首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In October 2009, a new set of optical observations of Apophis, a potentially hazardous asteroid, was published. These data have significantly expanded the interval of observations and their total number. In the article we compare the results of refinement of Apophis’ orbit made at the Jet Propulsion Laboratory (JPL, United States), the University of Pisa (Italy), and the Institute of Applied Astronomy (IAA) of the Russian Academy of Sciences with consideration for new observations. New orbits lead to a significant decrease in the probability of Apophis’ collision with the Earth in 2036. As a result of processing a large number of observations of asteroids approaching the Earth and main belt asteroids less than 40 km in size, with a large number of optical and, in many cases, radar observations in different oppositions, one of the authors revealed that additional acceleration affects their motion. This acceleration can be represented by the transversal component A 2 in the orbital coordinate system. The presence of this acceleration can be interpreted as the Yarkovsky effect. The statistical properties of distribution of A 2 for asteroids, for which it is determined quite reliably, evidence in favor of this interpretation. The value of additional acceleration for bodies the size of Apophis falls in the range ±10−13 AU/day2. In this paper we have calculated the probability of Apophis colliding with the Earth in 2036 at different values of the transversal component of additional acceleration A 2. For the resulting points, a plot of the probability of the collision against the A 2 value has been constructed. At A 2 = −8.748 × 10−14 AU/day2 (and zero values of the radial A 1 and normal A 3 components) the nominal solution for Apophis’ orbit on April 13, 2029, is only 90 m from the middle of a “keyhole” 600 m in width, which leads to a collision of Apophis with the Earth in 2036. Since the scattering ellipse in the target plane in 2029 significantly overlaps the keyhole, the probability of collision at the given additional acceleration value is 0.0022. This result has been verified by the Monte Carlo method. Tests of 10000 random sets of orbital elements, which were found taking into account their correlation, have shown that 22 cases have resulted in virtual asteroids colliding with Earth in 2036. A plot of the probability of the collision against the value of A 2 has been constructed.  相似文献   

2.
The main problem in the orbit determination of the space debris population orbiting our planet is identifying which separate sets of data belong to the same physical object. The observations of a given object during a passage above an observing station are collectively called a Too Short Arc (TSA): data from a TSA cannot allow for a complete determination of an orbit. Therefore, we have to solve first the identification problem, finding two or more TSAs belonging to the same physical object and an orbit fitting all the observations. This problem is well known for the determination of orbits of asteroids: we shall show how to apply the methods developed for preliminary orbit determination of heliocentric objects to geocentric objects. We shall focus on the definition of an admissible region for space debris, both in the case of optical observations and radar observations; then we shall outline a strategy to perform a full orbit determination.  相似文献   

3.
An approximate orbit of the wide visual binary star ADS 9173 A(Bb) with a period of ~6000 yr has been determined for the first time by the method of apparent motion parameters. The orbit was computed using a short (1982–2004) arc of photographic observations obtained with the 26-inch Pulkovo Observatory refractor and the Hipparcos parallax. Agreement of the new orbit with the observations from the WDS catalog beginning in 1832 serves as a check. The errors in the orbital elements are large, but the orientation elements of the orbital plane (i and Ω) were estimated reliably. Component B has an invisible spectroscopic companion with a period of 4.9 yr. An astrometric orbit of Bb consistent with radial velocity measurements was determined from the residuals to the relative orbital motion of A(Bb). The orbital planes are nearly coplanar. If the mass of component B is taken in accordance with the mass—luminosity relation, 1.5 M , and the parallax is 0.″021, then the mass of the secondary component is no less than 0.5M . Component A may also be a long-period binary system.  相似文献   

4.
We consider a model of cyclic brightness variations in a young star with a low-mass (q = M 2/M 1 ≤ 0.1) companion that accretes matter from the remnants of a protostellar cloud (circumbinary disk). We assume that the orbit of the companion is circular and that its plane does not coincide with the disk plane. We have computed grids of hydrodynamic models for such a binary by the SPH method based on which we have investigated the circumstellar extinction variations produced by the streams of matter and density waves excited in the circumbinary disk by the orbital motion of the companion. We show that, depending on the inclination and orientation of the binary’s line of nodes relative to the observer, the brightness of the primary component can undergo various (in shape and depth) oscillations with a period equal to the orbital one. In contrast to the models with coplanar circular orbits, the accretion rate onto the components of a binary with a noncoplanar orbit depends on the orbital phase. The results of our computations can be used to study the cyclic activity of UX Ori stars and young eclipsing binaries with anomalously long eclipses.  相似文献   

5.
On the basis of the results by Huang et al. (1990), this paper further discusses and analyses the four post-Newtonian effects in a near-Earth satellite orbit: the Schwarzschild solution, the post-Newtonian effects of the geodesic precession, the Lense-Thirring precession and the oblateness of the Earth. A full analytical solution to the effects including their direct perturbations and mixed perturbations due to the Newtonian oblateness (J 2) perturbation and the Schwarzschild solution is obtained using the quasi-mean orbital element method analogous to the Kozai's mean orbital element one. Some perturbation properties of the post-Newtonian effects are revealed. The results obtained not only can provide a sound scientific basis for the precise determination of a man-made satellite orbit but also is suitable for similar mechanics systems, such as the motions of planets, asteroids and natural satellites.  相似文献   

6.
We consider the perturbations on near-earth asteroid orbits due to various forces stemming from solar radiation. We find that the existence of precise radar astrometric observations at multiple apparitions, spanning periods on the order of 10 years, allows the detection of such forces on bodies as large as kilometer across. Indeed, the perturbations are so substantial that certain of the forces can be essential to fit an orbit to the observations. In particular, we show that the recoil force of thermal radiation from the asteroid, known as the Yarkovsky effect, is the most important of these unmodeled perturbations. We also show that the effect of reflected light can be important if even moderate albedo variations are present, while moderate changes in oblateness appear to have a far smaller effect. An unexpected result is that the Poynting–Robertson effect, typically only considered for submillimeter dust particles, could be observable on smaller asteroids with high eccentricity, such as 1566 Icarus. Finally, we also study the possibility of improving the orbit uncertainty through well-timed optical observations which might help in better detection of these nongravitational perturbations.  相似文献   

7.
By using the method of separating rapid and slow subsystem, we obtain an analytical solution for a stable three-dimensional motion of a circumbinary planet around a binary star. We show that the motion of the planet is more complicated than it was obtained for this situation analytically by Farago and Laskar (2010). Namely, in addition to the precession of the orbital plane of the planet around the angular momentum of the binary (found by Farago and Laskar (2010)), there is simultaneously the precession of the orbital plane of the planet within the orbital plane. We show that the frequency of this additional precession is different from the frequency of the precession of the orbital plane around the angular momentum of the binary. We demonstrate that this problem is mathematically equivalent both to the problem of the motion of a satellite around an oblate planet and to the problem of a hydrogen Rydberg atom in the field of a high-frequency linearly-polarized laser radiation, thus discovering yet another connection between astrophysics and atomic physics. We point out that all of the above physical systems have a higher than geometrical symmetry, which is a counterintuitive result. In particular, it is manifested by the fact that, while the elliptical orbit of the circumbinary planet (around a binary star) or of the satellite (around an oblate planet) or of the Rydberg electron (in the laser field) undergoes simultaneously two types of the precession, the shape of the orbit does not change. The fact that a system, consisting of a circumbinary planet around a binary star, possesses the hidden symmetry should be of a general physical interest. Our analytical results could be used for benchmarking future simulations.  相似文献   

8.
The strongly perturbed dynamical environment near asteroids has been a great challenge for the mission design. Besides the non-spherical gravity, solar radiation pressure, and solar tide, the orbital motion actually suffers from another perturbation caused by the gravitational orbit–attitude coupling of the spacecraft. This gravitational orbit–attitude coupling perturbation (GOACP) has its origin in the fact that the gravity acting on a non-spherical extended body, the real case of the spacecraft, is actually different from that acting on a point mass, the approximation of the spacecraft in the orbital dynamics. We intend to take into account GOACP besides the non-spherical gravity to improve the previous close-proximity orbital dynamics. GOACP depends on the spacecraft attitude, which is assumed to be controlled ideally with respect to the asteroid in this study. Then, we focus on the orbital motion perturbed by the non-spherical gravity and GOACP with the given attitude. This new orbital model can be called the attitude-restricted orbital dynamics, where restricted means that the orbital motion is studied as a restricted problem at a given attitude. In the present paper, equilibrium points of the attitude-restricted orbital dynamics in the second degree and order gravity field of a uniformly rotating asteroid are investigated. Two kinds of equilibria are obtained: on and off the asteroid equatorial principal axis. These equilibria are different from and more diverse than those in the classical orbital dynamics without GOACP. In the case of a large spacecraft, the off-axis equilibrium points can exist at an arbitrary longitude in the equatorial plane. These results are useful for close-proximity operations, such as the asteroid body-fixed hovering.  相似文献   

9.
The Yarkovsky effect, which causes a slow drifting of the orbital elements (mainly the semimajor axis) of km-sized asteroids and meteors, is the weak non-gravitational force experienced by these bodies due to the emission of thermal photons. This effect is believed to play a role in the delivery of near-Earth asteroids (NEAs) from the main belt, in the spreading of the orbital elements of asteroid families, and in the orbital evolution of potentially hazardous asteroids.Here we present preliminary results of simulationing indicating that the perturbations induced by the Yarkovsky effect on the positions of some tens of NEAs can be observed by means of the high-precision astrometric observations that will be provided by the ESA mission Gaia.  相似文献   

10.
Abstract— The newly discovered asteroid 2002 AA29 moves in a very Earth‐like orbit that relative to Earth has a unique horseshoe shape and allows transitions to a quasi‐satellite state. This is the first body known to be in a simple heliocentric horseshoe orbit, moving along its parent planet's orbit. It is similarly also the first true co‐orbital object of Earth, since other asteroids in 1:1 resonance with Earth have orbits very dissimilar from that of our planet. When a quasi‐satellite, it remains within 0.2 AU of the Earth for several decades. 2002 AA29 is the first asteroid known to exhibit this behavior. 2002 AA29 introduces an important new class of objects offering potential targets for space missions and clues to asteroid orbit transfer evolution.  相似文献   

11.
311P/PANSTARRS是一颗活动小行星, 具有小行星和彗星的双重特征, 是中国``天问二号''的探测目标之一. 311P/PANSTARRS直径较小, 约为400 m, 非引力效应可能会对其长期动力学演化产生较大的影响. 通过假定不同表面组分, 研究了Yarkovsky效应对311P/PANSTARRS轨道演化的影响, 讨论了密近交汇、 非破坏性碰撞和YORP (Yarkovsky-O''Keefe-Radzievskii-Paddack)效应等非引力效应, 计算了小行星与大行星密近交汇及碰撞概率, 估计了311P/PANSTARRS达到自转周期分裂极限的时标. 模拟结果显示与纯引力模型相比, Yarkovsky效应可能会加快311P/PANSTARRS离开当前共振区域, 大约在10Myr以后311P/PANSTARRS会离开当前所在共振带, 在表面覆盖风化层的情况下有机会通过v6长期共振成为越火小行星; 在考虑YORP效应的情况下, 311P/PANSTARRS在2 Myr时标内可达到自转周期分裂极限; 在考虑Yarkovsky效应及YORP效应等因素的情况下, 311P/PANSTARRS在10 Myr时标内仍可保持其动力学稳定性, 且YORP效应不会显著影响其半长径偏移量.  相似文献   

12.
Many asteroids with a semimajor axis close to that of Mars have been discovered in the last several years. Potentially some of these could be in 1:1 resonance with Mars, much as are the classic Trojan asteroids with Jupiter, and its lesser-known horseshoe companions with Earth. In the 1990s, two Trojan companions of Mars, 5261 Eureka and 1998 VF31, were discovered, librating about the L5 Lagrange point, 60° behind Mars in its orbit. Although several other potential Mars Trojans have been identified, our orbital calculations show only one other known asteroid, 1999 UJ7, to be a Trojan, associated with the L4 Lagrange point, 60° ahead of Mars in its orbit. We further find that asteroid 36017 (1999 ND43) is a horseshoe librator, alternating with periods of Trojan motion. This asteroid makes repeated close approaches to Earth and has a chaotic orbit whose behavior can be confidently predicted for less than 3000 years. We identify two objects, 2001 HW15 and 2000 TG2, within the resonant region capable of undergoing what we designate “circulation transition”, in which objects can pass between circulation outside the orbit of Mars and circulation inside it, or vice versa. The eccentricity of the orbit of Mars appears to play an important role in circulation transition and in horseshoe motion. Based on the orbits and on spectroscopic data, the Trojan asteroids of Mars may be primordial bodies, while some co-orbital bodies may be in a temporary state of motion.  相似文献   

13.
In November 2004 radar delay measurements of near-Earth asteroid (3908) Nyx obtained at the Arecibo radio telescope turned out to be \(7.5\sigma \) away from the orbital prediction. We prove that this discrepancy was caused by a poor astrometric treatment and an incomplete dynamical model, which did not account for nongravitational perturbations. To improve the astrometric treatment, we remove known star catalog biases, apply suitable weights to the observations, and use an aggressive outlier rejection scheme. The main issue related to the dynamical model is having not accounted for the Yarkovsky effect. Including the Yarkovsky perturbation in the model makes the orbital prediction and the radar measurements statistically consistent by both reducing the offset and increasing the prediction uncertainty to a more realistic level. This analysis shows the sensitivity of high precision predictions to the astrometric treatment and the Yarkovsky effect. By using the full observational dataset we obtain a \(5\sigma \) detection of the Yarkovsky effect acting on Nyx corresponding to an orbital drift \(da/dt = (142 \pm 29)\)  m/year. In turn, we derive constraints on thermal inertia and bulk density. In particular, we find that the bulk density of Nyx is around 1 g/cm \(^3\) , possibly less. To make sure that our results are not corrupted by an asteroid impact or a close approach with a perturbing asteroid not included in our dynamical model, we show that the astrometry provides no convincing evidence of an impulsive variation of Nyx’s velocity while crossing the main belt region.  相似文献   

14.
J. ?i?ka  D. Vokrouhlický 《Icarus》2011,211(1):511-518
Near-Earth asteroid (99942) Apophis currently resides among the top positions on the list of objects with small, yet non-zero impact probability with the Earth. For that reason an unusual observational and theoretical effort has been dedicated to precisely characterize its future orbit. Here we discuss orbital perturbation of Apophis due to incident and reflected solar radiation pressure (SRP). We both revisit recent analytical estimate of the SRP effects for this body and also formulate a numerical approach allowing us to compute the SRP orbital perturbation under general assumptions. Contrary to some previous results, we show that SRP has a much smaller effect on the Apophis trajectory than does the thermal re-radiation force which produces the Yarkovsky effect. When the Yarkovsky effect becomes constrained enough in the future, our approach may be used to improve the orbit determination for this asteroid.  相似文献   

15.
We consider a satellite in a circular orbit about a planet that, in turn, is in a circular orbit about the Sun; we further assume that the plane of the planetocentric orbit of the satellite is the same as that of the heliocentric orbit of the planet. The pair planet–satellite is encountered by a population of small bodies on planet-crossing, inclined orbits. With this setup, and using the extension of Öpik’s theory by Valsecchi et al. (Astron Astrophys 408:1179–1196, 2003), we analytically compute the velocity, the elongation from the apex and the impact point coordinates of the bodies impacting the satellite, as simple functions of the heliocentric orbital elements of the impactor and of the longitude of the satellite at impact. The relationships so derived are of interest for satellites in synchronous rotation, since they can shed light on the degree of apex–antapex cratering asymmetry that some of these satellites show. We test these relationships on two different subsets of the known population of Near Earth Asteroids.  相似文献   

16.
A simple procedure is developed to determine orbital elements of an object orbiting in a central force field which contribute more than three independent celestial positions. By manipulation of formal three point Gauss method of orbit determination, an initial set of heliocentric state vectors r i and $\dot{\mathbf{r}}_{i}$ is calculated. Then using the fact that the object follows the path that keep the constants of motion unchanged, I derive conserved quantities by applying simple linear regression method on state vectors r i and $\dot{\mathbf{r}}_{i}$ . The best orbital plane is fixed by applying an iterative procedure which minimize the variation in magnitude of angular momentum of the orbit. Same procedure is used to fix shape and orientation of the orbit in the plane by minimizing variation in total energy and Laplace Runge Lenz vector. The method is tested using simulated data for a hypothetical planet rotating around the sun.  相似文献   

17.
We present three improved and five new mutual orbits of transneptunian binary systems (58534) Logos-Zoe, (66652) Borasisi-Pabu, (88611) Teharonhiawako-Sawiskera, (123509) 2000 WK183, (149780) Altjira, 2001 QY297, 2003 QW111, and 2003 QY90 based on Hubble Space Telescope and Keck II laser guide star adaptive optics observations. Combining the five new orbit solutions with 17 previously known orbits yields a sample of 22 mutual orbits for which the period P, semimajor axis a, and eccentricity e have been determined. These orbits have mutual periods ranging from 5 to over 800 days, semimajor axes ranging from 1600 to 37,000 km, eccentricities ranging from 0 to 0.8, and system masses ranging from 2 × 1017 to 2 × 1022 kg. Based on the relative brightnesses of primaries and secondaries, most of these systems consist of near equal-sized pairs, although a few of the most massive systems are more lopsided. The observed distribution of orbital properties suggests that the most loosely-bound transneptunian binary systems are only found on dynamically cold heliocentric orbits. Of the 22 known binary mutual orbits, orientation ambiguities are now resolved for 9, of which 7 are prograde and 2 are retrograde, consistent with a random distribution of orbital orientations, but not with models predicting a strong preference for retrograde orbits. To the extent that other perturbations are not dominant, the binary systems undergo Kozai oscillations of their eccentricities and inclinations with periods of the order of tens of thousands to millions of years, some with strikingly high amplitudes.  相似文献   

18.
We present a new method to solve the problem of initial orbit determination of any binary system. This method is mainly based on the material available for an observer, for example relative positions at a given time of the couple in the “plane of sky”, namely the tangent plane to the celestial sphere at the position of the primary component. The problem of orbit determination is solved by splitting in successive stages in order to decorrelate the parameters of each other as much as possible. On one hand, the geometric problem is solved using the first Kepler’s law from a single observing run and, on the other hand, dynamical parameters are then inferred from the fit of the Kepler’s equation. At last, the final stage consists in determining the main physical parameters involved in the secular evolution of the system, that is the spin axis and the J2 parameter of the primary if we assume that it is a quasi-spherical body. As a matter of fact there is no need to make too restrictive initial assumptions (such as circular orbit or zero eccentricity) and initial guesses of parameters required by a non-linear least-squares Levenberg–Marquardt algorithm are finally obtained after each stage. Such a protocol is very useful to study systems like binary asteroids for which all of the parameters should be considered a priori as unknowns. As an example of application, we used our method to estimate the set of the Pluto–Charon system parameters from observations collected in the literature since 1980.  相似文献   

19.
F. Roig  D. Nesvorný  R. Gil-Hutton 《Icarus》2008,194(1):125-136
V-type asteroids are bodies whose surfaces are constituted of basalt. In the Main Asteroid Belt, most of these asteroids are assumed to come from the basaltic crust of Asteroid (4) Vesta. This idea is mainly supported by (i) the fact that almost all the known V-type asteroids are in the same region of the belt as (4) Vesta, i.e., the inner belt (semi-major axis 2.1<a<2.5 AU), (ii) the existence of a dynamical asteroid family associated to (4) Vesta, and (iii) the observational evidence of at least one large craterization event on Vesta's surface. One V-type asteroid that is difficult to fit in this scenario is (1459) Magnya, located in the outer asteroid belt, i.e., too far away from (4) Vesta as to have a real possibility of coming from it. The recent discovery of the first V-type asteroid in the middle belt (2.5<a<2.8 AU), (21238) 1995WV7 [Binzel, R.P., Masi, G., Foglia, S., 2006. Bull. Am. Astron. Soc. 38, 627; Hammergren, M., Gyuk, G., Puckett, A., 2006. ArXiv e-print, astro-ph/0609420], located at ∼2.54 AU, raises the question of whether it came from (4) Vesta or not. In this paper, we present spectroscopic observations indicating the existence of another V-type asteroid at ∼2.53 AU, (40521) 1999RL95, and we investigate the possibility that these two asteroids evolved from the Vesta family to their present orbits by a semi-major axis drift due to the Yarkovsky effect. The main problem with this scenario is that the asteroids need to cross the 3/1 mean motion resonance with Jupiter, which is highly unstable. Combining N-body numerical simulations of the orbital evolution, that include the Yarkovsky effect, with Monte Carlo models, we compute the probability that an asteroid of a given diameter D evolves from the Vesta family and crosses over the 3/1 resonance, reaching a stable orbit in the middle belt. Our results indicate that an asteroid like (21238) 1995WV7 has a low probability (∼1%) of having evolved through this mechanism due to its large size (D∼5 km), because the Yarkovsky effect is not sufficiently efficient for such large asteroids. However, the mechanism might explain the orbits of smaller bodies like (40521) 1999RL95 (D∼3 km) with ∼70-100% probability, provided that we assume that the Vesta family formed ?3.5 Gy ago. We estimate the debiased population of V-type asteroids that might exist in the same region as (21238) and (40521) (2.5<a?2.62 AU) and conclude that about 10 to 30% of the V-type bodies with D>1 km may come from the Vesta family by crossing over the 3/1 resonance. The remaining 70-90% must have a different origin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号