首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用新研制的土工静力-动力液压三轴-扭转多功能剪切仪,在5种初始主应力方向角与5种中主应力系数相组合的初始固结条件下,对饱和松砂进行了不排水循环扭剪试验。讨论了初始固结条件对不排水条件下饱和松砂孔隙水压力变化规律及对剪胀、剪缩、卸荷体缩等体积变化过程的影响。试验研究表明:(1)分别以稳定残余孔隙水压力和破坏时循环次数归一化后的残余孔隙水压力比和循环次数比之间的关系可以用双曲线模式表达。其参数主要依赖于初始主应力方向,中主应力系数对参数的影响并不显著。归一化后的孔隙水压力比与广义剪应变之间的关系也可以用双曲线模式表达,其中的2个待定参数依赖于初始主应力方向,与中主应力系数无关;(2)在三向非均等固结条件下的不排水循环扭剪试验中,饱和松砂表现出卸荷体缩特性,不同初始主应力方向时,饱和松砂剪缩、剪胀、卸荷体缩呈现出不同的交替变化模式。  相似文献   

2.
In this paper a study on the improvement of liquefaction strength of fly ash by reinforcing with randomly distributed geosynthetic fiber/mesh elements is reported. A series of stress controlled cyclic triaxial tests were carried out on fly ash samples reinforced with randomly distributed fiber and mesh elements. The liquefaction resistance of reinforced fly ash is defined in-terms of pore pressure ratio. The effects of parameters such as fiber content, fiber aspect ratio, confining pressure, cyclic stress ratio, on liquefaction resistance of fly ash have been studied. Test results indicate that the addition of fiber/mesh elements increases the liquefaction strength of fly ash significantly and arrests the initiation of liquefaction even in samples of loose initial condition and consolidated with the low confining pressure.  相似文献   

3.
Nonlinear elastic behavior of fiber-reinforced soil under cyclic loading   总被引:5,自引:0,他引:5  
Experimental investigations and modeling of nonlinear elasticity of fiber-reinforced soil under cyclic loading at small strain are conducted in this paper. The investigations include three aspects. First, cyclic shear tests are conducted using conventional triaxial apparatus. Twenty-seven specimens with three different fiber contents are employed to conduct triaxial cyclic shear tests under different confining pressure and loading repetition. Effects of geofiber, confining pressure and loading repetition on elastic shear modulus of reinforced soil are studied and analyzed. Second, a hyperbolic function is introduced to describe the nonlinear stress–strain skeletal curve under cyclic loading. Nonlinear elastic modulus is expressed as a function of shear strain and two variables A and B that are related to the initial tangential modulus and ultimate cyclic loading stress, respectively. In the present paper, variables A and B both are further assumed to be functions of geofiber content, confining pressure and loading repetition. Finally, eight constitutive coefficients of the nonlinear elastic model are calibrated using stress–strain curves from cyclic triaxial shear tests. The calibration of parameters is conducted using the technique of the linear regression for multiple variables. Impacts and effects of geofiber, confining pressure and loading repetitions on soil nonlinear elastic behavior are discussed.  相似文献   

4.
A laboratory study on the undrained dynamic behavior of saturated clays in cyclic triaxial tests with a variable confining pressure (VCP tests) is presented. Tests were performed on remolded clayey samples using a dynamic triaxial device where the deviatoric stress and confining pressure can be varied simultaneously. Various cyclic stress paths have been applied on the specimens through varying the ratios or phase differences between the cyclic deviatoric stress and cyclic confining pressure. Specifically, the stress paths used in the present study were designed to simulate the coupling effects of simultaneously varying shear and normal stresses in clays due to earthquakes and other vibration sources. Test results obtained from this study show that the undrained response of saturated clays is strongly influenced by the variation of confining pressure, in terms of pore water pressure, development speed of cyclic strain and magnitude of cyclic strength. It is found that when strong P-waves are propagating in soil layers, VCP tests are more appropriate for the simulation of in situ stress fields than the conventional cyclic triaxial tests with a constant confining pressure (CCP tests).  相似文献   

5.
In the first part of this study, a series of stress-controlled hollow cylinder cyclic torsional triaxial shear tests were conducted on loose to medium dense saturated samples of clean Toyoura sand to investigate its liquefaction behavior. A uniform cyclic sinusoidal loading at a 0.1 Hz frequency was applied to air-pluviated samples where confining pressure and relative density was varied. Cyclic shear stress–strain changes, the number of cycles to reach liquefaction and pore pressure variations were recorded. Results indicate that the liquefaction resistances of uniform sands are significantly affected by the method of sample preparation and initial conditions.  相似文献   

6.
In this study, cyclic hollow cylinder torsional tests were conducted on the reconstituted specimens of Toyoura sand in a practical range of initial density and stress states. The results were employed to evaluate the liquefaction resistance and residual pore water pressure of sand using the strain energy concept. A simple pore water pressure (PWP) model with two calibration parameters was developed for the prediction of residual pore pressure as a function of cumulative strain energy density and the capacity energy of sand. Capacity energy is defined as the cumulative strain energy that is required for liquefaction onset. Based on the results of the tests, an equation is then presented for the estimation of capacity energy in terms of relative density and initial effective confining pressure of sand. This equation is shown to work well as a state boundary curve, which can discriminate between the liquefied and non-liquefied field case histories. Several extra tests were also performed to investigate the effect of initial static shear stress on the proposed PWP model and capacity energy. The results show that initial shear stress has a minor effect on the trend of the proposed PWP model; however, it definitely affects the capacity energy. The final part of the paper aims to confirm reasonable performance of the proposed PWP model by the available observations of seismically induced pore water pressure in shaking table, centrifuge, and real site conditions.  相似文献   

7.
Cyclic shear response of channel-fill Fraser River Delta silt   总被引:2,自引:0,他引:2  
The cyclic shear response of a channel-fill, low-plastic silt was investigated using constant-volume direct simple shear testing. Silt specimens, initially consolidated to stress levels at or above the preconsolidation stress, displayed cyclic-mobility-type strain development during cyclic loading without static shear stress bias. Liquefaction in the form of strain softening accompanied by loss of shear strength did not manifest regardless of the applied cyclic stress ratio, or the level of induced excess pore water pressure, suggesting that the silt is unlikely to experience flow failure under cyclic loading. The cyclic shear resistance of the silt increased with increasing overconsolidation ratio (OCR) for OCR>1.3. The silt specimens that experienced high equivalent excess cyclic pore water pressure ratios (ru>80%) resulted in considerable volumetric strains (2.5%–5%) during post-cyclic reconsolidation implying potentially significant changes to the particle fabric under cyclic loading.  相似文献   

8.
In this study the stress–strain characteristics of sand-ground rubber mixtures are investigated in the sandlike zone,at different confining pressures,using hollow cylinder specimens subjected to torsional monotonic and cyclic loading.Under monotonic loading a mixture of sand-ground rubber with 10% and 25% rubber content show more contraction behaviour than that observed in a pure sand specimen.Phase transformation point in these mixtures are located on a larger shear strain.As expected,the shear strength of specimens decreases with increase of ground rubber content.However,with increasing of effective confining pressure,the loss in shear strength of the mixture is decreased.In addition,a mixture with 25% ground rubber shows a smaller loss in shear strength compared to a mixture with 10% ground rubber mixture.Under cyclic loading mixtures with 10% and 25% ground rubber have similar liquefaction resistance,especially at confining pressures of 110 k Pa and 260 k Pa.Therefore,by using of the mixture with 25% ground rubber,a larger volume of scrap tires could be recycled.The addition of ground rubber to sand would affect the shear strain variation and excess pore water pressure trends,and this effect was further intensified with increasing ground rubber percentage.  相似文献   

9.
Frozen soil plays an important role on the stability of railway and highway subgrade in cold regions. However, the dynamic properties of frozen soil subjected to the freeze–thaw cycles have rarely been investigated. In this study, cryogenic cyclic triaxial tests were conducted on frozen compacted sand from Nehe, Heilongjiang Province in China which was subjected to the closed-system freeze–thaw cycles. A modified Hardin hyperbolic model was suggested to describe the backbone curves. Then, dynamic shear modulus and damping ratio versus cyclic shear strain were analyzed under the different freeze–thaw cycles, temperatures, initial water contents, loading frequencies and confining pressures. The results indicate that the freeze–thaw process plays a significant effect on the dynamic shear modulus and damping ratio, which slightly change after one freeze–thaw cycle. Dynamic shear modulus increases with increasing initial water content, temperature, loading frequency and confining pressure. Damping ratio increases with increasing initial water content, while decreases with increasing temperature and loading frequency. The effect of confining pressure on the damping ratio was found not significant. Furthermore, the empirical expressions were formulated to estimate dynamic shear modulus and damping ratio of the frozen compacted sand. The results provide guidelines for evaluating the infrastructures in cold regions.  相似文献   

10.
Stiffness degradation of natural fine grained soils during cyclic loading   总被引:5,自引:0,他引:5  
Cyclic behavior of natural fine grained soils under a broad range of strains were investigated considering the effects of plasticity index and changes in confining pressures based on cyclic triaxial tests. A total of 98 stress controlled cyclic triaxial tests were conducted on normally consolidated and slightly overconsolidated samples. The investigation was divided into two parts. The first part consists of stress controlled cyclic triaxial tests under different stress amplitudes that were conducted to estimate the modulus reduction and the thresholds between nonlinear elastic, elasto-plastic and viscoplastic behavior. The second part involves the investigation of the undrained stress–strain behavior of fine grained soils under irregular cyclic loadings. The results showed that the elastic threshold is approximately equal to 90% of Gmax. Another transition point was defined as the flow threshold where the value of tangent of shear modulus ratio changes for the second time. Simple empirical relationships to estimate the dynamic shear modulus and damping ratio was formulated and compared with the similar empirical relationships proposed in the literature. The results provide useful guidelines for preliminary estimation of dynamic shear modulus and damping ratio values for fine grained soils based on laboratory tests.  相似文献   

11.
The August 17, 1999 Kocaeli earthquake affected the city of Adapazari, which is located in the northwest of Turkey, with severe liquefaction and bearing capacity failures causing tilting of buildings, excessive settlements and lateral displacements. To understand the stress–strain behavior and pore pressure behavior of undisturbed soils during the earthquake, the cyclic and post-cyclic shear strength tests have been conducted on soil samples obtained from Adapazari in a cyclic triaxial test system within the scope of this research. Cyclic tests have been conducted under stress controlled and undrained conditions. Post-cyclic monotonic tests have been conducted following cyclic tests. The strength curves obtained in the experiments showed that the dynamic resistance of silty sand was found to be 45% lower than those of high plasticity soils (MH). The strength of clayey soils with the plasticity index of PI=15–16% was lower compared to the strength of high plasticity soils. Also, it was observed that silty sand soils had the lowest strength. The dynamic strength of the soils increased with the increase in plasticity.  相似文献   

12.
主应力轴持续旋转条件下饱和松砂的振动孔隙水压力特性   总被引:2,自引:0,他引:2  
利用新研制的“土工静力-动力液压三轴-扭剪多功能剪切仪”,针对福建标准松砂,在三向非均等固结条件下,进行了能够模拟海洋波浪荷载作用下主应力轴连续旋转的循环耦合剪切试验。通过试验着重探讨了初始主应力方向、振动过程中主应力方向连续变化对不排水条件下砂土的振动孔隙水压力增长特性的影响。实验研究表明:在振动过程中主应力轴连续旋转的条件下,初始主应力方向对砂土的动孔压比与振次比之间关系具有显著的影响,随着初始大主应力与竖向之间夹角的增大,动孔压比的增长速度明显加快,具有较好的规律性;归一化孔压比与广义剪应变之间的关系基本上与初始主应力方向角和振动剪应力幅值无关。  相似文献   

13.
复杂应力条件下饱和松砂单调与循环剪切特性的比较研究   总被引:4,自引:0,他引:4  
本文利用大连理工大学新引进与开发的“土工静力-动力液压-三轴扭转多功能剪切仪”,针对福建标准砂,在不排水条件下同时进行了单调剪切试验与循环剪切试验,进而对其进行了对比分析。通过比较表明,应力-应变关系的应变软化和硬化特性与流滑变形和循环流动特性密切相关,当循环剪切应力水平高于单调剪切过程中应变软化阶段最小强度时将会发生流滑变形。无论在单调剪切中,还是在循环剪切中,稳定状态时的有效偏应力比随着大主应力方向与竖向之间夹角的增大而减小,在中主应力系数相同的条件下,循环剪切中呈现显著剪胀时的有效偏应力比和最终稳定状态时的有效偏应力比峰值分别与单调剪切中达到相变状态时的有效偏应力比和最终稳定有效偏应力比基本上一致。然而不排水条件下单调与循环剪切过程中孔隙水压力的增长特性却并不相同,循环剪切中的最大孔隙水压力随着初始主应力方向角的增大而减小,单调剪切中的最大孔隙水压力却随着主应力方向角的增大而增大。  相似文献   

14.
振动频率对饱和砂土液化强度的影响   总被引:4,自引:0,他引:4  
郭莹  贺林 《地震学刊》2009,(6):618-623
采用“土工静力-动力液压三轴-扭转多功能剪切仪”对饱和砂土进行了一系列动三轴实验,探讨了振动频率对液化强度数值的影响程度。在1.0、1.5固结比和0.05、0.10、1.00Hz振动频率条件下,针对相对密实度分别为70%、28%的密砂和松砂进行了100、200、300kPa围压和100kPa围压条件下的液化强度实验。实验结果表明,饱和密砂和松砂在各种固结条件下,液化强度随着振动频率的增大而增大,相同破坏振次时,各种实验条件下的液化强度与振动频率的关系在双对数坐标上均符合线性关系;振动频率由0.05Hz变化到1.00Hz时,液化强度相差达25%以上;动强度指标翰值随振动频率的增大而增大,最大相差12.2%;随着振动频率的增大,砂土达到液化破坏所需的时间明显缩短;振动频率对松砂液化强度的影响比对密砂的影响更为显著。  相似文献   

15.
Pre-shear history has been shown to be a critical factor in the liquefaction resistance of sand. By contrast to prior experimental studies in which triaxial shear tests were used to examine the effects of pre-shear on the liquefaction resistance of sand, hollow cylinder torsional shear tests were used in this study to avoid the influence of the inherent anisotropy that is inevitably produced during the sample preparation process because of gravitational deposition. A series of cyclic undrained shear tests were performed on sand samples that had experienced medium to large pre-shear loading. The test results showed that the liquefaction resistance of sand can be greatly reduced by its pre-shear history, and a pre-shear strain within the range from 0.1% to 5% can cause sand to be more prone to liquefaction. During the cyclic shear tests, the samples that had experienced pre-shear loading exhibited different behaviors when cyclic shear loading started in different directions, i.e., the clockwise direction and the counterclockwise direction. If the cyclic loading started in the identical direction as the pre-shear loading, then the mean effective stress of the sand was almost unchanged during the first half of the loading cycle; if the cyclic loading started in the direction opposite to that of the pre-shear loading, then the mean effective stress decreased significantly during the first half of the loading cycle. However, this anisotropic behavior was only remarkable during the first loading cycle. From the second cycle onward, the speeds of the decrease in the mean effective stresses in the two types of shear tests became similar.  相似文献   

16.
Laboratory cyclic triaxial tests were performed to investigate the effect of fine content on the pore pressure generation in sand. Strain-controlled, consolidated undrained tests have been performed with a cyclic shear strain range of 0·015-1·5%. These tests were carried to 1000 cycles or to initial liquefaction, which ever occurred first. Triaxial tests were performed on pure sand silt specimens and specimens with silt additions of 10, 20, 30, and 60% by weight. Two types of silt, a non-plastic silt and a low plasticity silt (PI 10) were used as control materials. The main parameters varied in this study were the amount of silt, the plasticity index of silt, and the void ratio where the observed parameter was the pore pressure generation. For all silt contents, silt plasticity and the number of loading cycles have no significant effect at strain levels below 0·01%. Therefore, threshold strain for silty sands have approximately the same value as sands. For both non-plastic and low plasticity silts, there is a significant increase in the generated pore pressure at high strain levels.  相似文献   

17.
Shear modulus and damping ratio of grouted sand   总被引:2,自引:0,他引:2  
An experimental comparative study of three different grouted sands in terms of their effects on the values of two dynamic properties is presented. The dynamic properties studied are the shear modulus and the damping ratio which are determined with resonant column tests and cyclic triaxial tests. The behaviour of a pure Fontainebleau sand is compared with the behaviour of a Fontainebleau sand grouted with a silicate grout, a micro-fine cement grout and a mineral grout. The effects of the grouting treatment, the type of grout, the confining pressure, and the strains, on the shear modulus and the damping ratio are studied. The test results have shown that grouting improves the stiffness of the sand especially for small strains. Whatever the type of material, confining stress improves the shear modulus whereas it has a negligible effect on the damping ratio. When strain increases, the shear modulus decreases and the damping ratio increases.  相似文献   

18.
以天津汉沽地区某挡土墙地基粉土为研究对象,首先对不同颗粒组成的粉土做固结不排水动三轴剪切试验,采用各向等压固结,周围压力等于100kPa。固结完成后在不排水条件下施加轴向激振力,试验波形为正弦波,振动频率1.0Hz,试验中以试样在周期剪切时轴向周期应变达到5%作为破坏标准,得出粉土的动强度受颗粒组成的影响。细颗粒含量越大,其动强度越小,黏粒含量为7.2%的粉土循环剪应力比CSR约为20.3%黏粒含量粉土的2倍。粉土的动强度可以用循环剪应力比和破坏振次建立的幂函数关系式较好地拟合。在剪切过程中,粉土的孔隙水压力一直没有达到所施加的围压数值,最终稳定在75%~85%围压之间。同时,试验还得出孔隙水压力的增长模式不能用统一的Seed模型拟合,孔压增长规律的影响因素较多。  相似文献   

19.
The mechanical response to cyclic loading of saturated cohesionless soils is usually investigated by means of effective stress method considering pore water pressure changes that lead to reduced strength and stiffness. On the other hand, the behavior of partially saturated sands is different from the behavior of saturated sand deposits. The development of negative pore water pressures in particular makes it difficult to estimate the behavior of partially saturated sands. The response of partially saturated sands, however, can be examined in a physically understandable manner by investigating their energy characteristics independently of pore pressure behavior. To establish a general framework for understanding the behavior of partially saturated sand, a total of 52 resonant column and dynamic torsional shear tests were conducted under undrained conditions. The effects of factors such as the amplitude of shear strain, relative density, saturation ratio and confining pressure on the dynamic characteristics of the sand and on energy dissipation were studied. The use of the energy concept in the evaluation of partially saturated soils is shown to be a promising method for the evaluation of the cyclic behavior of partially saturated sands.  相似文献   

20.
针对荆江大堤江陵段下伏地层广泛分布的饱和粉细砂,参照原位试验成果重塑粉细砂试样,按估算的固结应力比(Kc约为1.6)对试样动剪模量、阻尼比及总应力动强度进行测试,结果表明:(1)试样应力-应变骨干曲线与Hardin-Drnevich双曲线模型假设高度吻合,Hardin公式可很好地拟合动模量/阻尼比与动应变的关系。在研究试样密实度范围内,最大动模量随围压和密实度的增加而增加,但围压对动模量的敏感性更高,且相同围压下动剪模量比与动应变关系曲线近乎重合。围压增大或密实度升高均会引起阻尼比的降低,1%应变对应的阻尼比分布在0.15~0.21之间;(2)偏压状态下以累积轴向应变5%作为液化判别标准进行抗液化强度试验,随特征振次及测试围压的增大,液化动剪应力比相应减小,试样振动孔压比最高仅能达到0.8~0.9;(3)由总应力法求取的动内摩擦角与黏聚力均随设定特征振次的增加而下降,且内聚力并非约等于0,表明动力作用下该试样具有一定的黏滞性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号