首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The theoretical disk brightness temperature spectra for Uranus are computed and compared with the observed microwave spectrum. It is shown that the emission observed at short centimeter wavelengths originates deep below the region where ammonia would ordinarily begin to condense. We demonstrate that this result is inconsistent with a wide range of atmospheric models in which the partial pressure of NH3 is given by the vapor-pressure equation in the upper atmosphere. It is estimated that the ammonia mixing ratio must be less than 10?6 in the 150 to 200°K temperature range. This is two orders of magnitude less than the expected mixing ratio based on solar abundances. The evidence for this depletion and a possible explanation are discussed.  相似文献   

2.
James B. Pollack 《Icarus》1973,19(1):43-58
The greenhouse effect is calculated for a series of model atmospheres of Titan containing varying proportions of methane, hydrogen, helium, and ammonia. The pressure induced transitions of hydrogen and methane are the major sources of infrared opacity. For each model atmosphere we first computed its temperature structure with a radiative-convective equilibrium computer program and then generated its brightness temperature spectrum to compare with observed values. This comparison indicates that the methane-to-hydrogen ratio is 1?.67+2, the surface pressure is at least 0.4atm, and the surface temperature at least 150°K. In addition, except possibly close to the surface, the amount of ammonia is far less than the saturation vapor value. Large amounts of helium may also be present. Many of the successful model atmospheres have methane condensation clouds in the upper troposphere, which help reconcile spectroscopic gas abundances and the observed ultraviolet albedo of Titan with the gas amounts required for the greenhouse effect. The occurrence of large amounts of hydrogen may be a prerequisite for the occurrence of large amounts of methane in the atmosphere and vice versa. This hypothesis may help explain why Titan is the only satellite in our solar system known to have an atmosphere.  相似文献   

3.
Close to 2000 laboratory measurements of the microwave opacity and refractivity of gaseous NH3 in an H2/He atmosphere have been conducted in the 1.1-20 cm wavelength range (1.5-27 GHz) at pressures from 30 mbar to 12 bar and at temperatures from 184 to 450 K. The mole fraction of NH3 ranged from 0.06 to 6% with some additional measurements of pure NH3. The high accuracy of these results have enabled development of a new model for the opacity of NH3 in a H2/He atmosphere under jovian conditions. The model employs the Ben-Reuven lineshape applied to the published inversion line center frequencies and intensities of NH3 (JPL Catalog—[Pickett, H.M., Poynter, R.L., Cohen, E.A., Delitsky, M.L., Pearson, J.C., Müller, H.S.P., 1998. J. Quant. Spectrosc. Radiat. Trans. 60, 883-890]) with empirically-fitted line parameters for H2 and He broadening, and for the self-broadening of some previously unmeasured ammonia inversion lines. The new model for ammonia opacity will provide reliable results for temperatures from 150 to 500 K, at pressures up to 50 bar and at frequencies up to 40 GHz. These results directly impact the retrieval of jovian atmospheric constituent abundances from the Galileo Probe radio signal absorption measurements, from microwave emission measurements conducted with Earth-based radio telescopes and with the future NASA Juno mission, and studies of Saturn's atmosphere conducted with the Cassini Radio Science Experiment and the Cassini RADAR 2.1 cm passive radiometer.  相似文献   

4.
Over 1000 laboratory measurements of the 2-4 mm-wavelength opacity of ammonia have been made under simulated jovian atmospheric conditions using a high-precision laboratory system developed at Georgia Tech. These laboratory measurements of the opacity of ammonia were made of various gas mixtures of hydrogen (∼77.5-85.5%), helium (∼12.5-13.5%), and ammonia (1-10%) at pressures between 1 and 3 bars and temperatures between 200 and 300 K. Laboratory measurements were also made of the opacity of pure ammonia at pressures between 0.05 and 1 bar and temperatures between 200 and 300 K. Using these millimeter-wavelength measurements and close to 2000 cm-wavelength measurements made by Hanley et al. (2009), a new consistent model has been developed to accurately characterize the absorption spectra of ammonia in a hydrogen/helium atmosphere in the 1 mm to 30 cm wavelength range. This model can be used in the 1-30 cm wavelength range at pressures up to 20 bars and temperatures from 200 to 500 K and in the 1 mm to 1 cm wavelength range at pressures up to 3 bars and temperatures from 200 to 300 K. These measurements and the accompanying model will enable better interpretation of the centimeter- and millimeter-wavelength emission spectra of the jovian planets.  相似文献   

5.
K.A. Rages  H.B. Hammel 《Icarus》2004,172(2):548-554
Analysis of Hubble Space Telescope images of Uranus taken between 1994 and 2002 shows evidence for temporal changes in zonal brightness patterns in the south polar region. Between 1994 and 2002, a relatively bright ring developed near 70° S. The pole itself, which was the brightest area of the southern hemisphere in 1994, has become relatively dark. The polar collar at 45° S has also become brighter relative to the rest of the southern polar region. Comparison of images through different filters suggests that the change is occurring at pressures of 2-4 bars in the atmosphere. A change at this depth is consistent with radio measurements which indicate seasonal variability in Uranus' deep atmosphere. Disk-integrated photometry at visible wavelengths also exhibits variability on seasonal (∼?decades) timescales. The observed changes are not predicted by existing dynamical models of Uranus' atmosphere.  相似文献   

6.
We report on observations of the full Moon brightness temperature covering the frequency range of 300-950 GHz, and also on observations of the lunar eclipse of July 16, 2000, though only covering the frequency range of 165-365 GHz due to poor atmospheric transmission at higher frequencies. All observations were performed from the summit of Mauna Kea (HI) using a Fourier Transform Spectrometer mounted on the Caltech Submillimeter Observatory and supplemented by measurements of the atmospheric opacity using a 183 GHz Water Vapor Monitor. The telescope was pointed to the center of the lunar disk (with a footprint of ∼45-15 km on the Moon at 300 through 900 GHz). In order to obtain the correct values of the Moon brightness temperatures at all frequencies we carefully corrected for the atmospheric absorption, which varies across the submillimeter domain. This correction is fully described. The measured pre-eclipse brightness temperature is around 337 K in the 165-365 GHz range. This temperature slightly increases with frequency to reach ∼353 K at 950 GHz, according to previous broader band data. The magnitude of the temperature drop observed during the eclipse at 265 GHz (central frequency of the band covered) was about ∼70 K, in very good agreement with previous millimeter-wave measurements of other lunar eclipses. We detected, in addition, a clear frequency trend in the temperature drop that has been compared to a thermal and microwave emission model of the lunar regolith, with the result of a good match of the relative flux drop at different frequencies between model and measurements.  相似文献   

7.
P.G.J. Irwin  K. Sihra  F.W. Taylor 《Icarus》2005,176(2):255-271
New measurements of the low-temperature near-infrared absorption of methane (Sihra, 1998, Laboratory measurements of near-infrared methane bands for remote sensing of the jovian atmosphere, Ph.D. thesis, University of Oxford) have been combined with existing, longer path-length, higher-temperature data of Strong et al. (1993, Spectral parameters of self- and hydrogen-broadened methane from 2000 to 9500 cm−1 for remote sounding of the atmosphere of Jupiter, J. Quant. Spectrosc. Radiat. Trans. 50, 309-325) and fitted with band models. The combined data set is found to be more consistent with previous low-temperature methane absorption measurements than that of Strong et al. (1993, J. Quant. Spectrosc. Radiat. Trans. 50, 309-325) but covers the same wider wavelength range and accounts for both self- and hydrogen-broadening conditions. These data have been fitted with k-coefficients in the manner described by Irwin et al. (1996, Calculated k-distribution coefficients for hydrogen- and self-broadened methane in the range 2000-9500 cm−1 from exponential sum fitting to band modelled spectra, J. Geophys. Res. 101, 26,137-26,154) and have been used in multiple-scattering radiative transfer models to assess their impact on our previous estimates of the jovian cloud structure obtained from Galileo Near-Infrared Mapping Spectrometer (NIMS) observations (Irwin et al., 1998, Cloud structure and atmospheric composition of Jupiter retrieved from Galileo NIMS real-time spectra, J. Geophys. Res. 103, 23,001-23,021; Irwin et al., 2001, The origin of belt/zone contrasts in the atmosphere of Jupiter and their correlation with 5-μm opacity, Icarus 149, 397-415; Irwin and Dyudina, 2002, The retrieval of cloud structure maps in the equatorial region of Jupiter using a principal component analysis of Galileo/NIMS data, Icarus 156, 52-63). Although significant differences in methane opacity are found at cooler temperatures, the difference in the optical depth of the atmosphere due to methane is found to diminish rapidly with increasing pressure and temperature and thus has negligible effect on the cloud structure inferred at deeper levels. Hence the main cloud opacity variation is still found to peak at around 1-2 bar using our previous analytical approach, and is thus still in disagreement with Galileo Solid State Imager (SSI) determinations (Banfield et al., 1998, Jupiter's cloud structure from Galileo imaging data, Icarus 135, 230-250; Simon-Miller et al., 2001, Color and the vertical structure in Jupiter's belts, zones and weather systems, Icarus 154, 459-474) which place the main cloud deck near 0.9 bar. Further analysis of our retrievals reveals that this discrepancy is probably due to the different assumptions of the two analyses. Our retrievals use a smooth vertically extended cloud profile while the SSI determinations assume a thin NH3 cloud below an extended haze. When the main opacity in our model is similarly assumed to be due to a thin cloud below an extended haze, we find the main level of cloud opacity variation to be near the 1 bar level—close to that determined by SSI and moderately close to the expected condensation level of ammonia ice of 0.85 bar, assuming that the abundance of ammonia on Jupiter is (7±1)×10−4 (Folkner et al., 1998, Ammonia abundance in Jupiter's atmosphere derived from the attenuation of the Galileo probe's radio signal, J. Geophys. Res. 103, 22,847-22,855; Atreya et al., 1999, A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin, Planet. Space Sci. 47, 1243-1262). However our data in the 1-2.5 μm range have good height discrimination and our lowest estimate of the cloud base pressure of 1 bar is still too great to be consistent with the most recent estimates of the ammonia abundance of 3.5 × solar. Furthermore the observed limited spatial distribution of ammonia ice absorption features on Jupiter suggests that pure ammonia ice is only present in regions of localised vigorous uplift (Baines et al., 2002, Fresh ammonia ice clouds in Jupiter: spectroscopic identification, spatial distribution, and dynamical implications, Icarus 159, 74-94) and is subsequently rapidly modified in some way which masks its pure absorption features. Hence we conclude that the main cloud deck on Jupiter is unlikely to be composed of pure ammonia ice and instead find that it must be composed of either NH4SH or some other unknown combination of ammonia, water, and hydrogen sulphide and exists at pressures of between 1 and 2 bar.  相似文献   

8.
New thermal profiles of Jupiter are retrieved from recent far infrared spectral measurements and for H2 mixing ratios varying from 0.8 to 0.94. The effective temperature corresponding to the inferred thermal profile is 123.15 ± 0.35°K. Far-infrared brightness temperature spectra computed from these profiles are compared to experimental data including measurements made at high spectral resolution in the NH3ν2 band at 10 μm and in NH3 pure rotational bands between 40 and 110 μm. It is found that a strong depletion of NH3 does occur in the Jovian stratosphere and that ammonia seems to be undersaturated in the upper troposphere.  相似文献   

9.
We analyze the thermal infrared spectra of Jupiter obtained by the Cassini-CIRS instrument during the 2000 flyby to infer temperature and cloud density in the jovian stratosphere and upper troposphere. We use an inversion technique to derive zonal mean vertical profiles of cloud absorption coefficient and optical thickness from a narrow spectral window centered at 1392 cm−1 (7.18 μm). At this wavenumber atmospheric absorption due to ammonia gas is very weak and uncertainties in the ammonia abundance do not impact the cloud retrieval results. For cloud-free conditions the atmospheric transmission is limited by the absorption of molecular hydrogen and methane. The gaseous optical depth of the atmosphere is of order unity at about 1200 mbar. This allows us to probe the structure of the atmosphere through a layer where ammonia cloud formation is expected. The results are presented as height vs latitude cross-sections of the zonal mean cloud optical depth and cloud absorption coefficient. The cloud optical depth and the cloud base pressure exhibit a significant variability with latitude. In regions with thin cloud cover (cloud optical depth less than 2), the cloud absorption coefficient peaks at 1.1±0.05 bar, whereas in regions with thick clouds the peak cloud absorption coefficient occurs in the vicinity of 900±50 mbar. If the cloud optical depth is too large the location of the cloud peak cannot be identified. Based on theoretical expectations for the ammonia condensation pressure we conclude that the detected clouds are probably a system of two different cloud layers: a top ammonia ice layer at about 900 mbar covering only limited latitudes and a second, deeper layer at 1100 mbar, possibly made of ammonium hydrosulfide.  相似文献   

10.
Due to the difficulties in correcting the influences of the atmosphere absorbability and the Earth surface emissivity diversification, the retrieval of LST (land surface temperature) from satellite data is a challenging task. In this paper, a modified Becker's split window LST inversion algorithm is developed for retrieving LST from the NOAA-16/17 AVHRR data. A new set of parameters for Becker's LST algorithm is proposed. The algorithm is developed from a surface brightness temperature dataset generated from the MODTRAN program, which uses a range of surface parameters and atmospheric quantities as inputs. The 10-day composites of the channels 4 and 5 brightness temperature data of NOAA-17 AVHRR (1-km resolution) are used to generate the clear-sky LST. As a validation of the algorithm, the retrieved LST is compared with MODIS LST of same period and area. The two LST products are found to be consistent, with the absolute difference being about 2.5 K for most areas. The NOAA retrieved LST is also compared with in-situ ground surface 0-cm measurements taken from 257 meteorological stations, which cover overall China area for the three periods of satellite observations. The comparison shows that the correlation between the retrieved LST and in-situ measurements is over 0.90 and the RMSE (root mean square error) is about 3.4 K.  相似文献   

11.
We review the photometric work on eclipse reappearances of Io. New observations of eclipse reappearances of Io confirm the post-eclipse brightness anomaly reported by Binder and Cruikshank (1964) but testify to its intermittent nature. A post-eclipse anomaly of approximately 0.07 mag was observed on two occasions in 1972, while observations of Europa and Ganymede showed no brightness anomaly greater than 0.01 mag. The atmospheric condensation model for the anomaly on Io is reviewed in terms of the quantity of frost required to produce the effect and the corresponding amount of gas liberated to the atmosphere upon sublimation. The observational data and the results from a stellar occultation are in general accord with the theoretical predictions of the stability of heavy gases on Io, while both observational and theoretical criteria are satisfied by a tenuous atmosphere of a heavy gas such as methane or ammonia having a surface pressure ~10?7 bar.  相似文献   

12.
Venus cloud covered atmosphere offers a well-suited framework to study the coupling between the atmospheric dynamics and the structure of the cloud field. Violet images obtained during the Galileo flyby from 12 to 17 February 1990 have been analyzed to retrieve the zonal power spectra of the cloud brightness distribution field between latitudes 70° N and 50° S. The brightness distribution spectra serve as a diagnostic of the eddy kinetic energy spectrum providing indirect information about the distribution of energy along different spatial scales. We composed images covering a full rotation of the atmosphere at the level of the UV contrasted clouds obtaining maps of almost 360° that allowed us to obtain the brightness power spectra from wavenumbers k=1 to 50. A full analysis of the spectrum slope for different latitude bands and ranges of wave numbers is presented. The power spectra follow a classical law kn with exponent n ranging from −1.7 to −2.9 depending on latitude and the wavenumber range. For the whole planet, the average of this parameter is −2.1 intermediate between those predicted by the classical turbulence theories for three- and two-dimensional motions (n=−5/3 and n=−3). A comparison with previous analysis of Mariner 10 (in 1974) and Pioneer Venus (in 1979) shows significant temporal changes in the cloud global structure and in the turbulence characteristics of the atmosphere.  相似文献   

13.
L. Ben Jaffel  Y.J. Kim 《Icarus》2007,190(2):504-527
This study uses the adding-doubling radiative transfer method in which we take into account the curvature effect of the planetary atmosphere in order to test the sensitivity of the jovian Ly-α emission line in relation to H column density, eddy diffusion coefficient, frequency redistribution function for photon scattering, temperature vertical profile, and an added hot atomic H layer on the top of the atmosphere. We also focus here on developing new diagnostic tools that will help us to obtain more confidently the underlying thermospheric structure of Jupiter. First, using the brightness distribution for specific wavelength bands as proposed by Ben Jaffel et al. [Ben Jaffel, L., Magnan, C., Vidal-Madjar, A., 1988. Astron. Astrophys. 204, 319-326], we show that the spatial thickness of the atomic H layer above the homopause level can be measured directly as the separation between the vertical positions of respectively the line core and line wing optical limbs. This thickness also constrains the [H] column and the value KH of the eddy diffusion coefficient at the homopause level at the disc location under consideration. We also propose to refine the value of KH and [H], respectively, at a specific planetary latitude, using the Q ratio of the limb peak brightness to the intensity from other regions over the planetary disc. Finally, the relationship between the disc brightness distribution from specific wavelength bands of the emission line and the temperature gradient in the thermosphere is demonstrated, thus providing an accurate tool to access this key information from high resolution observations. Quick, preliminary comparisons with some existing HTS/STIS data show the H layer thickness at auroral latitudes (∼1700 km) is much smaller than at equatorial latitudes (∼3900 km). These results strongly support the existence of a gradient in both H density and KH versus latitude, with higher values of KH at high latitudes and higher values of the H density at the equatorial regions. Such a small H layer thickness at auroral latitudes is consistent with a high mixing in the atmosphere that brings the hydrocarbons upwards, reducing consequently the column of hydrogen that scatters photons. These preliminary results show the strength of the proposed approach and open new horizons to use strong resonant emission lines at high resolution as a diagnostic for the state and structure of planetary upper atmospheres.  相似文献   

14.
The effects of vertical variations in density and dielectric constant on nadir-viewing microwave brightness temperatures are examined. Stratification models as well as models of a continuous increase in density with depth are analyzed. Specific applications address the vertical structure of the lunar frontside regolith, utilizing combined constraints from Apollo data, bistatic radar signatures, and Earth-based measurements of the lunar microwave brightness temperature.Results have been analyzed in terms of the effects on the zeroth and first harmonic of the lunar disk-center brightness temperature variation over a lunation, and their wavelength dependence. Lunation-mean brightness temperatures, which are diagnostic of emissivity and steady-state sub-surface temperatures, are sensitive to both near-surface soil density gradients and single high-impedance dielectric contrasts. Models of the rapid density increase in the upper 5–10 cm of the lunar regolith predict brightness temperature decreases of 2–10°K between λ0 = 3 and 30 cm. The magnitude of this spectral variation depends upon the thickness of a postulated low-density surface coating layer, and the magnitude of the density gradient in the transition soil layer. Comparable decreases in brightness temperature can be produced by a stratified two-layer model of soil overlaying bedrock if the high-density substrate lies within 1–2 m of the surface. Multiple soil layering on a centimeter scale, such as is observed in the Apollo core samples, is not likely to induce spectral variations in mean brightness temperature due to rapid regional variations in layer depths and thicknesses.The fractional variation in disk-center brightness temperature over a lunation (first harmonic) can be altered by vertical-structure effects only for the case in which a larger and abrupt dielectric contrast exists within the upper surface layer where the significant diurnal variations in physical temperature occur. Soil density variations do not cause scattering effects sufficient to significantly alter the microwave emission weighting function within the diurnal layer. For the Moon, this layer consists of the upper 10 cm. Since no widespread rock substrate as shallow as 10 cm exists in the lunar frontside, only volume scattering effects, due to buried shallow rock fragments, can explain the apparent high electrical loss inferred from Earth-based measurements of the amplitude of lunation brightness temperature variations.Representative models of the lunar frontside vertical structure have also been examined for their effects of radar cross-section measurements and resultant inferences of bulk dielectric constant. Models of the near-surface density gradient predict a significant increase in the remotely inferred dielectric constant value from centimeter to meter wavelengths. Such a model is in general agreement with the dielectric constant spectrum inferred from Earth-based brightness temperature polarization measurements, but is difficult to reconcile with the Apollo bistatic radar results at λ0 = 13 and 116 cm.  相似文献   

15.
The dramatic growth and evolution of the 2001 martian global dust storm were captured using the Submillimeter Wave Astronomy Satellite (SWAS). While the lower and middle atmosphere (pressures greater than 50 μbar, up to ∼45 km altitude) showed rapid heating of up to 40 K, the average surface brightness temperature plummeted by ∼20 K at the peak of the storm. The storm appears to have had little impact on the global temperature structure at altitudes above ∼ 10 μbar (∼ 60 km).  相似文献   

16.
Images from three filters of the Voyager 1 wide-angle camera were used to measure the continuum reflectivity and spectral gradient near 6000 Å and the 6190-Å band methane/continuum ratio for a variety of cloud features in Jupiter's atmosphere. The dark “barge” features in the North Equatorial Belt have anomalously strong positive continuum spectral gradients suggesting unique composition, probably not elemental sulfur. Methane absorption was shown at unprecedented spatial scales for the Great Red Spot and its immediate environment, for a dark barge feature in the North Equatorial Belt, and for two hot spot and plume regions in the North Equatorial Belt. Some small-scale features, unresolvable at ground-based resolution, show significant enhancement in methane absorption. Any enhancement in methane absorption is conspicuously absent in both hot spot regions with 5-μm brightness temperature 255°K. Methane absorption and 5-μm emission are correlated in the vicinity of the Great Red Spot but are anticorrelated in one of the plume hot spot regions. Methane absorption and simultaneously maps of 5-μm brightness temperature were quantitatively compared to realistic cloud structure models which include multiple scattering at 5 μm as well as in the visible. A curve in parameter space defines the solution to any observed quantity, ranging from a shallow atmosphere and thin NH3 cloud to a deep atmosphere with a thick ammonia cloud. Without additional constraints, such as center-to-limb information, it is impossible to specify the NH3 cloud optical depth and pressure of a deeper cloud top independently. Variability in H2 quadrupole lines was also investigated and it was found that the constancy of the 4-0 S(1)-line equivalent width is consistent with the constancy of the methane 6190-Å band equivalent width at ground-based resolution, but the much greater variability of the 3-0 S(1) line is inconsistent with either the methane band or 4-0 S(1) line. In hot spot regions the 255°K brightness temperature requires a cloud optical depth of about 2 or less at 5 μm in the NH3 cloud layer. To be consistent with the observed 6190-Å methane absorption in hot spot regions, the NH3 cloud optical depth in the visible is about 7.5, implying that aerosols in hot spot regions have effective radii near 1 μm or less.  相似文献   

17.
Thermal models of planetary atmospheres can be calculated from assumptions of the energy budget of the atmosphere and from the knowledge of the effective temperature of the studied planet. On the other hand, the retrieval of the thermal atmospheric profiles from infrared measurements by means of the numerical inversion of the radiative transfer equation presents the advantages of not requiring such assumptions. The extent of the atmospheric range which can then be sounded is examined and the vertical resolution of the inferred profiles is discussed. Comparisons of thermal models and retrieved thermal profiles are made for the four giant planets. The retrieved profiles lead to brightness temperature spectra which fit all the available infrared measurements fairly well for Jupiter and Saturn but only part of them for Uranus and Neptune. The values of the planetary effective temperatures calculated from the retrieved profiles show that Jupiter, Saturn, and Neptune have strong internal heating sources while Uranus probably has a very small or null one.  相似文献   

18.
We report laboratory experiments and modeling calculations investigating the effect of a hydrocarbon coating on ammonia ice spectral signatures. Observational evidence and thermochemical models indicate an abundance of ammonia ice clouds in Jupiter's atmosphere. However, spectrally identifiable ammonia ice clouds are found covering less than 1% of Jupiter's atmosphere, notably in areas of strong vertical transport, indicating a short lifetime for the signature of ammonia absorption on condensed ammonia particles [Baines, K.H., Carlson, R.W., Kamp, L.W., 2002. Icarus 159, 74-94]. Current literature has suggested coating of ammonia ice particles by a hydrocarbon haze as a possible explanation for this paradox. The work presented here supports the inference of a coating effect that can alter or suppress ammonia absorption features. In the experiments, thin films of ammonia ices are deposited in a cryogenic apparatus, coated with hydrocarbons, and characterized by reflection-absorption infrared spectroscopy. We have observed the effects on the ammonia ice absorption features near 3 and 9 μm with coverage by thin layers of hydrocarbons. Modeling calculations of these multilayer thin films assist in the interpretation of the experimental results and reveal the important role of optical interference in altering the aforementioned ammonia spectral features. Mie and T-matrix scattering calculations demonstrate analogous effects for ammonia ice particles and investigate the relative effects of ammonia ice particle size, shape, and coating layer thickness on the ice particle spectral signatures.  相似文献   

19.
Solar radio maps obtained by our group and others over a wide wavelength range (millimeter to meter) and over a considerable time span (1973–1978) have allowed us to compute the radio spectrum of an average coronal hole, i.e., the brightness temperature inside a coronal hole normalized by the brightness temperature of the quiet Sun outside the coronal hole measured at several different radio wavelengths. This radio spectrum can be used to obtain the changes of the quiet Sun atmosphere inside coronal holes and also as an additional check for coronal hole profiles obtained by other methods. Using a standard solar atmosphere and a computer program which included ray tracing, we have tried to reproduce the observed radio spectrum by computing brightness temperatures at many different wavelengths for a long series of modifications in the electron density, neutral particle density and temperature profiles of the standard solar atmosphere. This analysis indicates that inside an average coronal hole the following changes occur: the upper chromosphere expands by about 20% and its electron density and temperature decrease by about 10%. The transition zone experiences the largest change, expanding by a factor of about 6, its electron density decreases by a similar factor, and its temperature decreases by about 50%. Finally in the corona the electron density decreases by about 20% and the temperature by about 15%.  相似文献   

20.
Observations of the planet Saturn at wavelengths of 49.5 and 94.3 em are reported. The equivalent disk brightness temperatures were found to be 400 ± 65°K and 540 ± 110°K, respectively. It is suggested that the enhanced portion of the spectrum of the disk brightness temperature favours the idea that the observed long wavelength radiation comes from the planet's atmosphere.However, the possibility of a magnetic field associated with Saturn is not rejected by the observations. Part of the excess temperature could be attributed to weak synchrotron emission coming from a region outside the ring system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号