首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Ion irradiation experiments have been performed on silicates (bulk samples) rich of olivine, pyroxene, and serpentine to simulate the effects of space weathering induced on asteroids by solar wind ions. We have used different ions (H+, He+, Ar+, Ar2+) having different energies (from 60 to 400 keV) to weather the samples, probed by Raman spectroscopy and UV-vis-NIR reflectance spectroscopy. All the irradiated materials have shown reddening and darkening of reflectance spectra in the 0.25-2.7 μm spectral range. We have found that the increase of the spectral slope of the continuum across the 1-μm band is strongly related with the number of displacements caused by colliding ions because of elastic collisions with the target nuclei. The spectral slopes have been compared, at increasing ion fluence, with those from irradiated Epinal meteorite. We show that formation of nuclear displacements by solar wind ion irradiation is a physical mechanism that reddens the asteroidal surfaces on a time-scale lower than 106 years.  相似文献   

2.
R. Brunetto  T. Pino  A.-T. Cao  G. Strazzulla 《Icarus》2009,200(1):323-3884
We use a low pressure flame to produce soot by-products as possible analogues of the carbonaceous dust present in diverse astrophysical environments, such as circumstellar shells, diffuse interstellar medium, planetary disks, as well as in our own Solar System. Several soot samples, displaying an initial chemical diversity from aromatic to aliphatic dominated material, are irradiated with 200-400 keV H+, He+, and Ar++ ions, with fluences comprised between 1014 and 1016 ions/cm2, to simulate expected radiation induced modification on extraterrestrial carbon. The evolution of the samples is monitored using Raman spectroscopy, before, during, and after irradiation. A detailed analysis of the first- and second-order Raman spectra is performed, using a fitting combination of Lorentzian and/or Gaussian-shaped bands. Upon irradiation, the samples evolve toward an amorphous carbon phase. The results suggest that the observed variations are more related to vacancy formation than ionization processes. A comparison with Raman spectra of extraterrestrial organic matter and other irradiation experiments of astrophysically relevant carbonaceous materials is presented. The results are consistent with previous experiments showing mostly amorphization of various carbonaceous materials. Irradiated soots have Raman spectra similar to those of some meteorites, IDPs, and Comet Wild 2 grains collected by the Stardust mission. Since the early-Sun expected irradiation fluxes sufficient for amorphization are compatible with accretion timescales, our results support the idea that insoluble organic matter (IOM) observed in primitive meteorites has experienced irradiation-induced amorphization prior to the accretion of the parent bodies, emphasizing the important role played by early solar nebula processing.  相似文献   

3.
D.J. Burke 《Icarus》2011,211(2):1082-1088
Remote infrared spectroscopic measurements have recently re-opened the possibility that water is present on the surface of the Moon. Analyses of infrared absorption spectra obtained by three independent space instruments have identified water and hydroxyl (-OH) absorption bands at ∼3 μm within the lunar surface. These reports are surprising since there are many mechanisms that can remove water but no clear mechanism for replenishment. One hypothesis, based on the spatial distribution of the -OH signal, is that water is formed by the interaction of the solar wind with silicates and other oxides in the lunar basalt. To test this hypothesis, we have performed a series of laboratory simulations that examine the effect of proton irradiation on two minerals: anorthite and ilmenite. Bi-directional infrared reflection absorption spectra do not show any discernable enhancement of infrared absorption in the 3 μm spectral region following 1 or 100 keV proton irradiation at fluences between 1016 and 1018 ions cm−2. In fact, the post-irradiation spectra are characterized by a decrease in the residual O-H band within both minerals. Similarly, secondary ion mass spectrometry shows a decrease rather than an increase of the water group ions following proton bombardment of ilmenite. The absence of significant formation of either -OH or H2O is ascribed to the preferential depletion of oxygen by sputtering during proton irradiation, which is confirmed by post-irradiation surface analysis using X-ray photoelectron spectroscopy measurements. Our results provide no evidence to support the formation of H2O in the lunar regolith via implantation of solar wind protons as a mechanism responsible for the significant O-H absorption in recent spacecraft data. We determine an upper limit for the production of surficial -OH on the lunar surface by solar wind irradiation to be 0.5% (absorption depth).  相似文献   

4.
The differential flux and energy spectra of solar cosmic ray heavy ions of He, C, O, Ne, Mg, Si, and Fe were determined in the energy interval E = 3–30 MeV amu-1 for two large solar events of January 24, 1971 and September 1, 1971 in rocket flights made from Ft. Churchill. From these data the relative abundances and the abundance enhancement factors, ξ, relative to photospheric abundances were obtained for these elements. Similar results were obtained for a third event on August 4, 1972 from the available published data. Characteristic features of ξ vs nuclear charge dependences were deduced for five energy intervals. The energy dependence of ξ for He shows a moderate change by a factor of about 3, whereas for Fe, ξ shows a very dramatic decrease by a factor of 10–20 with increasing energy. It is inferred that these abundance enhancements of solar cosmic ray heavy ions at low energies seem to be related to their ionization states (Z *) and hence studies of Z * can give information on the important parameters such as temperature and density in the accelerating region in the Sun.  相似文献   

5.
Most ion irradiation experiments relevant to primitive outer Solar System objects have been performed on ice and silicate targets. Here we present the first ion irradiation experiments performed on natural complex hydrocarbons (asphaltite and kerite). These materials are very dark in the visible and have red-sloped spectra in the visible and near-infrared. They may be comparable in composition and structure to refractory organic solids on the surfaces of primitive outer Solar System objects. We irradiated the samples with 15-400 keV H+, N+, Ar++, and He+ ions and measured their reflectance spectra in the range of 0.3-2.5 μm before ion implantation and after each irradiation step. The results show that irradiation-induced carbonization gradually neutralizes the spectral slopes of these red organic solids. This implies a similar space weathering trend for the surfaces of airless bodies optically dominated by spectrally red organic components. The reduction of spectral slope was observed in all experiments. Irradiation with 30 keV protons, which transfers energy to the target mostly via electronic (inelastic) collisions, showed lower efficiency than the heavier ions. We found that spectral alteration in our experiments increased with increasing contribution of nuclear versus electronic energy loss. This implies that nuclear (elastic) energy deposition plays an important role in changing the optical properties of irradiated refractory complex hydrocarbon materials. Finally, our results indicated that temperature variations from 40 K to room temperature did not influence the spectral properties of these complex hydrocarbon solids.  相似文献   

6.
Moroz  L. V.  Baratta  G.  Distefano  E.  Strazzulla  G.  Starukhina  L. V.  Dotto  E.  Barucci  M. A. 《Earth, Moon, and Planets》2003,92(1-4):279-289
Trans-Neptunian Objects (TNOs) and Centaurs show remarkable colour variationsin the visual and near-infrared spectral regions. Surface alteration processes such asspace weathering (e.g., bombardment with ions) and impact resurfacingmay play an important role in the colour diversity of such bodies. Ion irradiation ofhydrocarbon ices and their mixtures with water ice transforms neutral (grey) surfacecolours of ices to red and further to grey. Along with the ices, TNOs and Centaursprobably contain complex carbonaceous compounds, in particular, complexhydrocarbons. Unlike ices, such refractory organic materials have originally lowvisual albedos and red colours in the visible and near-infrared ranges. Here wepresent the first results of ion irradiation experiments on asphaltite. Asphaltite isa natural complex hydrocarbon material. The reflectance spectra of asphaltite inthe 0.4–0.8 μm range have been recorded before irradiation and after eachirradiation step. We demonstrate that irradiation of this red dark material with30 keV H+ and 15 keV N+ ions gradually transforms its colour from redto grey as a result of carbonization. A moderate increase in the visual albedo hasbeen observed. These results may imply that the surfaces of primitive red objectsoptically dominated by complex refractory organics may show a similar spaceweathering trend. Our laboratory results were compared with published coloursof TNOs and Centaurs. A broad variety of spectral colours observed for TNOs andCentaurs may be reproduced by various spectra of irradiated organics correspondingto different ion fluences. However, such objects probably also contain ices and silicatecomponents which show different space weathering trends. This fact, together with alack of information about albedos, may explain difficulties to reveal correlations between surface colours within TNO and Centaur populations and their other properties, such as absolute magnitudes and orbital parameters.  相似文献   

7.
Long intervals, during which heavy ions were detected in the high energy tail of the energy spectra of solar wind ions, were recorded by the plasma spectrometer SCS onboard the Prognoz-7 satellite. In particular, such a region with unusual features—low velocity, high density, low temperature of protons and, especially, low temperature of α-particles—was observed during 10–13 December 1978. The time dependence of these parameters makes it possible to recognize this event as “noncompressive density enhancement”. In this region heavy ions such as O+6, O+7, Si+7, Si+8, Si+9 and a group of iron from Fe+6 to Fe+13 were identified by the electrostatic analyzer.The abundance of these ions relative to protons was about ten times higher than had previously been observed. The coronal temperature, estimated from the ratios of the ion fluxes with different ionization states, is higher than that estimated earlier for the oxygen ions.  相似文献   

8.
In this paper we present new results obtained from our spectroscopic survey of near-Earth objects (called SINEO). We show a set of 36 visible and near-infrared spectra, recorded with the 3.5-m Italian Telescopio Nazionale Galileo at La Palma (Canary Island). We discuss their taxonomic classification (resulting in 25 objects belonging to the S-complex, five to the C-complex and six to the X-complex), and their overall compositional linkage with the principal source of near-Earth objects, namely the Main Belt. Moreover, for some near-Earth objects we found good spectral fit among meteorites. In particular, we achieved an excellent fit for chondrites of different clans. Finally, we discuss the influences of space weathering among small S-type near-Earth objects.  相似文献   

9.
Abstract– Mineral grains that comprise dust particles in circumstellar, interstellar, and protostellar environments can potentially undergo amorphization and other solid‐state transformations from exposure to energetic ions from space plasmas. The Fe‐sulfide minerals troilite (FeS) and pyrrhotite (Fe1?xS) are important known dust components, but their potential to undergo structural changes, including amorphization, from space radiation processing in dusty space environments has not been experimentally evaluated relative to silicates. We used a transmission electron microscope (TEM) with capabilities for in situ ion irradiation to precisely follow structural changes in troilite and pyrrhotite exposed to 1.0 MeV Kr++ ions selected to optimize the probability of inducing amorphization from nuclear elastic collisional processes. No indication of amorphization was found in either mineral up to an experimentally practical ion dose of 1 × 1016 Kr++ ions cm?2, indicating that both structures can remain crystalline up to a modeled collisional damage level of at least 26 displacements‐per‐atom. This behavior matches that of some of the most radiation‐resistant nonmetallic phases known, and is two orders of magnitude higher than the levels at which Mg‐rich olivine and enstatite become amorphous under the same irradiation conditions. Although pyrrhotite retained short‐range crystalline order during irradiation, its longer range vacancy‐ordered superstructure is removed at modeled damage levels equivalent to those at which olivine and enstatite become amorphous. This suggests that space radiation conditions sufficient to amorphize olivine and enstatite in circumstellar and interstellar environments would convert coexisting pyrrhotite to its disordered structural form, thereby changing magnetic and possibly other properties that determine how pyrrhotite will behave in these environments.  相似文献   

10.
Information concerning the coronal expansion is carried by solar wind heavy ions. Distinctly different energy-per-charge ion spectra are found in two classes of solar wind having the low kinetic temperatures necessary for E/q resolution of the ion species. Heavy ion spectra which can be resolved are most frequently observed in the low-speed interstream (IS) plasma found between high speed streams; the streams are thought to be coming from coronal holes. Although the sources of the IS plasma are uncertain, the heavy ion spectra found there contain identifiable peaks of O, Si, and Fe ions. Such spectra indicate that the IS ionization state of O is established in coronal gas at T 2.1 × 106 K while that of Fe is frozen in farther out at 1.5 × 106 K. On occasion anomalous spectra are found outside IS flows in solar wind with abnormally depressed local kinetic temperatures. The anomalous spectra contain Fe16+ ions, not usually found in IS flows, and the derived coronal freezing in temperatures are significantly higher; for two of the best cases values of 3.4 × 106 K were found for the O ions and 2.9 × 106 K for Fe ions. The coronal sources of some of these ionizationally hot flows are identified as solar flares. The appearance of abnormally depressed kinetic temperatures in solar wind coming from flare-heated coronal gas lends support to earlier speculation that flares can expel plasma enclosed in magnetic bottles or bubbles. In transit to 1 AU the gas is sufficiently isolated from the hot corona that it cools anomalously.The Los Alamos Scientific Laboratory requests that the publisher identify this article as work performed under the auspices of the Department of Energy.By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.  相似文献   

11.
We present near-IR (2.2-2.4 μm) reflectance and transmittance spectra of frozen (16 and 77 K) methanol (CH3OH) and water-methanol (1:1) mixtures before and after irradiation with 30 keV He+ and 200 keV H+ ions. Spectra of other simple hydrocarbons (CH4, C2H2, C2H4, C2H6) and CO have also been obtained both to help in the identification of the new molecules formed after ion irradiation of methanol-rich ices, and to get insight into the question of the presence of simple frozen hydrocarbons on the surface of some objects in the outer Solar System. The results confirm what obtained by studies performed in different spectral ranges, namely the ion-induced formation of CO and CH4, and, for the first time, evidence a strong decrease of the intensity of the methanol band at about 2.34 μm in comparison with that at 2.27 μm. The results are discussed in view of their relevance for icy objects in the Solar System (namely comets, Centaurs, and Kuiper belt objects) where CH3OH has been observed or suggested to be present.  相似文献   

12.
We analyze the dynamical evolution of Jupiter-family (JF) comets and near-Earth asteroids (NEAs) with aphelion distances Q>3.5 AU, paying special attention to the problem of mixing of both populations, such that inactive comets may be disguised as NEAs. From numerical integrations for 2×106 years we find that the half lifetime (where the lifetime is defined against hyperbolic ejection or collision with the Sun or the planets) of near-Earth JF comets (perihelion distances q<1.3 AU) is about 1.5×105 years but that they spend only a small fraction of this time (∼ a few 103 years) with q<1.3 AU. From numerical integrations for 5×106 years we find that the half lifetime of NEAs in “cometary” orbits (defined as those with aphelion distances Q>4.5 AU, i.e., that approach or cross Jupiter's orbit) is 4.2×105 years, i.e., about three times longer than that for near-Earth JF comets. We also analyze the problem of decoupling JF comets from Jupiter to produce Encke-type comets. To this end we simulate the dynamical evolution of the sample of observed JF comets with the inclusion of nongravitational forces. While decoupling occurs very seldom when a purely gravitational motion is considered, the action of nongravitational forces (as strong as or greater than those acting on Encke) can produce a few Enckes. Furthermore, a few JF comets are transferred to low-eccentricity orbits entirely within the main asteroid belt (Q<4 AU and q>2 AU). The population of NEAs in cometary orbits is found to be adequately replenished with NEAs of smaller Q's diffusing outward, from which we can set an upper limit of ∼20% for the putative component of deactivated JF comets needed to maintain such a population in steady state. From this analysis, the upper limit for the average time that a JF comet in near-Earth orbit can spend as a dormant, asteroid-looking body can be estimated to be about 40% of the time spent as an active comet. More likely, JF comets in near-Earth orbits will disintegrate once (or shortly after) they end their active phases.  相似文献   

13.
T. Gregory Guzik 《Solar physics》1988,118(1-2):185-208
The current state of Solar Energetic Particle (SEP) observations above 1 MeV nucl.–1 is examined and compared to gamma-ray observations to assess the degree to which current understanding of the solar flare process can explain the observations and to delineate directions for future research. The particle acceleration appears to be due to either Fermi-type stochastic processes or flare-generated shock waves, but the available data can not yet distinguish between these two mechanisms. Large SEP events generally show no gamma-ray emission and may be examples of shock acceleration in the corona. The pre-accelerated matter, however, seems to be a mixture of hot (> 106 K) and cold (< 105 K) plasma with an elemental composition enriched with respect to the photosphere in ions of low first ionization potential (< 10 eV) and sometimes enhanced in heavy ions (Z > 10). These enrichments may be due to thermal/ pressure gradient diffusion and neutral gravitational settling. Gamma-ray line emission events are often associated with small, electron rich SEP events, some of which also include heavy ion enhancements. While time profiles of the gamma emission show that electrons and ions can be accelerated promptly (t < 1 s), comparison of the inferred flux of particles at the Sun with SEP observations in space indicate that few of these particles escape. The conditions for SEP release to interplanetary space have yet to be systematically detailed.  相似文献   

14.
This work is a part of ESA/EU SURE project aiming to quantify the survival probability of fungal spores in space under solar irradiation in the vacuum ultraviolet (VUV) (110-180 nm) spectral region. The contribution and impact of VUV photons, vacuum, low temperature and their synergies on the survival probability of Aspergillus terreus spores is measured at simulated space conditions on Earth. To simulate the solar VUV irradiation, the spores are irradiated with a continuous discharge VUV hydrogen photon source and a molecular fluorine laser, at low and high photon intensities at 1015 photon m−2 s−1 and 3.9×1027 photons pulse−1 m−2 s−1, respectively. The survival probability of spores is independent from the intensity and the fluence of photons, within certain limits, in agreement with previous studies. The spores are shielded from a thin carbon layer, which is formed quickly on the external surface of the proteinaceous membrane at higher photon intensities at the start of the VUV irradiation. Extrapolating the results in space conditions, for an interplanetary direct transfer orbit from Mars to Earth, the spores will be irradiated with 3.3×1021 solar VUV photons m−2. This photon fluence is equivalent to the irradiation of spores on Earth with 54 laser pulses with an experimental ∼92% survival probability, disregarding the contribution of space vacuum and low temperature, or to continuous solar VUV irradiation for 38 days in space near the Earth with an extrapolated ∼61% survival probability. The experimental results indicate that the damage of spores is mainly from the dehydration stress in vacuum. The high survival probability after 4 days in vacuum (∼34%) is due to the exudation of proteins on the external membrane, thus preventing further dehydration of spores. In addition, the survival probability is increasing to ∼54% at 10 K with 0.12 K/s cooling and heating rates.  相似文献   

15.
We report Doppler-only (cw) radar observations of basaltic near-Earth asteroid 3908 Nyx obtained at Arecibo and Goldstone in September and October of 1988. The circular polarization ratio of 0.75±0.03 exceeds ∼90% of those reported among radar-detected near-Earth asteroids and it implies an extremely rough near-surface at centimeter-to-decimeter spatial scales. Echo power spectra over narrow longitudinal intervals show a central dip indicative of at least one significant concavity. Inversion of cw spectra yields two statistically indistinguishable shape models that have similar shapes and dimensions but pole directions that differ by ∼100°. We adopt one as our working model and explore its implications. It has an effective diameter of 1.0±0.15 km and radar and visual geometric albedos of 0.15±0.075 and 0.16+0.08−0.05. The visual albedo supports the interpretation by D. P. Cruikshank et al. (1991, Icarus89, 1-13) that Nyx has a thermal inertia consistent with that of bare rock. The model is irregular, modestly asymmetric, and topographically rugged.  相似文献   

16.
We performed ion irradiation of mineral samples with 50 keV He+, aimed to investigate ion irradiation effects on diagnostic spectral features. Reflectance spectra of samples in 0.375–2.5 μm are measured before and after ion irradiation. Silicates, including Luobusha olivine, plagioclase and basaltic glass, have shown reddening and darkening of reflectance spectra at the VIS–NIR range. Olivine is more sensitive to ion irradiation than plagioclase and basaltic glass. Irradiated Panzhihua ilmenite exhibits higher reflectance and stronger absorption features, which is totally different from lunar soil and analog silicate materials in other experiments. Using continuum removal and MGM fit, we extracted and compared absorption features of olivine spectra before and after irradiation. Ion irradiation can induce band strength decrease of olivine but negligible band centers shift. We estimate band centers shift caused by ion irradiation are quite limited, even less than variations due to chemical composition in silicates. It provides one possible explanation for no systematic shift in band positions in lunar soil. Irradiated Luobusha olivine spectrum matches spectra of olivine-dominated asteroids. Our results suggest space weathering should be new clues to explain the subtle difference between A-type asteroid spectra and laboratory spectra of olivine.  相似文献   

17.
We present the results of extensive thermal-infrared observations of the C-type near-Earth Asteroid (1580) Betulia obtained in June 2002 with the 3-m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. Betulia is a highly unusual object for which earlier radiometric observations, interpreted on the basis of simple thermal models, indicated a surface of high thermal inertia. A high thermal inertia implies a lack of thermally insulating regolith. Radiometric observations of other asteroids of comparable size indicate that regolith is present in nearly all cases. Knowledge of the surface thermal properties of small near-Earth asteroids is crucial for meaningful calculations of the Yarkovsky effect, which is invoked to explain the delivery of collisional fragments from the main belt into near-Earth orbits, and apparently has a significant influence on the orbital evolution of potentially hazardous near-Earth asteroids. Furthermore, apart from being an indicator of the presence of thermally insulating regolith on the surface of an asteroid, the thermal inertia determines the magnitude of the diurnal temperature variation and is therefore of great importance in the design of instrumentation for lander missions to small asteroids. In the case of Betulia our database is sufficiently broad to allow the use of more sophisticated thermal models than were available for earlier radiometric observations. The measured fluxes have been fitted with thermal-model emission continua to determine the asteroid's size and geometric albedo, pv. Fits obtained with a new thermophysical model imply an effective diameter of 4.57±0.46 km and an albedo of 0.077±0.015 and indicate a moderate surface thermal inertia of around 180 J m−2 s−0.5 K−1. It is difficult to reconcile our results with earlier work, which indicate a larger diameter for Betulia and a high-thermal-inertia surface of bare rock.  相似文献   

18.
The stochastic acceleration of heavy ions by Alfvén turbulence is considered with allowance for Coulomb losses. The pattern of energy dependence of these losses gives rise to characteristic features in the energy spectra of the accelerated particles at energies of the order of several MeV nucleon?1. The manifestation of these features in the spectra is sensitive to the temperature and density of the medium, which can serve as a basis for plasma diagnostics in the flare region. Some impulsive solar energetic particle events during which features in the spectra of 3He and 4He were observed are considered as an example.  相似文献   

19.
The results of numerical simulation of stochastic acceleration of the heavy ions (3He, 4He, 16O, and 56Fe) are presented for the impulsive solar event of October 5, 2002. The energy spectra of the aforementioned particles have peculiarities (depressions) in the low-energy region (≤1 MeV nucleon−1). Coulomb losses in the flare plasma and adiabatic losses during interplanetary propagation are considered in the study as possible causes of such peculiarities.  相似文献   

20.
We derive the expression for the ponderomotive force in the real multicomponent magnetospheric plasma containing heavy ions. The ponderomotive force considered includes the induced magnetic moment of all the species and arises due to inhomogeneity of the traveling low-frequency electromagnetic wave amplitude in the nonuniform medium. The nonlinear stationary force balance equation is obtained taking into account the gravitational and centrifugal forces for the plasma consisting of the electrons, protons and heavy ions (He+). The background geomagnetic field is taken for the dayside of the magnetosphere, where the magnetic field have magnetic “holes” (Antonova and Shabansky in Geomagn. Aeron. 8:639, 1968). The balance equation is solved numerically to obtain the nonlinear density distribution of ions (H+) in the presence of heavy ions (He+). It is shown that for frequencies less than the helium gyrofrequency at the equator the nonlinear plasma density perturbations are peaked in the vicinity of the equator due to the action of the ponderomotive force. A comparison of the cases of the dipole and dayside magnetosphere is provided. It is obtained that the presence of heavy ions leads to decrease of the proton density modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号