentially lower redshift (and luminosity) compared to the BL ones. This can be most easily explained in a model where the NL AGN are intrinsically less luminous than the BL ones in line with the results of Steffen et al. The X-ray spectral fittings show a roughly equal number of obscured  ( N H > 1022 cm−2)  and unobscured  ( N H < 1022 cm−2)  sources. There is a clear tendency for obscured sources to be associated with NL AGN and unobscured sources with BL ones. However, there is a marked exception with the highest obscuring column observed at a BL AGN at a redshift of z = 0.5.  相似文献   

15.
We present an X-ray study of the galaxy group or poor cluster MKW 4. Working with XMM–Newton data we examine the distribution and properties of the hot gas which makes up the group halo. The inner halo shows some signs of structure, with circular or elliptical beta models providing a poor fit to the surface brightness profile. This may be evidence of large-scale motion in the inner halo, but we do not find evidence of sharp fronts or edges in the emission. The temperature of the halo declines in the core, with deprojected spectral fits showing a central temperature of ∼1.3 keV compared to ∼3 keV at 100 kpc. In the central ∼30 kpc of the group, multitemperature spectral models are required to fit the data, but they indicate a lack of gas at low temperatures. Steady-state cooling flow models provide poor fits to the inner regions of the group and the estimated cooling time of the gas is long except within the central dominant galaxy, NGC 4073. Abundance profiles show a sharp increase in the core of the group, with mean abundance rising by a factor of 2 in the centre of NGC 4073. Fitting individual elements shows the same trend, with high values of Fe, Si and S in the core. We estimate that ∼50 per cent of the Fe in the central 40 kpc was injected by Type Ia supernovae, in agreement with previous ASCA studies. Using our best-fitting surface brightness and temperature models, we calculate the mass, gas fraction, entropy and mass-to-light ratio of the group. At 100 kpc (∼0.1 virial radius) the total mass and gas entropy of the system (  ∼2 × 1013 M  and ∼300 keV cm2) are quite comparable to those of other systems of similar temperature, but the gas fraction is rather low (∼1 per cent). We conclude that MKW 4 is a fairly relaxed group, which has developed a strong central temperature gradient but not a large-scale cooling flow.  相似文献   

16.
I consider X-ray emitting clusters of galaxies in the context of modified Newtonian dynamics (MOND). Self-gravitating isothermal gas spheres are not good representations of rich clusters; the X-ray luminosity at a given temperature is typically an order of magnitude larger than observed, and the predicted X-ray surface brightness distribution is not well-matched by the standard 'β-model' fits to the observations. Pure gas spheres with a density distribution described by a β-model also fail because, with MOND, these objects are far from isothermal and again overluminous. These problems may be resolved by adding an additional dark mass component in the central regions, here modelled by a constant density sphere contained within two core radii and having a mass typically of one to two times the total cluster mass in the gas. With this additional component, the observed luminosity–temperature relation for clusters of galaxies is reproduced, and the typical mass discrepancy in actual clusters is three to four times smaller than implied by Newtonian dynamics. Thus, while MOND significantly reduces the mass of the dark component in clusters it does not remove it completely. I speculate on the nature of the dark component and argue that neutrinos, with mass near the experimental upper limit are a possible candidate.  相似文献   

17.
Estimating the temperature and metal abundance of the intracluster and the intragroup media is crucial to determine their global metal content and to determine fundamental cosmological parameters. When a spatially resolved temperature or abundance profile cannot be recovered from observations (e.g. for distant objects), or deprojection is difficult (e.g. due to a significant non-spherical shape), only global average temperature and abundance are derived. After introducing a general technique to build hydrostatic gaseous distributions of prescribed density profile in potential wells of any shape, we compute the global mass-weighted and emission-weighted temperature and abundance for a large set of barotropic equilibria and an observationally motivated abundance gradient. We also compute the spectroscopic-like temperature that is recovered from a single temperature fit of observed spectra. The derived emission-weighted abundance and temperatures are higher by 50 to 100 per cent than the corresponding mass-weighted quantities, with overestimates that increase with the gas mean temperature. Spectroscopic temperatures are intermediate between mass and luminosity-weighted temperatures. Dark matter flattening does not lead to significant differences in the values of the average temperatures or abundances with respect to the corresponding spherical case (except for extreme cases).  相似文献   

18.
We present temperature and metallicity maps of the Perseus cluster core obtained with the Chandra X-ray Observatory. We find an overall temperature rise from  ∼3.0 keV  in the core to  ∼5.5 keV  at 120 kpc and a metallicity profile that rises slowly from  ∼0.5  solar to  ∼0.6  solar inside 60 kpc, but drops to  ∼0.4  solar at 120 kpc. Spatially resolved spectroscopy in small cells shows that the temperature distribution in the Perseus cluster is not symmetrical. There is a wealth of structure in the temperature map on scales of  ∼10  arcsec (5.2 kpc) showingswirliness and a temperature rise that coincides with a sudden surface brightness drop in the X-ray image. We obtain a metallicity map of the Perseus cluster core and find that the spectra extracted from the two central X-ray holes as well as the western X-ray hole are best-fit by gas with higher temperature and higher metallicity than is found in the surroundings of the holes. A spectral deprojection analysis suggests, however, that this is due to a projection effect; for the northern X-ray hole we find tight limits on the presence of an isothermal component in the X-ray hole, ruling out volume-filling X-ray gas with temperatures below 11 keV at 3σ.  相似文献   

19.
20.
Elliptical galaxies are modelled as Sérsic luminosity distributions with density profiles (DPs) for the total mass adopted from the DPs of haloes within dissipationless ΛCDM (cold dark matter) N -body simulations. Ellipticals turn out to be inconsistent with cuspy low-concentration NFW models representing the total mass distribution, neither are they consistent with a steeper −1.5 inner slope, nor with the shallower models proposed by Navarro et al., nor with NFW models 10 times more concentrated than predicted, as deduced from several X-ray observations – the mass models, extrapolated inwards, lead to local mass-to-light ratios that are smaller than the stellar value inside an effective radius ( R e), and to central aperture velocity dispersions that are much smaller than observed. This conclusion remains true as long as there is no sharp steepening (slope < −2) of the dark matter DPs just inside 0.01 virial radii.
The very low total mass and velocity dispersion produced within R e by an NFW-like total mass profile suggests that the stellar component should dominate the dark matter component out to at least R e. It should then be difficult to kinematically constrain the inner slope of the DP of ellipticals. The high-concentration parameters deduced from X-ray observations appear to be a consequence of fitting an NFW model to the total mass DP made up of a stellar component that dominates inside and a dark matter component that dominates outwards.
An appendix gives the virial mass dependence of the concentration parameter, central density and total mass of the Navarro et al. model. In a second appendix are given single integral expressions for the velocity dispersions averaged along the line of sight, in circular apertures and in thin slits, for general luminosity density and mass distributions, with isotropic orbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号