首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of cold plasma injection on whistler mode instability has been studied separately for a bi-Maxwellian and a loss-cone hackground plasma with perpendicular AC electric field. The cold plasma is described by a simple Maxwellian distribution, whereas a generalized distribution function with index j that reduces to a bi-Maxwellian for j = 0 and to a loss-cone for j = 1 has been derived for a plasma in the presence of a perpendicular AC electric field, to form a hot/warm background. The dispersion relation is obtained using the method of characteristic solutions and kinetic approach. An expression for the growth rate of a system with added cold plasma injection has been calculated. Results of sample theoretical calculations for representative values of parameters suited to the magnetosphere of Uranus has been obtained. The salient features of the analysis and the results obtained in both cases have been compared and discussed. It is inferred that it is not the magnitude but the frequency of the AC field which influences the growth rate and a loss-cone background plasma has a triggering effect on the growth rate, increasing the value of the real frequency and maximum growth rate by an order of magnitude. These results may go a long way to enable one to get a better understanding of whistlers and diagnostics of plasma parameters in the Uranian magnetosphere.  相似文献   

2.
Relativistic whistler wave mode with a perpendicular AC electric field has been studied for generalized distribution function with an index j, which is reducible to bi-Maxwellian for j = 0, loss-cone for j = 1 and delta function for j = ∞. Based on particle trajectories, the dispersionrelation is obtained using the techniques of a kinetic approach anda method of characteristic solutions Calculations are compassed with observations of low frequency waves of Voyager 2 The growth rates for the plasma parameters suited to the magnetosphere of Uranus are obtained. It is inferred that, not the magnitude but the frequency of the AC field, influences the growth rate. In addition to the temperature anisotropy, plasma particles having a loss-cone provide an additional source of energy. The relativistic electrons along with increasing the growth rate, widen the band width so as to cover a wide frequency range thus may explain the entire spectrum of whistler emissions at Uranian bow shock. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Dispersion relation, resonant energy transferred, growth rate and marginal instability criteria for the electrostatic ion-cyclotron wave with general loss-cone distribution in low-β anisotropic, homogeneous plasma in the auroral acceleration region are discussed by investigating the trajectories of the charged particles. Effects of the parallel electric field, ion beam velocity, steepness of the loss-cone distribution and temperature anisotropy on resonant energy transferred and growth rate of the instability are discussed. It is found that the effect of the parallel electric field is to stabilize the wave and enhance the transverse acceleration of ions whereas the effect of steepness of loss-cone, ion beam velocity and the temperature anisotropy is to enhance the growth rate and decrease the transverse acceleration of ions. The steepness of the loss-cone also introduces a peak in the growth rate which shifts towards the lower side of the perpendicular wave number with the increasing steepness of the loss-cone.  相似文献   

4.
Growth rates for both the RH- and LH-modes of an EM wave propagating along a magnetic field through an isotropic loss-cone plasma have been obtained. It is found that growing modes can exist, and are found to depend critically on the mirror ratioR, and the specific details of the distribution function of the energetic component. To study the energetic-particle distribution observed at low energies by satellites within the magnetosphere, an isotropic double-humped loss-cone velocity distribution is then studied with a view to determining whether the secondary hump can introduce an instability not present for monotonic distribution. It is found that such a distribution can be unstable in a mirror geometry if the energetic component is sufficiently monoenergetic. Within the magnetosphere, nearly monoenergetic fluxes are observed, peaking in the energy range 1–10 keV, depending on the McIlwain parameterL. It is possible that the initial injection of monoenergetic particles may have been much more sharply peaked than the one presently observed, and, as a result of wave-particle interactions, subsequently relaxed to the presently observed distribution. It is seen here that the EM waves within the magnetosphere can contribute to the relaxation of such an initial injection.  相似文献   

5.
Encounter of Voyager with Saturn’s environment revealed the presence of electromagnetic ion-cyclotron waves (EMIC) in Saturnian magnetosphere. Cassini provided the evidence of dynamic particle injections in inner magnetosphere of Saturn. Also inner magnetosphere of Saturn has highest rotational flow shear as compared to any other planet in our solar system. Hence during these injections, electrons and ions are transported to regions of stronger magnetic field, thus gaining energy. The dynamics of the inner magnetosphere of Saturn are governed by wave-particle interaction. In present paper we have investigated those EMIC waves pertaining in background plasma which propagates obliquely with respect to the magnetic field of Saturn. Applying kinetic approach, the expression for dispersion relation and growth rate has been derived. Magnetic field model has been used to incorporate magnetic field strength at different latitudes for radial distance of \(6.18~R_{{s}}\) (\(1~R_{{s}}= 60{,}268~\mbox{km}\)). Various parameters affecting the growth of EMIC waves in cold bi-Maxwellian background and after the hot injections has been studied. Parametric analysis inferred that after hot injections, growth rate of EMIC waves increases till \(10^{\circ}\) and decreases eventually with increase in latitude due to ion density distribution in near-equatorial region. Also, growth rate of EMIC waves increases with increasing value of temperature anisotropy and AC frequency, but the growth rate decreases as the angle of propagation with respect to \(B_{0}\) (Magnetic field at equator) increases. The injection events which assume the Loss-cone distribution of particles, affect the lower wave numbers of the spectra.  相似文献   

6.
The nature of the damping or instability has been investigated for the “ordinary” and “extraordinary” electromagnetic wave, propagating almost perpendicular to a magnetic line of force in the magnetosphere, for a plasma whose particle distribution function exhibits a temperature anisotropy and a loss-cone structure.  相似文献   

7.
The dielectric tensor, modified plasma dispersion function and dispersion relation for Whistler mode instability in an infinite magnetoplasma are obtained in the case of cold plasma injection to background hot anisotropic generalized bi-Lorentzian (κ) plasma in the presence of external perpendicular a.c. electric field. The method of characteristics solutions using perturbed and unperturbed particle trajectories have been used to determine the perturbed distribution function. Integrals and modified plasma dispersion function Zκ *(ξ ) are reduced in power series expansion form. Numerical methods using computer technique have been used to obtained temporal growth rate for magnetospheric plasma at geostationary height. The bi-Lorentzian (κ) plasma is reducible to various forms of distribution function by changing the spectral index κ. The results of bi-Lorentzian (κ) plasma are compared with those of bi-Maxwellian plasma. It has been found that the addition of cold plasma injection gives different frequency spectra. The a.c. frequency of moderate amplitude increases the growth rate and instability in K space to lower range. Growth rate maximum is not affected by a.c. frequencies. However, it shifts the maximum to lower K space in both cases, rather than on the variation of the magnitude. Thus a physical situation like this may explain emission of various high frequency whistler emissions by cold plasma injection. The potential application of controlled plasma experiments in the laboratory and for planetary atmosphere are indicated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The electrostatic ion-cyclotron instability (EICI) in low β (ratio of plasma to magnetic pressure), anisotropic, inhomogeneous plasma is studied by investigating the trajectories of the particles using the general loss-cone distribution function (Dory-Guest-Harris type) for the plasma ions. In particular, the role of the loss-cone feature as determined by the loss-cone indices, in driving the drift-cyclotron loss-cone (DCLC) instability is analysed. It is found that for both long and short wavelength DCLC mode the loss-cone indices and the perpendicular thermal velocity affect the dispersion equation and the growth rate of the wave by virtue of their occurrence in the temperature anisotropy. The dispersion relation for the DCLC mode derived here using the particle aspect analysis approach and the general loss-cone distribution function considers the ion diamagnetic drift and also includes the effects of the parallel propagation and the ion temperature anisotropy. It is also found that the diamagnetic drift velocity due to the density gradient of the plasma ions in the presence of the general loss-cone distribution acts as a source of free energy for the wave and leads to the generation of the DCLC instability with enhanced growth rate. The particle aspect analysis approach used to study the EICI in inhomogeneous plasma gives a fairly good explanation for the particle energisation, wave emission by the wave–particle interaction and the results obtained using this particle aspect analysis approach are in agreement with the previous theoretical findings using the kinetic approach.  相似文献   

9.
The loss-cone instability of energetic electrons at double plasma resonance is considered. Conditions required for the formation of a zebra pattern in type IV solar radio bursts are determined. It is shown that electrons with a power-law energetic spectrum can effectively excite upper-hybrid waves at double plasma resonance. Stripes of a zebra pattern become more pronounced with an increase of the loss-cone opening angle and the power-law spectral index. The growth rate at the resonance frequencies decreases with an increase of the cyclotron harmonic number. Interpretation of observations and diagnostics of plasma for the April 21, 2002, event are performed. Conclusions about the impulsive mode of injection of energetic electrons into a coronal arc are made.  相似文献   

10.
A dispersion relation for left hand circularly polarized electromagnetic wave propagation in an anisotropic magnetoplasma in the presence of a very weak parallel electrostatic field has been derived with the help of linearized Vlasov and Maxwell equations. An expression of the growth rate has been derived in presence of parallel electric field for ion-cyclotron electromagnetic wave in an anisotropic media. The modification made in the growth rate by introducing parallel electric field and temperature anisotropy has been studied for fully ionized hydrogen plasma with the help of observations made on Jovian ionosphere and magnetosphere atL = 5.6 Rj. It is concluded that the growth (damping) of ion-cyclotron electromagnetic wave is possible when the wave vector is parallel (antiparallel) to the static electric field and effect is more pronounced at higher wave number.  相似文献   

11.
《Planetary and Space Science》2007,55(14):2113-2120
The shear-driven electrostatic ion-cyclotron instability (EICI) is studied using the loss-cone distribution function by particle aspect analysis. The effect of the loss-cone distribution on the dispersion relation and growth rate of weak shear-driven EICI is studied. The whole plasma is considered to consist of resonant and non-resonant particles. The wave is assumed to propagate obliquely to the static magnetic field. It is found that the frequency of the EICI is Doppler shifted due to the transverse inhomogeneous flow in the direction of the magnetic field. It is also found that for anisotropic plasma the critical velocity shear needed to excite EICI depends upon the loss-cone distribution index (J). With the increasing values the loss-cone distribution indices (J), the critical value of normalized velocity shear needed to generate EICI in anisotropic plasma, decreases and is of the order of the weak shear. The loss-cone distribution acts as a source of free energy and generates the weak shear-driven EICI at longer perpendicular perturbations. It also lowers the transverse and parallel energy of the resonant ions. The study may explain the frequently observed EICI in the auroral acceleration region.  相似文献   

12.
A time-dependent model of the effect of a parallel electric field on particle precipitation from a closed field-line has been constructed and the results are presented. A pattern of field-aligned pitch-angle distributions and energy peaks develops rapidly and then persists unchanged in shape while the intensity decreases for a time of the order of the bounce period of the energetic particles. It is shown that the structures in velocity space are created by the juxtaposition of particles from different source populations. Four sources are found to be sufficient to reproduce the principal features observed frequently by rockets and satellites. They are, a trapped plasma sheet distribution, a loss-cone partially filled by pitch-angle diffusion at the equator, cold ionospheric plasma which has flowed outward along the field line and particles backscattered from the precipitation into the atmosphere.The model develops density gradients and discontinuities far sharper than any observed, so that any parallel electric field actually occurring in an aurora must be accompanied by strong wave-particle interactions either as part of the accelerating mechanism or as a result of the density gradients produced by it.  相似文献   

13.
The waves, propagating nearly transverse to the ambient magnetic field, with frequencies near the harmonics of the proton-cyclotron frequency are studied in an inhomogeneous plasma with protons having loss-cone distributions. Three types of drift cyclotron instabilities have been studied: (i) non-flute instability; (ii) B-resonant instability; and (iii) non-resonant instability. Increases of loss-cone and density gradient increase the growth rates of all three instabilities. Increases in the positive temperature gradient and t (ratio of thermal pressure of trapped protons to magnetic field pressure) have a stabilizing effect on the non-flute and non-resonant instabilities and a destabilizing effect on the B-resonant instability. The non-resonant instability has an interesting feature: a particular harmonic can be excited in two separate bands of unstable wave numbers. These instabilities can play an important role in the dynamics of the ring current and the inner edge of the plasma sheet region of the magnetosphere. The discrete turbulence generated by them would give rise to precipitation of protons on the auroral field lines, which may contribute to the excitation of diffuse aurora. These instabilities may be relevant to the observation of harmonic waves at 6R E by Perrautet al. (1978).  相似文献   

14.
In present paper higher harmonic electrostatic ion-cyclotron (EIC) parallel flow velocity shear instability in presence of perpendicular inhomogeneous DC electric field with the ambient magnetic field has been studied, in different regions of the magnetosphere of Saturn. Dimensionless growth rate variation of EIC waves has been observed with respect to \(k_{ \bot } \rho _{i}\) for various plasma parameters. Effect of velocity shear scale length (\(A_{i}\)), temperature anisotropy (\(T_{ \bot } /T_{\|}\)), magnetic field (\(B\)), electric field (\(E\)), inhomogeneity (\(P/a\)), angle of propagation (\(\theta \)), ratio of electron to ion temperature (\(T_{e}/T_{i}\)) and density gradient (\(\varepsilon _{n}\rho _{i}\)) on the growth of EIC waves in the inner magnetosphere of Saturn has been studied and analyzed. The mathematical formulation for dispersion relation and growth rate has been done by using the method of characteristic solution and kinetic approach. This theoretical analysis has been done taking the data from the Cassini in the inner magnetosphere of Saturn in the extended region where ion cyclotron waves have been observed. The change in the growth of these waves due to the presence of Enceladus has been analyzed.  相似文献   

15.
Electromagnetic ion-cyclotron (EMIC) instability has been studied using the general loss-cone distribution function by investigating the trajectories of charged particles and using the method of particle aspect analysis. A low β (ratio of plasma pressure to magnetic pressure) plasma consisting of resonant and non-resonant particles has been considered. It is assumed that the resonant particles participate in energy exchange with the wave, whereas non-resonant particles support the oscillatory motion of the wave. The wave is assumed to propagate parallel to the static magnetic field. The effects of steepness of loss-cone distribution with thermal anisotropy are discussed. The growth rate, perpendicular and parallel resonant energies of the particles and marginal instability condition are derived. The effect of general loss-cone distribution function is to enhance the growth rate of EMIC waves. The results are interpreted for the space plasma parameters appropriate to the plasma-pause region of the earth's magnetoplasma. The results of the work is consistent for EMIC emissions observation by SAMPEX and CRRES satellite around the plasma-pause region as reported by Bortnik et al. [Bortnik, J., Thorne, R.M., O’Brien, T.P., Green, J.C., Strongeway, R.J., Shprits, Y.Y., Baker, D.N., 2006. Observation of two distinct, rapid loss mechanisms during the 20 November 2003 radiation belt dropout event. J. Geophys. Res. 111, A12216, doi:10.1029/2006JA011802] and Xinlin et al. [Xinlin, Li., Baker, D.N., O’Brien, T.P., Xie, L., Zong, Q.G., 2006. Correlation between the inner edge of outer radiation belt electrons and the innermost plasmapause location. Geophys. Res. Lett. 33, L14107, doi:10.1029/2006GL026294].  相似文献   

16.
Kinetic Alfven waves (KAWs) driven by the diamagnetic drift instability that is excited by the density inhomogeneity in low-β plasmas, such as plasmas in the auroral region, are investigated by adopting the particle aspect analysis and loss-cone distribution function. The results obtained in this paper indicate that the propagation and evolution of kinetic Alfven waves decrease and the kinetic Alfven wave excitation becomes not easier with increasing loss-cone index J. But the spatial scales of the perpendicular perturbation driving kinetic Alfven waves have a decreasing tendency with the larger values of J, which perhaps is in relation with the decreasing width of loss-cone. A single hump appears in the plots of the growth rate of the instability when J=2. But the hump cannot emerge when J=0 or J=1. The density inhomogeneity of ions plays an important role in driving KAWs and it cannot be ignored. KAWs can be easier driven and KAWs can propagate and evolve faster with the increasing level of density inhomogeneity. However, the range of the perpendicular wave number of the wave instability decreases, namely, the longer the scale of perpendicular disturbance the easier the excitation of KAW. As the density inhomogeneity increases, the tendency of numerical solutions of the dispersion relation is similar to that obtained by the kinetic theory and Maxwellian distribution function (Duan and Li, 2004). But the profiles of the plots of numerical solutions are different. This means that the velocity distribution function of particles is important for KAW driven in magnetoplasmas, especially in the active regions of the magnetosphere, such as auroral region, and plasma sheet boundary.  相似文献   

17.
A.J. Dessler 《Icarus》1980,44(2):291-295
Theoretical arguments have been presented to the effect that both plasma and energy are supplied to the Jovian magnetosphere primarily from internal sources. If we assume that Io is the source of plasma for the Jovian magnetosphere and that outward flow of plasma from the torus is the means of drawing from the kinetic energy of rotation of Jupiter to drive magnetospheric phenomena, we can obtain a new, independent estimate of the rate of mass injection from Io into the Io plasma torus. We explicitly assume the solar wind supplies neither plasma nor energy to the Jovian magnetosphere in significant amounts. The power expended by the Jovian magnetosphere is supplied by torus plasma falling outward through the corotational-centrifugal-potential field. A lower limit to the rate of mass injection into the torus, which on the average must equal the rate of mass loss from the torus, is therefore derivable if we adopt a value for the power expended to drive the various magnetospheric phenomena. This method yields an injection rate of at least 103 kg/sec, a value in agreement with the results obtained by two other independent methods of estimating mass injection rate. If this injection rate from Io and extraction of energy from Jupiter's kinetic energy of rotation has been maintained over geologic time, then approximately 0.1% of Io's mass (principally in the form of sulfur and oxygen) has been lost to the Jovian magnetosphere, and Jupiter's spin rate has been reduced by less than 0.1%.  相似文献   

18.
Voyager's plasma probe observations suggest that there are at least three fundamentally different plasma regimes in Saturn: the hot outer magnetosphere, the extended plasma sheet, and the inner plasma torus. At the outer regions of the inner torus some ions have been accelerated to reach energies of the order of 43 keV. We develop a model that calculates the acceleration of charged particles in the Saturn's magnetosphere. We propose that the stochastic electric field associated to the observed magnetic field fluctuations is responsible of such acceleration. A random electric field is derived from the fluctuating magnetic field – via a Monte Carlo simulation – which then is applied to the momentum equation of charged particles seeded in the magnetosphere. Taking different initial conditions, like the source of charged particles and the distribution function of their velocities, we find that particles injected with very low energies ranging from 0.129 eV to 5.659 keV can be strongly accelerated to reach much higher energies ranging from 22.220 eV to 9.711 keV as a result of 125,000 hitting events (the latter are used in the numerical code to produce the particle acceleration over a predetermined distance).  相似文献   

19.
Mcllwain's electric and magnetic field distributions (E3H and M2) have been used to calculate the drift path of plasma density irregularities taking into account plasma interchange motion driven by the gravitational and inertial forces acting on the whole mass of the plasma elements.It has been shown that there is a region in the magnetosphere which is unstable with respect to the interchange motion of the cold plasma element. Any plasma hole in the background density drifts ultimately toward an asymptotic trajectory. Along this trajectory the inward gravitational force is balanced by the outward inertial force averaged over one revolution around the Earth. This asymptotic trajectory, along which all plasma holes ultimately accumulate, is identified with the equatorial plasmapause. The maximum velocity for the interchange motion is proportional to the excess (or defect) of density in the plasma element, and inversely proportional to the integrated Pedersen conductivity. Plasma detachment is shown to occur preferentially in the post-midnight sector.  相似文献   

20.
Effects of plasma turbulence on the stability of electrostatic ion loss-cone waves are examined. The turbulence is assumed to be electrostatic with frequencies near 1.5 times the electron gyrofrequency and the frequencies of the generated waves are below the ion plasma frequency ωpi>. A nonlinear growth rate of the order of 10?2ωpi may be obtained, when the amplitude of the turbulence is 20 mV/m. This is comparable to previously found growth rates of the linear ion loss-cone instability, in a plasma with large pitch angle anisotropy. Bounce averaged pitch angle diffusion coefficients are also presented for different models of the ion loss-cone wave spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号